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Abstract The main objective of this paper is to obtain the

approximate solution of superdiffusion fourth-order partial

differential equations. Quintic B-spline collocation method

is employed for fractional differential equations (FPDEs).

The developed scheme for finding the solution of the

considered problem is based on finite difference method

and collocation method. Caputo fractional derivative is

used for time fractional derivative of order a, 1\a\2. The

given problem is discretized in both time and space

directions. Central difference formula is used for temporal

discretization. Collocation method is used for spatial dis-

cretization. The developed scheme is proved to be

stable and convergent with respect to time. Approximate

solutions are examined to check the precision and effec-

tiveness of the presented method.
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Introduction

The idea of differentiation and integration to non integer

order has been studied in fractional calculus. The subject

fractional calculus is the generalized form of classical

calculus. It is as old as classical calculus but getting more

attention these days due to its applications in various fields,

such as science and engineering. Oldham and Spanier [1],

Podlubny [3], and Miller and Ross [2] provide the history

and a comprehensive treatment of this subject.

In recent decades, it has been observed by many mathe-

maticians, scientists, and researchers that non-integer oper-

ators (differential and integral) play an important role in

describing the properties of physical phenomena. Fractional

derivatives and integrals efficiently describe the history and

inherited properties of different processes and equipments. It

has further been observed that fractional models are more

efficient and accurate than already developed classical

models. Themathematical modeling of real world problems,

such as earthquake, traffic flow, fluid flow, signal processing,

and viscoelastic problems, results in FPDEs.

A fourth-order linear PDE is defined as

o2v

ot2
þ m

o4v

oz4
¼ hðz; tÞ:

The fourth-order problems play a significant role for the

development of engineering and modern science. For

example, window glasses, floor systems, bridge slabs, etc.

are modeled by fourth-order PDEs. It also represents beam

problem where v is the transversal displacement of the

beam, m is the ratio of flexural rigidity of the beam to its

mass per unit length, t is time, and x is space variable,

h(x, t) is the dynamic driving force acting per unit mass.

The considered equation, is the superdiffusion fourth-order

partial differential equation, which has the following form

oav

ota
þ m

o4v

oz4
¼ qðz; tÞ; z 2 ½a; b� ¼ X; t0\t� tf ; 1\a\2;

ð1:1Þ

where t0; tf represents initial and final time, respectively.
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The time-fractional superdiffusion fourth-order problems

play an important role in modern science and engineering.

For example, airplane wings and transverse vibrations of

sustained tensile beam can be modeled as plates with dif-

ferent boundary supports which are successfully governed

by superdiffusion fourth-order differential equations.

The given problem is solved with initial conditions

vðz; t0Þ ¼ f0ðzÞ; vtðz; t0Þ ¼ f1ðzÞ; a� z� b:

Following three boundary conditions are used for solving

Eq. (1.1)

I.

vða; tÞ ¼ vðb; tÞ ¼ 0;

vzða; tÞ ¼ vzðb; tÞ ¼ 0; t0 � t� tf ::

(

II.

vða; tÞ ¼ vðb; tÞ ¼ 0;

vzzða; tÞ ¼ vzzðb; tÞ ¼ 0; t0 � t� tf ::

(

III

vða; tÞ ¼ vðb; tÞ ¼ 0;

vzzða; tÞ�Qvzða; tÞ ¼ vzzðb; tÞ�Qvzðb; tÞ ¼ 0; t0� t� tf ;:

(

where Q is an arbitrary constant.

Caputo fractional derivative is defined as

oavðz; tÞ
ota

¼

1

Cð2� aÞ

Z t

0

o2vðz; sÞ
os2

ds

ðt � sÞa�1
; 1\a\2;

o2vðz; tÞ
ot2

; a ¼ 2:

:

8>>><
>>>:

Collocation method is widely used to provide the solution

of partial differential equations. Depending on the situa-

tion, some times, it is useful to find the solution of FPDEs

at various locations in the given problem domain, then the

spline solutions guarantee to give the information of spline

interpolation between mesh points.

In many situations, it is harder to calculate the analytical

solutions of fractional PDEs using analytical methods. Due

to this reason, the mathematicians are motivated to develop

numerical methods for the approximate solution of FPDEs.

The approximate methods for solving FPDEs have become

popular among the researchers in the last 10 years. A

variety of approximate techniques were used for finding the

solution of FPDEs, such as the FDM, FEM, FVM, and the

collocation method etc.

