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Abstract In this paper, we construct six generalized sec-

ond-order parameter-free duality models, and prove several

weak, strong, and strict converse duality theorems for a

discrete minmax fractional programming problem using

two partitioning schemes and various types of generalized

second-order ðF ; b;/; q; h;mÞ-univexity (more compactly,

’second-order univexity’ is referred to as ’sounivexity’)

assumptions. The obtained results are new and generalize

most of results on discrete minmax fractional programming

involving the second-order invexity as well as on second-

order univexity in the literature.
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Introduction and preliminaries

Based on a close observation on second-order necessary

and sufficient optimality conditions for minmax fractional

programming problems, which have not received much

attention in the literature of mathematical programming,

that is in sharp contrast to the case of minmax program-

ming problems, numerous second-order necessary and

sufficient optimality conditions for various classes of

nonlinear programming problems with single and multiple

objective functions have been investigated in the literature,

including [1, 8–11, 13, 15, 19–21]. However, none of the

sufficient optimality conditions discussed in these publi-

cations involve developing any kind of second-order

duality theory for any type of optimization problems. The

notion of duality for generalized linear fractional pro-

gramming was initially considered by von Neumann [14]

to the context of an economic equilibrium problem.

However, a significant number of optimality criteria,

duality results, and computational algorithms for several

classes of generalized linear and nonlinear fractional pro-

gramming problems have appeared in the related literature,

for example in the publications [2–7, 12, 14, 16–18,

22–25]. Verma and Zalmai [10] dealt with some details on

discrete minmax fractional programming, a fairly extensive

list of currently available publications dealing with various

second-order necessary and sufficient optimality conditions

for several types of optimization problems, some modifi-

cations of the concepts of second-order invexity, pseu-

doinvexity, and quasiinvexity originally defined by Hanson

[3], a set of second-order necessary optimality conditions,

and making use of the new classes of generalized second-

order invex functions, a fairly large number of sets of

second-order sufficient optimality criteria. The sufficient

optimality conditions established in [10] are further

& Ram U. Verma

verma99@msn.com

G. J. Zalmai

gzalmai@nmu.edu

1 Department of Mathematics and Computer Science, Northern

Michigan University, Marquette, MI 49855, USA

2 Department of Mathematics, University of North Texas,

Denton, TX 76201, USA

123

Math Sci (2016) 10:185–199

DOI 10.1007/s40096-016-0193-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-016-0193-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-016-0193-x&amp;domain=pdf


generalized in [12] using various generalized second-order

ð/; g; q; h;mÞ-invexity assumptions. For more details on

generalized linear and nonlinear fractional programming

problems, we refer the reader [1–25].

In this paper, it is our intention to lay the theoretical

foundation which will enable us to fully investigate the

second-order optimality and duality aspects of our fol-

lowing principal problem (P) as well as its semiinfinite

counterpart in a series of papers. We begin our investiga-

tion here by establishing a set of second-order parametric

necessary optimality conditions and several sets of suffi-

cient optimality conditions for principal problem (P).

Furthermore, we utilize two partitioning schemes due to

Mond and Weir [7] and Yang [18], in conjunction with the

generalized versions of the new classes of second-order

invex functions introduced in (Verma and Zalmai [10]) to

formulate six generalized parameter-free duality models

for principal problem (P) and prove appropriate duality

theorems. The duality models and the related duality theory

established in this paper generalize most of results avail-

able in the literature, including those results published in

[2–7, 12, 16, 18, 22–25].

To the best of our knowledge, all of these duality results

established in this paper are new in the area of discrete

minmax fractional programming. In fact, it seems that

results of this type, which are based on second-order nec-

essary and sufficient optimality conditions, have not yet

appeared in any shape or form for any type of mathematical

programming problems in the literature.

