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Abstract In this paper, we present a direct computational
method to solve Volterra integral equations. The proposed
method is a direct method based on approximate functions
with the Bernstein Multiscaling polynomials. In this
method, using operational matrices, the integral equation
turns into a system of equations. Our approach can solve
nonlinear integral equations of the first kind and the second
kind with piecewise solution. The computed operational
matrices in this article are exact and new. The comparison
of obtained solutions with the exact solutions shows that
this method is acceptable. We also compared our approach
with two direct and expansion—iterative methods based on
the block-pulse functions. Our method produces a system,
which is more economical, and the solutions are more
accurate. Moreover, the stability of the proposed method is
studied and analyzed by examining the noise effect on the
data function. The appropriateness of noisy solutions with
the amount of noise approves that the method is stable.
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Introduction

Most of integral equations of the first kind are ill-posed
problems. Many authors paid attention to solve these
equations and presented some methods [1-8]. These
problems have application in mathematics, physics, and
engineering. Recently, using polynomials have been com-
mon to solve these equations, see [9-27].

BMSPs are more general forms of BPs. One of the
advantages of BMSPs compared to BPs is that they can
approximate piecewise functions. In addition, using BMSP
basis, we will have two degrees of freedom which increase
accuracy of the method. One of these parameters is m, the
degree of polynomials, and the other one k, which corre-
sponds to the number of partitions in the interval [a, D).

In this paper, we review BP properties and preliminary
theorems in Subsect. 1 of Sect. “Review of Bernstein
polynomials”. In Subsects. “Tranformation matrices” and
“Operational matrices”, transformation matrices and
operational matrices for BPs are computed. In
Sect. “Bernstein Multiscaling polynomials”, BMSPs are
defined. Transformational matrices and operational matri-
ces for BMSPs are obtained in Sects. “Transformation
matrices” and “BMSPs operational matrices”, respec-
tively. In Sect. “Solution of Volterra integral equation”, by
applying obtained matrices and functions approximation,
the integral equations are turned into a system of equations.
We present some numerical examples to illustrate the
accuracy and ability of this method in Sect. “Numerical
examples”. In next section, we compare our approach with
two direct and expansion—iterative methods based on
block-pulse functions. In Sect. “Stability of method”, sta-
bility is shown and we end this paper with a short con-
clusion in Sect. “Conclusion”.
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Review of Bernstein polynomials
Preliminaries

Definition 1. Suppose m is a positive integer number, BPs
of degree m on the interval [a, ] are defined as

= (1)

In addition, B, ,,(x) = 0 if i<0 or i > m.
For convenience, we consider [a, b] = [0, 1], namely

Bim(x) = (T)xi(l —x)m_i, i=0,...,m.

i=0,...,m

We denote ®,,, an m + 1 — column vector, as follows:

®,,(x) = [‘/’0( )y ¢m(x)]r’ ¢i(x) = Bim(x)v
i=0,...,m.

The BPs have many interesting properties [24-30].
However, here, some of them that are useful in our work

are stated:
m m
(1))
2m
(i)

i,j=0,...,m.

+(00G),

where

(1)  Bim(x)Bjm(x) = Bisjom(x),

(pZ) z+1 m+k( )
m—+k
( ) )
07
B m(x) Bi,m+l(x) Bitimy1(x)

Pp3) <’?):<m—:—1)+<’7:11) i=0,...,m

The following theorems are a fundamental tool that
justifies the use of polynomials.

Theorem A [31] Suppose H = I*(|a,b)) is a Hilbert
space  with  the  inner  product  defined by

g) = f:f(t)g(t)dt and in  addition, Y=
Span{Bo,u(x), Bim(x),...,Bum(x)} is the span space by
Bernstein’s polynomials of degree m. Let f be an arbitrary
element in H. Since Y is a finite dimensional and closed
subspace, it is a complete subset of H. Therefore, f has the
unique best approximation out of Y, such that y,

o € V;Vy € Yo |If = yoll, < If = vl

Therefore,
ocj,j:0,1,...,

there are the
m, such that

unique  coefficients

’r @ Springer

f(t) =~ yo(f) = Z (Zij_m([) = OCT(Dm,

where o = [0 0. . .otm]T can be obtained by

0. 9,(0)
(@0 (1), 0, (1))

such that {f(t), @,,( f 1)

In above theorem we “denote Q ( D,,(1), D, (1)) as
dual matrix. Furthermore, it is easy to see

()05

(2m + 1)( +2m_2> ’

Next theorem indicates that dual matrix is symmetric
and invertible.