Many authors applied different numerical methods to

find the solution of fractional PDEs.

Siddiqi and Arshed [7] developed a numerical scheme for

the solution of time-fractional fourth-order partial differen-

tial equation with fractional derivative of order a ð0\a\1Þ.

Lin and Xu [6] developed a numerical scheme for time-

fractional diffusion equation with fractional derivative of

order a; ð0\a\1Þ. Yang et al. [11] developed a novel

numerical scheme for solving fourth-order partial integro-

differential equation with a weakly singular kernel. Yang

et al. [8] developed a quasi-wavelet-based numerical method

for solving fourth-order partial integro-differential equations

with a weakly singular kernel. Khan et al. [9], proposed a

numerical method for the solution of time-fractional fourth-

order differential equations with variable coefficients using

Adomian decomposition method (ADM) and He’s varia-

tional iteration method (HVIM). Zhang and Han [10]

developed a quasi-wavelet-based numerical method for

time-dependent fractional partial differential equation.

Zhang et al. [12] proposed quintic B-spline collocation

method for the numerical solution of fourth-order partial

integro-differential equations with a weakly singular kernel.

Khan et al. [4] used sextic spline solution for solving fourth-

order parabolic partial differential equation. Dehghan [5]

used finite difference techniques for the numerical solution

of partial integro-differential equation arising from vis-

coelasticity. In [15], Bhrawy and Abdelkawy used fully

spectral collocation approximation for solving multi-di-

mensional fractional Schrodinger equations. Bhrawy et al.

[16] proposed a new formula for fractional integrals of

Chebyshev polynomials and application for solving multi-

term fractional differential equations. Bhrawy [17] devel-

oped a new spectral algorithm for a time-space fractional

partial differential equations with subdiffusion and

superdiffusion. In [18], Bhrawy et al. gave a review of

operational matrices and spectral techniques for fractional

calculus. Bhrawy et al. [19] proposed Chebyshev–Laguerre

Gauss–Radau collocation scheme for solving time fractional

sub-diffusion equation on a semi-infinite domain. Bhrawy

[20] developed a space-time collocation scheme formodified

anomalous subdiffusion and nonlinear superdiffusion equa-

tions. In [21], Doha et al. developed an efficient Legendre

Spectral Tau matrix formulation for solving fractional sub-

diffusion and reaction sub-diffusion equations. Bhrawy [22]

proposed a highly accurate collocation algorithm for 1 ? 1

and 2 ? 1 fractional percolation equations. In [23], Bhrawy

and Zaky used fractional-order Jacobi tau method for a class

of time-fractional PDEs with variable Coefficients.

This paper is designed to determine the approximate

solution of superdiffusion fourth order PDEs. The

approximate solution is based on central difference formula

and B-spline collocation method.

The paper is divided into six sections. The quintic

B-spline basis function is given in Sect. 2. The finite dif-

ference approximation for time discretization of the given

problem is discussed in Sect. 3. The stability and conver-

gence of temporal discretization are established. Space
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discretization based on B-spline collocation technique is

discussed in Sect. 4. Approximate solutions are obtained in

Sect. 5 which support the theoretical results. The conclu-

sion is given is Sect. 6.

Quintic B-spline

The problem domain [a, b] has been subdivided into

N elements having uniform step size h with knots zj; j ¼
0; 1; 2; . . .;N such that fa ¼ z0\z1\z2\. . .\zN ¼ bg,
h ¼ zj � zj�1, j ¼ 1; 2; . . .;N.

To define basis functions for quintic B-spline, it is first

needed to introduce ten additional knots,

z�5; z�4; z�3; z�2; z�1; zNþ1; zNþ2; zNþ3; zNþ4; zNþ5 such that

z�5\z�4\z�3\z�2\z�1\z0 and zN\zNþ1\zNþ2

\zNþ3\zNþ4\zNþ5:

The quintic B-spline basis functions QjðzÞ, j ¼
�2; . . .;N þ 2 are defined as

QjðzÞ ¼
Ps¼jþ3

s¼j�3

ðzs � zÞ5þQ0ðzsÞ
; z 2 ½zj�3; zj�3�;

0; otherwise

8<
:

The approximate solution Vkþ1ðzÞ at k þ 1 time level to the

exact solution vkþ1ðzÞ is obtained as a linear combination

of quintic B-spline basis functions QjðzÞ as

Vkþ1ðzÞ ¼
XNþ2

j¼�2

cjðtÞQjðzÞ; ð2:1Þ

where cj are unknowns. Using Eq. (2.1) and basis func-

tions, the approximate solution V and its derivatives at the

nodes zj, can be calculated as

VðzjÞ ¼ cjþ2 þ 26cjþ1 þ 66cj þ 26cj�1 þ cj�2;