Now, we formulate six generalized second-order

parameter-free duality models and prove a variety of weak,

strong, and strict converse duality theorems for the fol-

lowing discrete minmax fractional programming problem:

ðPÞ Minimize max
1� i� p

fiðxÞ
giðxÞ

subject to GjðxÞ� 0; j 2 q;HkðxÞ ¼ 0; k 2 r; x 2 X,

where x is an open convex subset of Rn (n-dimensional

Euclidean space), fi; gi; i 2 p � f1; 2; . . .; pg; Gj; j 2 q, and

Hk; k 2 r, are real-valued functions defined on X, and for

each i 2 p; giðxÞ[ 0 for all x satisfying the constraints of

(P).

Evidently, all the duality results established in this paper

can be modified and restated for each one of the following

three classes of nonlinear programming problems, which

are special cases of (P):

ðP1Þ Minimize
x2F

f1ðxÞ
g1ðxÞ

;

ðP2Þ Minimize
x2F

max
1� i� p

fiðxÞ;

ðP3Þ Minimize
x2F

f1ðxÞ;

where F (assumed to be nonempty) is the feasible set of

(P), that is,

F ¼ fx 2 X : GjðxÞ� 0; j 2 q;HkðxÞ ¼ 0; k 2 rg:

Since, in most cases, these results can easily be altered and

rephrased for each one of the above three problems, we

shall not state them explicitly.

The rest of this paper is organized as follows: In Sect. 1,

we present the historical development and introduce/recall

a few basic definitions and auxiliary results that will be

used in the sequel. In Sect. 2, we utilize a partitioning

scheme due to Mond and Weir [7], and formulate two

general second-order parameter-free duality models for

(P) and prove weak, strong, and strict converse duality

theorems using various generalized ðF ; b;/; q; h;mÞ-
sounivexity assumptions. We continue our discussion of

duality in Sects. 3 and 4 where we construct four additional

general second-order parameter-free duality models with

different constraint structures and prove several second-

order duality results under a variety of generalized

ðF ; b;/; q; h;mÞ-sounivexity conditions. Finally, in Sect.

5, we summarize our main results and also point out some

research opportunities arising from certain modifications of

the principal minmax model investigated in this study.

We next introduce the new classes of ‘second-order

univex’ functions (referred to as ‘‘sounivex’’ functions).

The notion of ‘sounivexity’ generalizes the notion of

‘second-order invexity,’ which is referred to as ‘‘sonvex-

ity’’ in the literature. Let f : X ! R be a twice differen-

tiable function.

Definition 1.1 The function f is said to be (strictly)

ðF ; b;/; q; h;mÞ-sounivex at x� if there exist functions

b : X � X ! Rþ � ð0;1Þ;/ : R ! R;q : X � X ! R; h :
X � X ! Rn, a sublinear function Fðx; x�; �Þ : Rn ! R,

and a positive integer m, such that for each x 2 Xðx 6¼ x�Þ
and z 2 Rn,

/
�
f ðxÞ � f ðx�Þ

�
ð[ Þ�F

�
x; x�; bðx; x�Þrf ðx�Þ

�

þ 1

2
hz;r2f ðx�Þzi þ qðx; x�Þkhðx; x�Þkm;

where k � k is a norm on Rn and ha; bi is the inner product

of the vectors a and b.

The function f is said to be (strictly) ðF ; b;/; q; h;mÞ-
sounivex on X if it is (strictly) ðF ; b;/; q; h;mÞ -sounivex
at each x� 2 X.

Definition 1.2 The function f is said to be (strictly)

ðF ; b;/; q; h;mÞ-pseudosounivex at x� if there exist func-

tions b : X � X ! Rþ;/ : R ! R; q : X � X ! R; h :

X � X ! Rn, a sublinear function Fðx; x�; �Þ : Rn ! R,

and a positive integer m, such that for each x 2 Xðx 6¼ x�Þ
and z 2 Rn,
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F
�
x; x�; bðx; x�Þrf ðx�Þ

�
þ 1

2
hz;r2f ðx�Þzi

� � qðx; x�Þkhðx; x�Þkm

) /
�
f ðxÞ � f ðx�Þ

�
ð[ Þ� 0:

The function f is said to be (strictly) ðF ; b;/; q; h;mÞ-
pseudosounivex on X if it is (strictly) ðF ; b;/; q; h;mÞ -

pseudosounivex at each x� 2 X.