Theorem B [31] Elements yi,y2,...,yn» of a Hilbert
space H constitute a linearly independent set in H if and

only if G(y1,y2,--.,u) # 0.
where G(y1,y2,...,yn) is the Gram determinant of

Qi = Lj=1,...m+ 1.

Y1,¥2, -, Y defined by
iy (1,32) (Y1, Yn)
GOy ya, o yn) = <YZ7.)’1> ()’27.y2> (yz,'yn> .
<Yn7.}’1> <}’17.)’|> <yn7.yn>

For a two-dimensional function k(x,t) € I*([0,1]
%[0, 1]), it can be similarly expanded with respect to BPs,
such as

k(x, 1) ~ @ (x)K®,,(1),
and K is the (m + 1) x

Ky~ 0! / (0" / Ko, 1)by(1) di) by () e |

0 0
i,j=0,...,m.

(m + 1) BP coefficient matrix with

Transformation matrices

Transformation matrix is used to change the dimension of
the problem. In other words, this matrix can convert @, to
®, and vice versa.

Suppose m is less than n, T is an (m+ 1) x (n+ 1)
matrix, called increasing transformation matrix, that con-
verts @, to @,. In other words, ®,, = T,.D,.

The increasing transformation matrix can be computed
as follows:
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0,if i<jorj >i+k,

MG
(1%)

It is sufficient to use p3, k times, where k = n — m.

In addition, decreasing transformation matrix is an (n +
1) x (m + 1) matrix, which is shown by 7", and converts @,
to @,,, where n is greater than m. In other words, ®,, = T,'®,,,.

The ith row of decreasing transformation matrix can be
calculated as follows:

™ = !
[ n]i+l _m

[T,','J i

, otherwise.

1 1 1 r

(m—i—n) (m—i—n) (m—i—n)
i i+1 i+m
o', i=0,..

1.

Operational matrices

Operational matrix is a matrix that works on basis, such as
an operator; in other words, if A is an operator, an opera-
tional matrix is a matrix, such as P, such that A(®) ~ P®.

Operational matrix of integration

Lemma 3 Suppose ®,,(x) = [¢(x), ..., ¢,,(x)]",, then

X

/%@MZM%w. (1)

0

where M is called operational matrix of integration.
Proof With a simple calculation can be seen

Bim(x) = /m<Bi71,m71(t) — Bim—1(1))dt.

Assume 0 <k <m,

m

Z B,‘7m (x) =

i=k i

NgE

I
~

/ m(Bi_lam—l (t) - Bi,m—l (t))df
0

:m/Bk,Lm,l(l)dZ‘.
0

Therefore,

1 m+1
/Bk,m(t)dt T Blﬂ,m-‘rl (X) - M/{q)m+la

; m+ 1,52
where
k+1 mr1—k7 T
1 —
My=—|0---0 O0---1( , k=0,....,m.
m—+1
My

MT
It is obvious, im = _1 isan (m+2) x (m+1)

T
Ml‘ﬂ
matrix. Accordingly, M = imT,, .
Operational matrix of product

Lemma 4 Let C be an (m+ 1) x m + 1 matrix, then

D) (x)CD,y (x) = CT Dy (x), (2)

()
)

where

k=0,1,....2m.

Ck_i(k"fj)

Cijjs
= 2m
k

Proof. Let ¢ (x) = Biam(x),for i=0,...,2m.
D, (x)CD,, (x) = Z i
i=0 j=0

Using pl gives:
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Lemma 5. Let u be an arbitrary (m + 1) vector, then

@, (x)®7 (x)u = ii®y,, (x). (3)
where i is an (m + 1) X (2m + 1) matrix with elements
0, if j{iorjym+i,
(1))
Uirljrl = 414,-, otherwise,
2m '
<i+j)
i=0,...m,j=0,...,2m.

Proof. Property pl implies

where k>1 is the number of partitions on [0,1] and
i=0,...,m, and in addition, j =0,...,k — 1.