V ð1ÞðzjÞ ¼
5

h
cjþ2 þ 10cjþ1 � 10cj�1 � cj�2

� �
;

V ð2ÞðzjÞ ¼
20

h2
cjþ2 þ 2cjþ1 � 6cj þ 2cj�1 þ cj�2

� �
;

V ð3ÞðzjÞ ¼
60

h3
cjþ2 � 2cjþ1 þ 2cj�1 � cj�2

� �
;

V ð4ÞðzjÞ ¼
120

h4
cjþ2 � 4cjþ1 þ 6cj � 4cj�1 þ cj�2

� �
:

Time discretization

Caputo fractional derivative is used for temporal dis-

cretization. Let tk ¼ kDt, k ¼ 0; 1; 2; . . .;K, where Dt ¼ tf
K

is the time step size and tf be the final time. Caputo frac-

tional derivative is discretized using central difference

approximation as

oavðz; tkþ1Þ
ota

¼ 1

Cð2� aÞ

Z tkþ1

0

o2vðz; sÞ
os2

ds

ðtkþ1 � sÞa�1

¼ 1

Cð2� aÞ
Xn
l¼0

Z tlþ1

tl

o2vðz; sÞ
os2

ds

ðtkþ1 � sÞa�1
;

¼ 1

Cð2� aÞ
Xk
l¼0

vðz; tlþ1Þ � 2vðz; tlÞ þ vðz; tl�1Þ
Dt2Z tlþ1

tl

ds

ðtkþ1 � sÞa�1
þ rkþ1

Dt ;

¼ 1

Cð2� aÞ
Xk
l¼0

vðz; tlþ1Þ � 2vðz; tlÞ þ vðz; tl�1Þ
Dt2Z tkþ1�l

tk�l

ds
sa�1

þ rkþ1
Dt ;

¼ 1

Cð2� aÞ
Xk
l¼0

vðz; tkþ1�lÞ � 2vðz; tk�lÞ þ vðz; tk�l�1Þ
Dt2Z tlþ1

tl

ds
sa�1

þ rkþ1
Dt ;

¼ 1

Cð3� aÞ
Xk
l¼0

vðz; tkþ1�lÞ � 2vðz; tk�lÞ þ vðz; tk�l�1Þ
Dta

ðlþ 1Þ2�a � l2�a
� �

þ rkþ1
Dt ;

¼ 1

Cð3� aÞ
Xk
l¼0

bl
vðz; tkþ1�lÞ � 2vðz; tk�lÞ þ vðz; tk�l�1Þ

Dta

þ rkþ1
Dt ;

ð3:1Þ

where bl ¼ ðlþ 1Þ2�a � l2�a and b0 ¼ 1 and

s ¼ ðtkþ1 � sÞ.

and

�bk þ ð2bk � bk�1Þ þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ þ ð2b0 � b1Þ ¼ 1:

The time discrete operator is represented by Da and defined

as

Davðz; tkþ1Þ : ¼
1

Cð3� aÞ
Xk
l¼0

bl

vðz; tkþ1�lÞ � 2vðz; tk�lÞ þ vðz; tk�l�1Þ
Dta

:

Then Eq. (3.1) can be written as

oavðz; tkþ1Þ
ota

¼ Davðz; tkþ1Þ þ rkþ1
Dt : ð3:2Þ

The second order approximation of Caputo derivative as

discussed in [13] is given as

rkþ1
Dt

�� ���EDt2; ð3:3Þ

where E is a constant.

After approximating 1
Cð2�aÞ

R tkþ1

0

o2vðz;sÞ
os2

ds

ðtkþ1�sÞa�1 by

Davðz; tkþ1Þ, the finite difference scheme according to (1.1)

can be written as

Math Sci (2017) 11:17–26 19

123



Davðz; tkþ1Þ þ m
o4vðz; tkþ1Þ

oz4
¼ qðz; tkþ1Þ;

1

Cð3� aÞ
Xn
l¼0

bl
vðz; tkþ1�lÞ � 2vðz; tk�lÞ þ vðz; tk�l�1Þ

Dta

þ m
o4vðz; tkþ1Þ

oz4
¼ qðz; tkþ1Þ:

The above equation can be rewritten as

vkþ1ðzÞ þ a0m
o4vkþ1

oz4
¼� bkv

�1ðzÞ þ ð2bk � bk�1Þv0ðzÞþ

þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð ÞvlðzÞ

þ ð2b0 � b1ÞvkðzÞ
þ a0q

kþ1ðzÞ; k ¼ 1; 2; . . .;K � 1

ð3:4Þ

where vkþ1ðxÞ ¼ vðx; tkþ1Þ and a0 ¼ Cð3� aÞDta,
Using the following initial conditions and the boundary

conditions ðI; II; IIIÞ
vðz; t0Þ ¼ f0ðzÞ; z 2 ½a; b�; ð3:5Þ

ovðz; t0Þ
ot

¼ f1ðzÞ; z 2 ½a; b�; ð3:6Þ

The developed method is a three time level method. To

implement the developed method, it is first required to

calculate ðv�1Þ and ðv0Þ.

v�1ðzÞ ¼ vðz; t0Þ � Dtvtðz; t0Þ:

v�1ðzÞ ¼ f0ðzÞ � Dtf1ðzÞ:

In particular, for k ¼ 0, the scheme simply leads to

v1ðzÞ þ a0m
o4v1

oz4
¼ �b0v

�1ðzÞ þ 2b0v
0ðzÞ þ a0q

1ðzÞ;

ð3:7Þ

where v0ðzÞ ¼ vðz; t0Þ ¼ f0ðzÞ.
Equations (3.4) and (3.7), along with initial conditions

(3.5) and (3.6) and boundary conditions ðI; II; IIIÞ form a

whole set of the time-discrete problem of Eq. (1.1).

rkþ1 is the error term can be defined as

rkþ1 :¼ oavðz; tkþ1Þ
ota

� Davðz; tkþ1Þ
� �

: ð3:8Þ

Using Eq. (3.3),

rkþ1
�� �� ¼ rkþ1

Dt

�� ���EDt2; ð3:9Þ

Some functional spaces endowed with standard norms and

inner products, to be used hereafter, are defined as under

H2ðXÞ ¼ w 2 L2ðXÞ; dw
dx

;
d2w

dx2
2 L2ðXÞ

	 

;

H2
0ðXÞ ¼ w 2 H2ðXÞ;wjoX ¼ 0;

dw

dx
joX ¼ 0

	 

;

HmðXÞ ¼ w 2 L2ðXÞ; d
kw

dxk
for all positive integer k�m

	 

;

where L2 Xð Þ is the space of measurable functions whose

square is Lebesgue integrable in X. The inner products of

L2 Xð Þ and H2ðXÞ are defined, respectively, by

v;wð Þ ¼
Z
X
wvdx; v;wð Þ2¼ v;wð Þ þ dv

dx
;
dw

dx

� �

þ d2v

dx2
;
d2w

dx2

� �
;

and the corresponding norms by

wk k0¼ w;wð Þ
1
2; wk k2¼ w;wð Þ

1
2

2:

The norm :k k of the space Hm Xð Þ is defined as

wk km¼
Xm
k¼0

dkw

dxk

����
����
2

0

 !1
2

:

Instead of using the above standard H2-norm, it is preferred

to define k:k2

kwk2 ¼ kwk20 þ a0m
d2w

dx2

����
����
2

0

 !1=2

; ð3:10Þ

where a0 ¼ Cð2� aÞDta.
For the convergence and stability analysis, the following

weak formulation of Eqs. (3.4) and (3.7) is needed, i.e.,

finding vkþ1 2 H2
0ðXÞ, such that for all w 2 H2

0ðXÞ,

vkþ1;w
� �

þ a0m
o4vkþ1

ox4
;w

� �
¼ � bk v�1;w

� �
þ ð2bk � bk�1Þ v0;w

� �

þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ v j;w
� �

þ ð2b0 � b1Þ vk;w
� �

þ a0 qkþ1;w
� �

;

ð3:11Þ

and

ðv1;wÞ þ a0m
o4v1

ox4
;w

� �
¼ � b0ðv�1;wÞ þ 2b0ðv0;wÞ

þ a0ðq1;wÞ:
ð3:12Þ

Discrete Gronwall inequality

If the sequences falg and fzlg, jl ¼ 1; 2;..., n, satisfy

inequality

20 Math Sci (2017) 11:17–26
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zl �
Xl�1

j¼1

ajzj þ b

 !
; l ¼ 1; 2; . . .; n

where al � 0, b� 0, then the inequality

zl � b: exp
Xl�1

j¼1

aj

 !
; l ¼ 1; 2; . . .; n: ð3:13Þ

Stability and convergence analysis

Theorem 1 The proposed time-discrete scheme (3.6) is

stable, if for all Dt[ 0, the following relation holds

vkþ1
�� ��

2
� c f0k k0þDt f1j k0þa0q

kþ1
� �

; k ¼ 0; 1; 2; . . .;K � 1;

ð3:14Þ

where k:k2 is defined in (3.10).