Definition 1.3 The function f is said to be (prestrictly)

ðF ; b;/; q; h;mÞ-quasisounivex at x� if there exist func-

tions b : X � X ! Rþ;/ : R ! R; q : X � X ! R; h :

X � X ! Rn, a sublinear function Fðx; x�; �Þ : Rn ! R,

and a positive integer m, such that for each x 2 X and

z 2 Rn,

/
�
f ðxÞ � f ðx�Þ

�
ð\Þ� 0

) F
�
x; x�; bðx; x�Þrf ðx�Þ

�
þ 1

2
hz;r2f ðx�Þzi

� � qðx; x�Þkhðx; x�Þkm:

The function f is said to be (prestrictly) ðF ; b;/; q; h;mÞ-
quasisounivex on X if it is (prestrictly) ðF ; b;/; q; h;mÞ-
quasisounivex at each x� 2 X.

From the above definitions, it is clear that if f is

ðF ; b;/; q; h;mÞ-sounivex at x�, then it is both

ðF ; b;/; q; h;mÞ-pseudosounivex and ðF ; b;/; q; h;mÞ-
quasisounivex at x�, if f is ðF ;b;/; q; h;mÞ-quasisounivex

at x�, then it is prestrictly ðF ; b;/; q; h;mÞ-quasisounivex

at x�, and if f is strictly ðF ; b;/; q; h;mÞ-pseudosounivex at

x�, then it is ðF ; b;/; q; h;mÞ-quasisounivex at x�.
In the proofs of the duality theorems, sometimes, it may

be more convenient to use certain alternative but equivalent

forms of the above definitions. These are obtained by

considering the contrapositive statements. For example,

ðF ; b;/; q; h;mÞ-quasisounivexity can be defined in the

following equivalent way:

The function f is said to be ðF ; b;/; q; h;mÞ-qua-

sisounivex at x� if there exist functions b : X � X !
Rþ;/ : R ! R; q : X � X ! R; h : X � X ! Rn, a sub-

linear function Fðx; x�; �Þ : Rn ! R, and a positive integer

m, such that for each x 2 X and z 2 Rn,

F
�
x; x�; bðx; x�Þrf ðx�Þ

�
þ 1

2
hz;r2f ðx�Þzi

[ � qðx; x�Þkhðx; x�Þkm

) /
�
f ðxÞ � f ðx�Þ

�
[ 0:

Needless to say that the new classes of generalized convex

functions specified in Definitions 1.1–1.3 contain a variety

of special cases that can easily be identified by appropriate

choices of F ; b;/; q; h, and m. For example, if let

F
�
x; x�;rf ðx�Þ

�
¼ hrf ðx�Þ; gðx; x�Þi and bðx; x�Þ � 1,

then we obtain the definitions of (strictly) ð/; g; q; h;mÞ-

sonvex, (strictly) ð/; g; q; h;mÞ-pseudosonvex, and (pre-

strictly) ð/; g; q; h;mÞ-quasisonvex functions introduced

recently in [10], where the ‘‘second-order invexity’’ is

compactly abbreviated as ‘‘sonvexity.’’ The notion of the

sonvexity/generalized sonvexity has been applied in

developing a new optimality-duality theory in nonlinear

programming based on second-order necessary and suffi-

cient optimality conditions [1, 8–10, 12, 22].

Definition 1.4 The function f is said to be (strictly)

ð/; g; q; h;mÞ-sonvex at x� if there exist functions

/ : R ! R; g : X � X ! Rn; q : X � X ! R, and h : X�
X ! Rn, and a positive integer m, such that for each x 2
Xðx 6¼ x�Þ and z 2 Rn,

/
�
f ðxÞ � f ðx�Þ

�
ð[ Þ� hrf ðx�Þ; gðx; x�Þi þ 1

2
hz;r2f ðx�Þzi

þ qðx; x�Þkhðx; x�Þkm:

The function f is said to be (strictly) ð/; g; q; h;mÞ-sonvex

on X if it is (strictly) ð/; g; q; h;mÞ-sonvex at each x� 2 X.