Now, every function f € £2([0, 1)) has the unique best
approximation with respect to span space by BMSPs as
follows:

=~
—_

m
> D iy = €Y,

i=0

<.
Il
o

T _
where ¢ = [00,0701,07-~->Cm71,0,Cm,07---760,1(717

Clk—1s -+ Cm—1 k=15 Cmj—1]-
We denote

G, |

f+1 e jonuj JHm
()

Now, the ith entry of the above matrix can be rewritten
as follows:

vy L0

< Tu]¢j+l i N 71 ) m Uo
jHi—1 ’ i—1

;L R
Vi Yl

¥, 1) where W, = i,
i=0,. .. k—1.

(") C)
(

Bernstein Multiscaling polynomials

Definition 3. Suppose B; ,,(x) is the ith BPs of degree m on
interval [0, 1], Bernstein Multiscaling polynomials on [0, 1)
define as follows:

Equation (4) implies that w;s are disjoint. In other words
when

i =0. (5)
In addition, Eq. (4) and p3 imply

. J Jt1
Bi,(kt — <
i (1) = im(Kt =), k— < k-’ (4)
0, other wise,
0, J#a
Vi g i J " i=gq,’ where /7, ,(x) is a elemet of Wy, (6)

’r @ Springer
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Lemma 6. Suppose Q is the dual operational matrix of
BMSPs, then

0 0 0

gL ¢
koo -.67

0o --- 0 0

where 0 is an (m + 1) x (m + 1) zero matrix, and Q is
the dual operational matrix of BPs.
Proof. With respect to (5) and (6), it is obvious.For any

arbitrary function f(x) € £2([0,1)), there is an expansion
with respect to BMSPs, such that

F@) =YY fihiy=F'® ="¥'F, (M

where F is a k(m + 1) — vector
Theorem A indicates

P20 [
0

Let k(x,7) € £*([0,1) x [0,1)) be a two-dimensional
function. With respect to BMSPs, k has the following
expansion:

k(x, 1) ~ W7 (K (x), (8)

where

1 1

Kiij1 =0 0" [ k(x,0);(0)dr | §;(x)dx | i,
e/ J
=0,...,k(m+1).

Transformation matrices

Let ¥, and W, be two different BMSPs and m <n. There

are two matrices, 77 and 1), such that
¥, =1, ¥, and ¥, =1.%¥,. These transformation
matrices have dimensions k(m—+1) x k(n+1) and

k(n+ 1) x k(m + 1), respectively:

™ 0 0 ™ 0 0
o 7, - o 1y
Ty = and 7)) = ,
0 : 0
0o 1™ 0 o 7"

where T, and T)" are increasing transformation matrix and
decreasing transformation matrix, respectively.

BMSP operational matrices

Operational matrices for BMSPs are obtained by BPs
operational matrices and results are similar.

Operational matrices of product

Lemma 7. Assume A is a k(m—+1) x k(m+ 1) matrix,
then

YAy = ATy, (9)

where A is a k(2m + 1) — vector.
Proof. Let C is a (m+ 1) x (m+ 1) matrix, Eq. (5)
implies

vicy; =0, (10)
where i # j.

Furthermore, Lemma 4 gives:
vIcy; = CTy;, (11)

where C is a (2m + 1) — vector.
Now, consider A as follows:

Ao o Agg-i

A= o

Ai—10 Aj1 k-1

where A;j(i,j=0,...,k—1) is an (m+1)x (m+1)
matrix.
Equation (10) implies:

k—1
YIAY = Z YA,
i=0

Equation (11) gives
k=1
WAy =) ALW;.
i=0
Therefore,

WTAY = [Agp. . Ay 141" = AT,

where A,-",» is a 2m + 1 vector.

1
ZAszle* = [Aog. . Ap_1 ¥ = ATP".
=0

’r @ Springer
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Lemma 8. Suppose C is an arbitrary k(m + 1) vector,
then,

wY¥’'c = Cyr, (12)

where C is a k(m + 1) x k(2m + 1) matrix.
Proof. Suppose

=[G G Cier ],
where C;(i =0,...,k — 1) is an m + 1 — vector.
Equation (3) implies:
YYIC, =C¥,i=0,... k-1, (13)
where C; is an (m + 1) x (2m + 1) matrix.
Now
Yo Co
Y .c= S NL RN S
lPk_l Ck—l
0 2R S¥e) I
A . 0
0 - 0 Y 1Y, .G

Equation (12) gives:

[ Co¥; 0 0
YYic = 0
0
0 0 CG.1.¥;,
(¢, 0O 0
0 G N
= ¥ = C¥*
- 0
L0 - 0 Ci

Operational matrix of integration

Lemma 7. Assume M be the operational matrix of inte-
gration, then

/‘P(t)dt = MY (x).
0

’r @ Springer

Proof Lemma 1 implies:

1 1
p zM\P()(l), 0§X< E7
/‘{Io(t)dlz 1 1
- > .
0 km+ 1) =k
Fori=1,...,k—2, Eq. (1) gives:
i
0 0< -
. o R
i i
; =<{ -MY,; -< .
/‘P,(t)dz X i(1), k_X<. o
0 1 7 > l+1,
k(m+1) Tk
and
r 0, 0<x<—,
/‘Pk_l(t)dt: 1 k—1
0 %M\Pkfl(t), — <x<l1
Consequently,
-1 1 B -
-M —F 1 ! 1
k k(m+1) k(m—+1)
0 -M :
M = 1 E
: . k(m+1)
0 --- 1
0 -M
L k i

where 1is an (m + 1) x (m + 1) matrix that all entries are
one.
Solution of Volterra integral equation

In this section, we are going to convert an integral equation
to a system.

Linear Volterra integral equation of the first kind

Consider the following Volterra integral equation of the
first kind:

) = / k(x, ult)dr. (14)
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where f and k are known, but u is not. Moreover, k(x,?) €
B([0,1) x [0,1)) and £(¢) € (]0,1)).

Approximating functions f, u, and k with respect to
BMSPs gives:

flx) = F"¥(x) = ¥' (x)F,
u(t) = UM (1) = P (1)U,
k(x, 1) = W ()KY(1), (15)

where the vectors F, U, and matrix K are BMSP coeffi-
cients of f(x), u(t), and k(x, 1), respectively.
Now, replacing (15) into (14) gives:

FT W, (x) = / YT (KW, ()L (HyUde
0

:‘{’;(x)K/\I’m(t)‘P;(t)Udt.
0

Using (12) follows:

F™W,,(x) = ¥! (x)K / UY,,,(t)dt
0

=Y (x)KU / Wy, (1)dt. (16)
0

Using operational matrix of integration M, in Eq. (16)
gives

FTW,,(x) = W1 (x) KUMY,,,(x). (17)
Let U* = KUM1},, where U is a
k(im+1) x k(m+1).
Equation (17) changes to:
F'W,,(x) = YI (x)U"¥,,(x) (18)

Using Eq. (11) in (18) gives:
FT®,,(x) = ®TU*®,, = U0y, (x).

m

Using decreasing transformation matrix 13, gives the
final system:

U=F, (19)
where U' = UTe, .

Nonlinear Volterra integral equation of the first
kind

Consider the following nonlinear Volterra integral equation:

X

fx) = / K, 1) g (u(0))dr, (20)

0

Putw(x) = g(u(x)) and subsequently w(x) = W, (x).
(21)

where W is an unknown k(m + 1) vector. Following the
same procedure, the final system is as follows:

W=F,

Finally, u(x) = g~'(w(x)) is the desire solution.

One advantage of this method is solving linear or non-
linear Volterra integral equation of the second kind with
piecewise functions. In these equations, solution, kernel, or
data function can be piecewise. It is essential k, the number

of partitions, be chosen, such that discontinuity points lie
on boundary point of partitions.

Linear Volterra integral equation of the second kind

Consider linear Volterra integral equations as the following
form:

u(x) = £(x) + / k(x, u(r)d. (22)

Substituting (15) into (22) and a process similar to the
previous state final linear system is

U-U=F.

Nonlinear Volterra integral equation of the second
kind

Consider the following nonlinear Volterra equation of the
second kind:

u(x) = F(x) + / K(x, g (u(0)de (23)

Table 1 Results of Example 1

by m=28, k=4 Absolute error Exact solution
0 1.000000000 0.00000000 1.00000000

0.1 0.9048374873 6.93 x 1078 0.904837418

0.2 0.8187326019 1.81 x 107° 0.8187307531
0.3 0.740829897 1.16 x 107> 0.7408182207
0.4 0.670361092 4.1 x 107° 0.670320046

0.5 0.606644000 1.13 x 107* 0.6065306597
0.6 0.549040000 228 x 1074 0.5488116361
0.7 0.497190000 6.04 x 1074 0.4965853038
0.8 0.449100000 3.28 x 107* 0.4493289641
0.9 0.405500000 3.06 x 107 0.4065696597