Proof For k ¼ 0, let w ¼ v1 in Eq. (3.11),

Equation (3.11) takes the following form

v1; v1
� �

þ a0m
o4v1

ox4
; v1

� �
¼ � b0 v�1; v1

� �
þ 2b0 v0; v1

� �
þ a0 q1; v1

� �
:

Integrating the above equation, we have

ðv1; v1Þ þ a0m
o2v1

ox2
;
o2v1

ox2

� �
¼� b0ðv�1; v1Þ þ 2b0ðv0; v1Þ

þ a0ðq1; v1Þ
ð3:15Þ

Due to boundary conditions on w all the boundary contri-

butions disappeared.

Using the inequality kwk0 �kwk2 and Schwarz inequal-

ity Eq. (3.15) takes the following form

v1
�� ��2

2
� v�1
�� ��

0
v1
�� ��

0
þ2 v0
�� ��

0
v1
�� ��

0
þa0 h1

�� ��
0
v1
�� ��

0

� v�1
�� ��

0
v1
�� ��

2
þ2 v0
�� ��

0
v1
�� ��

2
þa0 q1

�� ��
0
v1
�� ��

2

kv1k2 �kv�1k0 þ 2kv0k0 þ a0kq1k0
kv1k2 � kf0kj0 þ Dtkf1k0

� �
þ 2kf0k0 þ a0kq1k0

kv1k2 � 3kf0k0 þ Dtkf1k0 þ a0kq1k0
hence

kv1jj2 � cðkf0k0 þ Dtkf1k0 þ a0kq1k0Þ:

Suppose that the result hold for w ¼ vl i.e.

kvlk2 � cðkf0k0 þ Dtkf1k0 þ a0kqlk0Þ l ¼ 2; 3; . . .; k:

ð3:16Þ

Taking w ¼ vkþ1 in Eq. (3.11), it can be written as

vkþ1; vkþ1
� �

þ a0m
o4vkþ1

ox4
; vkþ1

� �
¼ � bk v�1; vkþ1

� �
þ ð2bk � bk�1Þ v0; vkþ1

� �
þ ð2b0 � b1Þ vk; vkþ1

� �
þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ vl; vkþ1
� �

þ a0 qkþ1; vkþ1
� �

:

Integrating the above equation, we get

vkþ1; vkþ1
� �

þ a0m
o2vkþ1

ox2
;
o2vkþ1

ox2

� �
¼ � bk v�1; vkþ1

� �
þ ð2bk � bk�1Þ v0; vkþ1

� �
þ ð2bk � bk�1Þ v0; vkþ1

� �
þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ ul; ukþ1
� �

þ a0 qkþ1; vkþ1
� �

:

Using the Schwarz inequality and the inequality

kwk0 �kwk2 the above equation can be written as

vkþ1
�� ��2

2
� bk v�1

�� ��
0
vkþ1
�� ��

0
þð2bk � bk�1Þ v0

�� ��
0
vkþ1
�� ��

0

þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ vl
�� ��

0
vkþ1
�� ��

0

þ ð2b0 � b1Þ vk
�� ��

0
vkþ1
�� ��

0

þ a0 qkþ1
�� ��

0
vkþ1
�� ��

0
;

vkþ1
�� ��2

2
� bk v�1

�� ��
0
vkþ1
�� ��

2
þð2bk � bk�1Þ v0

�� ��
0
vkþ1
�� ��

2

þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ vl
�� ��

2
vkþ1
�� ��

2

þ ð2b0 � b1Þ vk
�� ��

2
vkþ1
�� ��

2

þ a0 qkþ1
�� ��

0
vkþ1
�� ��

2
;

vkþ1
�� ��

2
� bk v�1

�� ��
0
þð2bk � bk�1Þ v0

�� ��
0
þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ vl
�� ��

2

þ ð2b0 � b1Þ vk
�� ��

2
þa0 qkþ1

�� ��
0
;

Using (3.13) we have

vkþ1
�� ��

2
� ð2bk � bk�1Þ v0

�� ��
0
þbk v�1

�� ��
0
þa0 qkþ1

�� ��
0

� �

exp 2b0 � b1ð Þ þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ
 !