Definition 1.5 The function f is said to be (strictly)

ð/; g; q; h;mÞ-pseudosonvex at x� if there exist functions

/ : R ! R; g : X � X ! Rn; q : X � X ! R, and h : X�
X ! Rn, and a positive integer m, such that for each x 2
Xðx 6¼ x�Þ and z 2 Rn,

hrf ðx�Þ;gðx;x�Þiþ 1

2
hz;r2f ðx�Þzi� �qðx;x�Þkhðx;x�Þkm

) /
�
f ðxÞ� f ðx�Þ

�
ð[ Þ�0;

equivalently,

/
�
f ðxÞ � f ðx�Þ

�
ð� Þ\0 ) hrf ðx�Þ; gðx; x�Þi þ 1

2
hz;r2f ðx�Þzi

\� qðx; x�Þkhðx; x�Þkm:

The function f is said to be (strictly) ð/; g; q; h;mÞ-pseu-

dosonvex on X if it is (strictly) ð/; g; q; h;mÞ-pseudosonvex

at each x� 2 X.

Definition 1.6 The function f is said to be (prestrictly)

ð/; g; q; h;mÞ-quasisonvex at x� if there exist functions

/ : R ! R; g : X � X ! Rn; q : X � X ! R, and h : X�
X ! Rn, and a positive integer m, such that for each x 2 X

and z 2 Rn,

/
�
f ðxÞ � f ðx�Þ

�
ð\Þ� 0 ) hrf ðx�Þ; gðx; x�Þi

þ 1

2
hz;r2f ðx�Þzi� � qðx; x�Þkhðx; x�Þkm;

equivalently

hrf ðx�Þ;gðx;x�Þiþ 1

2
hz;r2f ðx�Þzi[ �qðx;x�Þkhðx;x�Þkm

) /
�
f ðxÞ� f ðx�Þ

�
ð�Þ[0:
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The function f is said to be (prestrictly) ð/; g; q; h;mÞ-
quasisonvex on X if it is (prestrictly) ð/; g; q; h;mÞ-qua-

sisonvex at each x� 2 X.

Duality model I and duality theorems

We begin this section by recalling a set of second-order

parameter-free necessary optimality conditions for (P).

This result, which is obtained from Theorem 3.1 of [10] by

eliminating the parameter k� and redefining the Lagrange

multipliers, will be needed for proving strong and strict

converse duality theorems.

Theorem 2.1 [10] Let x� be a normal optimal solution of

(P) and assume that the functions fi; gi; i 2 p;Gj; j 2 q,

and Hk; k 2 r, are twice continuously differentiable at x�.
Then, for each z� 2 Cðx�Þ, there exist u� 2 U � fu 2 Rp :

u� 0;
Pp

i¼1 ui ¼ 1g; v� 2 R
q
þ � fv 2 Rq : v� 0g, and

w� 2 Rr, such that

Xp

i¼1

u�i ½Dðx�; u�Þrfiðx�Þ � Nðx�; u�Þrgiðx�Þ	

þ
Xq

j¼1

v�jrGjðx�Þ þ
Xr

k¼1

w�
krHkðx�Þ ¼ 0;

D
z�;
nXp

i¼1

u�i ½Dðx�; u�Þr2fiðx�Þ � Nðx�; u�Þr2giðx�Þ	

þ
Xq

j¼1

v�jr2Gjðx�Þ þ
Xr

k¼1

w�
kr2Hkðx�Þ

o
z�
E
� 0;

u�i ½Dðx�; u�Þfiðx�Þ � Nðx�; u�Þgiðx�Þ	 ¼ 0; i 2 p;

max
1� i� p

fiðx�Þ
giðx�Þ

¼ Nðx�; u�Þ
Dðx�; u�Þ ;

v�j Gjðx�Þ ¼ 0; j 2 q;

where Cðx�Þ is the set of all critical directions of (P) at x�,
that is

Cðx�Þ ¼ fz� 2 Rn : hDðx�; u�Þrfiðx�Þ � Nðx�; u�Þgiðx�Þ; z�i ¼ 0;

i 2 Aðx�Þ; hrGjðx�Þ; z�i � 0; j 2 Bðx�Þ; hrHkðx�Þ; z�i ¼ 0; k 2 rg;