’r @ Springer
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Table 2 Results of Example 2

x m=4,k=4 Absolute error m=3_8, k=4 Absolute error Exact solution
0 0.0006126852892 591 x 107 0.0001240979 124 x 1074 0.0000000000
0.1 0.1998624698 1.95 x 107# 0.1998263752 159 x 1074 0.1996668333
0.2 0.3978000958 461 x 1074 0.3971608136 1.77 x 107* 0.3973386616
0.3 0.5906752400 3.65 x 107 0.5911505000 1.10 x 107* 0.5910404134
0.4 0.7785010600 335 x 107 0.7788225000 1.41 x 1073 0.7788366846
0.5 0.9606750920 1.82 x 1073 0.9590100000 1.58 x 1074 0.9588510772
0.6 1.130310725 1.02 x 1073 1.1293000000 1.50 x 1073 1.129284947
0.7 1.286968954 1.46 x 1073 1.2890000000 5.64 x 1074 1.288435374
0.8 1.443023053 8.31 x 1073 1.4345600000 1.52 x 1074 1.434712182
0.9 1.56155138 5.10 x 1073 1.566430000 223 x 1074 1.566653819

Table 3 Results of Example 3

X m=5k=4 Absolute error Exact solution
0.00 0.0000207940 2.0 x 1073 0.00000000
0.15 0.1500076065 7.6 x 107° 0.15000000
0.30 0.3000093281 9.3 x 107° 0.30000000
0.45 0.449990963 1 9.0 x 1076 0.45000000
0.60 0.5999915857 8.4 x 107° 0.60000000
0.75 0.7499869395 13 x 107 0.75000000
0.90 0.9000073666 7.3 x 1078 0.90000000
where g(x) is one to one on [0, 1].
Let w(t) = g(u()), substituting (23) gives
X
wx)=gl|f(x)+ / k(x, t)u(r)de (24)

0
Now, substituting (15) and (20) into (24) implies:

T
m

WP — ¢ ﬂw+wgm/wm@@wm
0
Equations (16)—(19) give:
W=g(F+W).

Numerical examples

Now, we test our method on some numerical exam-
ples; in every example, we use a table to show
approximations, exact solution, and absolute errors in
some points.

Example 1~ Suppose u(x) = e~ be the exact solution of
the following Volterra integral equation of the first kind:

’r @ Springer

X

xe* = /e”’u(t)dt.

0
Table 1 shows results of Example 1.

Example 2 Consider the following integral equation:

xsinx = /cos(x — tu(t)dt
0

with the exact solution u(x) = 2sinx.

Table 2 shows approximated solutions, absolute errors,
and exact solution in some points.

X
Example 3 x= [(x —t+ 1)e ™" dt
0
Table 3 shows results of Example 3.
Example 4 Consider the following linear integral equa-

tion u(x) = f(x) + [(z — x)u(r)ds, with exact solution:
0

Mm_{

and the nonsmooth data function:

X

0<x<0.5,
0.5<x<1,

)

x—|—gx, 0<x<0.5,
1= AL U 05<x<l
92 TR TRt DSt

Results of Example 4 are presented in Table 4.

— X, 0<x<0.5, be
VX, 05<x<1,
the exact solution of the following nonlinear Volterra

integral equation of the second kind:

Example 5 Assume u(x) = { !
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Table 4 Results of Example 4

35
0, x<0,
3 2 5
l—x—x———x4—x—, 0<x<0.5,
\/)‘c—o.mx—gx“, 05<x<l,
—0.35x, x> 1.

Table 5 shows results of Example 5.

X m=4 k=4 Absolute error Exact solution

0 0.0000000000 1.1 x 107 0.0000000000

0.1 0.0999999999 35 x 107° 0.0998334166 ~ Comparison

0.2 0.2000000000 47 x 107° 0.1986693308

0.3 0.3000000000 0.9 % 10~7 02955202067  Block-pulse functions are a special case of BMSPs. How-
0.4 04000000001 21 % 10-° 0.3894183423 ever, our method is different from the methods, as pre-
05 02500000000 32 % 10-° 0.2500000000 sented in [32] and [33]. Consider Example 1, in Table 6,
06 03600000002 39 x 10~° 0.3600000000 the expansion—iterative method and direct method are
0.7 0.4900000460 4.6 x 10~° 0.490000000 compared with our method. In Table 6, we presented
038 0.6399999998 54 % 1070 0.640000000 mean-.absolute errors for the expansion—iterative method
0.9 0.8100000002 63 x 10~ 0.810000000 and direct method and absolute error of BMSPs for two

Table 5 Results of Example 5

different values of m and k. With respect to dimensions of
the final system, our method is more accurate than the
expansion—iterative method and direct method.