;

vkþ1
�� ��

2
� v0
�� ��

0
þ v�1
�� ��

0
þa0 qkþ1

�� ��
0

� �
exp 1þ bk�1 � bkð Þ;
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vkþ1
�� ��

2
� f0k k0þ f0k k0þDt f1k k0þa0 qkþ1

�� ��
0

� �
exp 1þ bk�1 � bkð Þ;

vkþ1
�� ��

2
� c f0k k0þDt f1k k0þa0 qkþ1

�� ��
0

� �
:

h

Theorem 2 The numerical solution obtained by the

proposed method converges the exact solution, if the fol-

lowing relation holds

vðtkÞ � vk
�� ��

2
�EDt2; k ¼ 1; 2; . . .;K: ð3:17Þ

where E is a constant and E ¼ ð1þ bkÞ expð1þ bk�1 � bkÞ:

Proof Let sk ¼ vðz; tkÞ � vkðzÞ, for k ¼ 1, by combining

Eqs. (1.1), (3.11), the error equation becomes

s1; v
� �

þ a0m
o2s1

oz2
;
o2v

oz2

� �
¼� s�1; v

� �
þ 2b0 s0; v

� �
þ r1; v
� �

; 8v 2 H2
0ðXÞ:

using Schwarz inequality and the inequality kwk0 �kwk2
Let v ¼ s1, noting s0 ¼ 0, the above equation takes the

following form

s1
�� ��2

2
� s�1
�� ��

0
s1
�� ��

0
þ r1
�� ��

0
s1
�� ��

0
:

s1
�� ��2

2
� s�1
�� ��

0
s1
�� ��

2
þ r1
�� ��

0
s1
�� ��

2
:

s1
�� ��

2
� s�1
�� ��

0
þ r1
�� ��

0
:

since

ks�1k�Dt2

Using Eq.(3.9), it leads to

vðt1Þ � v1
�� ��

2
� 2Dt2:

vðt1Þ � v1
�� ��

2
�EDt2:

ð3:18Þ

Hence (3.19) is proved for the case k ¼ 1.

For inductive part, suppose (3.19) holds for

l ¼ 1; 2; 3; . . .; k, i.e.

vðtjÞ � v j
�� ��

2
�EDt2: ð3:19Þ

For k ¼ sþ 1 the Eqs. (1.1), (3.11) are used and the error

equation can be written, for all v 2 H2
0ðXÞ, as

skþ1; v
� �

þ a0l
o2skþ1

oz2
;
o2v

oz2

� �
¼ � bk e�1; v

� �
þ ð2bk � bk�1Þ s0; v

� �
þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ sl; v
� �

þ ð2b0 � b1Þ sk; v
� �

þ a0 rkþ1; v
� �

:

using kwk0 �kwk2 and Schwarz inequality the above

equation, for v ¼ skþ1, can be written as

skþ1
�� ��2

2
� bk s�1

�� ��
0
skþ1
�� ��

0
þð2bk � bk�1Þ s0

�� ��
0
skþ1
�� ��

0

þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ sl
�� ��

0
skþ1
�� ��

0

þ ð2b0 � b1Þ sk
�� ��

0
skþ1
�� ��

0

þ rkþ1
�� ��

0
skþ1
�� ��

0
;

skþ1
�� ��

2
� bk s�1

�� ��
0
þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ sl
�� ��

2

þ ð2b0 � b1Þ sk
�� ��

2
þ rkþ1
�� ��

0
:

Using (3.15)

skþ1
�� ��

2
� bk s�1

�� ��
0
þ rkþ1
�� ��

0

� �

exp
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ þ 2b0 � b1

" #
;

skþ1
�� ��

2
� bk s�1

�� ��
0
þ rkþ1
�� ��

0

� �
exp 1þ bk�1 � bkð Þ;

skþ1
�� ��

2
� bkDt

2 þ Dt2
� �

exp 1þ bk�1 � bkð Þ;

skþ1
�� ��

2
�EDt2:

h

Space discretization

Collocation method with quintic B-spline basis functions is

employed for space discretization. Putting Eq. (2.1) into

Eq. (3.4), we obtain the following equation

ckþ1
j�2 þ 26ckþ1

j�1 þ 66ckþ1
j þ 26ckþ1

jþ1 þ ckþ1
jþ2

� �
þ a0m

120

h4
ckþ1
j�2 � 4ckþ1

j�1 þ 6ckþ1
j � 4ckþ1

jþ1 þ ckþ1
jþ2

� �
¼� bkðc�1

j�2 þ 26c�1
j�1 þ 66c�1

j þ 26c�1
jþ1 þ c�1

jþ2Þ
þ ð2bk � bk�1Þðc0j�2 þ 26c0j�1 þ 66c0j þ 26c0jþ1 þ c0jþ2Þ

þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þðclj�2 þ 26clj�1 þ 66clj þ 26cljþ1 þ cljþ2Þ

þ ð2b0 � b1Þðckj�2 þ 26ckj�1 þ 66ckj þ 26ckjþ1 þ ckjþ2Þ þ a0q
kþ1:

The above equation can be rewritten as

1þ a0m
120

h4

� �
ckþ1
j�2 þ 26� 4a0m

120

h4

� �
ckþ1
j�1

þ 66þ 6a0m
120

h4

� �
ckþ1
j þ 26� 4a0m

120

h4

� �
ckþ1
jþ1

þ 1þ a0m
120

h4

� �
ckþ1
jþ2

¼ � bk c�1
j�2 þ 26c�1

j�1 þ 66c�1
j þ 26c�1

jþ1 þ c�1
jþ2

� �
þ ð2bk � bk�1Þ c0j�2 þ 26c0j�1 þ 66c0j þ 26c0jþ1 þ c0jþ2

� �

þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ clj�2 þ 26clj�1 þ 66clj þ 26cljþ1 þ cljþ2

� �

þ ð2b0 � b1Þ ckj�2 þ 26ckj�1 þ 66ckj þ 26ckjþ1 þ ckjþ2

� �
þ a0q

kþ1:
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The above equation can be rewritten as a system of linear

equations

1þ a0m
120

h4

� �
ckþ1
j�2 þ 26� 4a0m

120

h4

� �
ckþ1
j�1

þ 66þ 6a0m
120

h4

� �
ckþ1
j þ 26� 4a0m

120

h4

� �
ckþ1
jþ1

þ 1þ a0m
120

h4

� �
ckþ1
jþ2 ¼ Fj;

where

Fj ¼� bk c�1
j�2 þ 26c�1

j�1 þ 66c�1
j þ 26c�1

jþ1 þ c�1
jþ2

� �
þ ð2bk � bk�1Þ c0j�2 þ 26c0j�1 þ 66c0j þ 26c0jþ1 þ c0jþ2

� �

þ
Xk�1

l¼1

�bl�1 þ 2bl � blþ1ð Þ clj�2 þ 26clj�1 þ 66clj þ 26cljþ1 þ cljþ2

� �

þ ð2b0 � b1Þ ckj�2 þ 26ckj�1 þ 66ckj þ 26ckjþ1 þ ckjþ2

� �
þ a0q

kþ1:

This system has N þ 1 equations in N þ 5 unknowns

ckþ1
�2 ; ckþ1

�1 ; . . .; ckþ1
Nþ1; c

kþ1
Nþ2. Unique solution of the above

system is obtained by eliminating the unknowns

ckþ1
�2 ; ckþ1

�1 ; ckþ1
Nþ1, and ckþ1

Nþ2 using boundary conditions.

Numerical results

In this section, two examples are considered to check the

accuracy and efficiency of the proposed method. The main

objective of these examples is to verify the rate of con-

vergence of the approximate results for a. From the fol-

lowing Tables 1 and 2, it is clear that the approximate

results support the theoretical estimates.

Example 1 Consider the following superdiffusion PDE of

fourth order

o1:75v

ot1:75
þ 0:05

o4v

oz4
¼qðz; tÞ; z 2 ½0; 4p�; t0 ¼ 0\t� tf ¼ T ;

with initial condition

vðz; 0Þ ¼2 sin2 z; z 2 ½0; 4p�;

and boundary condition I

vð0; tÞ ¼vð4p; tÞ ¼ 0;

vzð0; tÞ ¼vzð4p; tÞ ¼ 0; 0� t� T

The exact solution of the problem is

vðz; tÞ ¼2 t þ 1ð Þ sin2 z:

The error norms L1 and L2 are calculated for N ¼ 100 and

different temporal step sizes. The temporal rate of con-

vergence at tf ¼ 1:0 is presented in Table 1. The temporal

rate of convergence obtained by the proposed method

support the theoretical results.

Table 1 The errors ksKk1 and ksKk2 for different values of time Dt
with N ¼ 100

Dt ksKk1 Rate ksKk2 Rate

0.001 1:8221� 10�3 1:1556� 10�4

0.0005 5:6177� 10�4 1.6975 2:9965� 10�5 1.9472

0.00025 1:5380� 10�4 1.8689 7:920� 10�6 1.9197

0.000125 3:9312� 10�5 1.96801 1:991� 10�6 1.9920

Table 2 The errors ksKk1 and ksKk2 for different values of Dt with
N ¼ 80

Dt ksKk1 Rate ksKk2 Rate

0.001 6:6172� 10�4 5:5124� 10�5

0.0005 1:7543� 10�4 1.9153 1:4871� 10�5 1.8901

0.00025 4:8575� 10�5 1.8526 3:8277� 10�6 1.9579

0.000125 1:2143� 10�5 1.9999 9:5947� 10�7 1.99617

Exact solution
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t

0
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40x

0.0
0.5
1.0
1.5

2.0

u

,

Numerical solution
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x
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1.0
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2.0

u

Fig. 1 The results at N ¼ 50, K ¼ 1000 and Dt ¼ 0:00001 for Example 1

Math Sci (2017) 11:17–26 23

123



To indicate the effects of the proposed method for larger

time level K, the exact solution and the approximate

solution are plotted using N ¼ 50, K ¼ 1000 and Dt ¼
0:00001 as shown in Fig. 1. It is clear from the Fig. 1 that

the numerical solution is highly consistent with the exact

solution, which indicates that the proposed method is very

effective. In Fig. 2, the exact solution is represented by

solid line and the numerical solution is represented by

dotted line at K ¼ 1000 time level.

The temporal rate of convergence of L2 norm error as a

function of the time step Dt for a ¼ 1:50 is shown in Fig. 3.

Example 2 Consider the following superdiffusion PDE of

fourth order

o1:50v

ot1:50
þ 0:05

o4v

oz4
¼ qðz; tÞ; z 2 ½0; 1�; 0\t� T;

with the initial condition

vðz; 0Þ ¼ p5 sinpzþ 1

p5
cos pz� 1

p5
cos 3pz

� �
; z 2 ½0; 1�;

and boundary condition III

vð0; tÞ ¼ vð1; tÞ ¼ 0;

vzzð0; tÞ �
8

p9
vzð0; tÞ ¼ vzzð1; tÞ �

8

p9
gzð1; tÞ ¼ 0; 0� t� T:

The exact solution of the problem is

vðz; tÞ ¼ t þ 1ð Þ p5 sin pzþ 1

p5
cos pz� 1

p5
cos 3pz

� �
:

The error norms L1 and L2 are calculated for N ¼ 80 and

different temporal step sizes. The temporal rate of con-

vergence at tf ¼ 1:0 is presented in Table 2. The temporal

rate of convergence obtained by the proposed method

support theoretical results.

To indicate the effects of the proposed method for larger

time level, the exact solution and the approximate solution

are plotted using N ¼ 80, K ¼ 1000, and Dt ¼ 0:00001 as

shown in Fig. 4. It is clear from the Fig. 4 that the

10 20 30 40 50
x

0.5

1.0

1.5

2.0
u

Fig. 2 The exact and numerical solutions at K ¼ 1000. Dotted line

numerical solution, solid line exact solution

Fig. 3 Errors as a function of the time Dt for a ¼ 1:50
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Numerical solution
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Fig. 4 The results at N ¼ 80, K ¼ 1000 and Dt ¼ 0:00001 for Example 2
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numerical solution is highly consistent with the exact

solution, which indicates that the proposed method is very

effective. In Fig. 5, the exact solution is represented by

solid line and the numerical solution is represented by

dotted line at K ¼ 1000 time level.

The temporal rate of convergence of L2 norm error as a

function of the time step Dt for a ¼ 1:75 is shown in Fig. 6.

Conclusion

The solution of superdiffusion fourth order equation has

been developed. Central difference formula and quintic B-

spline are used for discretizing time and space variables,

respectively. The proposed method is stable and the

approximate results approach the analytical results with

order OðDt2Þ. The approximate results obtained by the

suggested method support the theoretical estimates.
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