Consider Example 2, Table 7 shows a comparison
between BMSPs method and the expansion—iterative

X m=3,k=4 Absolute error Exact solution

method and direct method with block-pulse functions.
0 1.0000000000 0.0000000 1.0000000000  Mean-absolute errors for methods are presented in Table 7.
0.1 0.8999990300 907 x 1077 0.9000000000
0.2 0.7999912000 8.8 x 107° 0.8000000000
0.3 0.6999800000 20x107° 0.7000000000  Stability of method
0.4 0.5999939000 6.1 x 107 0.6000000000
0.5 0.7069967812 1.1 x 107 0.7071067812 To demonstrate the stability of the method, we review
0.6 0.7744366692 1.6 x 107* 0.7745966692 effect of noise on data function. In other words, we replace
0.7 0.8364200265 24 x 1074 0.8366600265  f(x) by (1 + ¢ép)f(x) into integral equation. Where p is a
0.8 0.894097191 3.3 x 1074 0.8944271910 real random number between —1 and 1, and ¢ is percent of
0.9 0.9482032981 4.8 x 1074 0.9486832981 noise. Now, we want to show that our method is stable and

Table 6 Results of comparison in Example 1

noise is proportional to the variations of solutions.

Method

Mid-points, k = 32

Mid-points, k = 64

Ten points, k = 32

Ten points, k = 64

Expansion—iterative method

Direct method

BMSPs method

6.6 x 107*
33 x 1073
m=5k=4
1.26 x 107*

1.9 x 107 52 x 1073 26 x 1073
1.6 x 1073 59 x 1073 29 x 1073
m=3,k=1
201 x 1073

Table 7 Results of comparison in Example 2

Method

Mid-points, k = 64

Mid-points, k = 128

Ten points, k = 64

Ten points, k = 128

Expansion—iterative method

Direct method

BMSPs method

49 x 107
52 x 1073
m=4,k=4
1.96 x 107

14 x 107 6.5 x 1073 33 x 1073
26 x 1073 8.2 x 1073 41 x 1073
m=38, k=4
1.70 x 1073

\g
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Table 8 Results of Example 6

X m=5k=4 m=>5k=4,¢=0.0l1 m=5k=4,6=0.02 m=>5, k=4e=0.03 Exact solution
0.0 0.00000 0.01558624677 0.01538079594 0.01523810893 0.00000
0.1 0.01000 0.00740436021 0.0747198483 0.007231113603 0.01000
0.2 0.04000 0.040255392 0.039719848 0.0393334275 0.04000
0.3 0.09000 0.089864898 0.088666389 0.0878033869 0.09000
0.4 0.16000 0.159423786 0.157302906 0.1557740489 0.16000
0.5 0.25000 0.255541400 0.252166300 0.2496420000 0.25000
0.6 0.36000 0.360208100 0.3553999000 0.3519660000 0.36000
0.7 0.49000 0.490870000 0.4833260000 0.4786120000 0.49000
0.8 0.64000 0.633360000 0.6249109639 0.6189400000 0.64000
0.9 0.81000 0.804420000 0.7936019242 0.7858300000 0.81000
Example 6 Consider the following Volterra integral 3. Golberg, M.A.: Numerical solution of integral equations. Plenum
equation of first kind: Press, Berlin (1990) ) ) ) )

4. Atkinson, K.E.: The numerical solution of integral equations of
7 . the s.econd kind. cambrnge Univer§ity Press, Cam.bridge (1997)
4= / (x + t)u(t)dt 5. Collins, P.J.: Differential and integral equations. Oxford
12 University Press, Oxford (2006)

0

with exact solution u(x) = x°.

Table 8 shows approximated solution, noisy solutions,
and exact solution.

Conclusion

BMSPs that we use to solve Volterra integral equations have
acceptable accuracy. Operational matrices, which we have
computed, are exact. These exact matrices lead to fewer
errors in our computations. In addition, BMSPs can solve
piecewise Volterra integral equations of the second kind.
Effect of noise on data function shows that our method is
reliable and ill-posedness does not occur. This method with
respect to complexity of computations and desirable accu-
racy is recommended. Furthermore, this method can be used
to solve optimal control equations, differential equations,
and systems of integral or differential equations.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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