Aðx�Þ ¼ fj 2 p : fjðx�Þ=gjðx�Þ ¼ max
1� i� p

fiðx�Þ=giðx�Þg; Bðx�Þ

¼ fj 2 q : Gjðx�Þ ¼ 0g;Nðx�; u�Þ ¼
Xp

i¼1

u�i fiðx�Þ; and Dðx�; u�Þ

¼
Xp

i¼1

u�i giðx�Þ:

In the above theorem, a normal optimal solution refers

to an optimal solution at which an appropriate second-order

constraint qualification is satisfied.

In the remainder of this paper, we shall assume that

the functions fi; gi; i 2 p; Gj; j 2 q, and Hk; k 2 r, are

twice continuously differentiable on the open set

X. Moreover, we shall assume, without loss of gener-

ality, that for each i 2 p; fiðxÞ� 0 and giðxÞ[ 0 for all

x 2 X.

Duality model I

In this section, we discuss several families of duality

results under various generalized ðF ; b;/; q; h;mÞ-
sounivexity hypotheses imposed on certain combina-

tions of the problem functions. This is accomplished by

employing a certain partitioning scheme which was

originally proposed in [7] for the purpose of con-

structing generalized dual problems for nonlinear pro-

gramming problems. For this, we need some additional

notation.

Let fJ0; J1; . . .; JMg and fK0;K1; . . .;KMg be partitions

of the index sets q and r, respectively; thus, Jl 
 q for each

l 2 M [ f0g; Jl \ Jm ¼ ; for each l; m 2 M [ f0g with

l 6¼ m, and [M
l¼0Jl ¼ q. Obviously, similar properties hold

for fK0;K1; . . .;KMg. Moreover, if m1 and m2 are the

numbers of the partitioning sets of q and r, respectively,

then M ¼ maxfm1;m2g and Jl ¼ ; or Kl ¼ ; for

l[ minfm1;m2g.

In addition, we use the real-valued functions

n ! Uðn; u; v;w; kÞ, and n ! Ktðn; v;wÞ defined, for fixed

k; u; v, and w, on X as follows:

Uðn; y; u; v;wÞ ¼
Xp

i¼1

ui

n
Dðy; uÞ

h
fiðnÞ þ

X

j2J0

vjGjðnÞ þ
X

k2K0

wkHkðnÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	giðnÞ
o
;

Ktðn; v;wÞ ¼
X

j2Jt
vjGjðnÞ þ

X

k2Kt

wkHkðnÞ; t 2 M [ f0g:

Making use of the sets and functions defined above, we can

now formulate our first pair of second-order parameter-free

duality models for (P).

Consider the following two problems:

(DI) MaximizePp
i¼1 uifiðyÞ þ

P
j2J0

vjGjðyÞ þ
P

k2K0
wkHkðyÞ

Pp
i¼1 uigiðyÞ

subject to

Xp

i¼1

ui

n
Dðy; uÞ

h
rfiðyÞ þ

X

j2J0

vjrGjðyÞ þ
X

k2K0

wkrHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	rgiðyÞ
o
þ
X

j2qnJ0

vjrGjðyÞ

þ
X

k2rnK0

wkrHkðyÞ ¼ 0; ð2:1Þ
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z;
Xp

i¼1

ui Dðy; uÞ r2fiðyÞ þ
X

j2J0

vjr2GjðyÞ þ
X

k2K0

wkr2HkðyÞ
" #(*

�½Nðy; uÞ þ K0ðy; v;wÞ	r2giðyÞ
�
þ
X

j2qnJ0

vjr2GjðyÞ

þ
X

k2rnK0

wkr2HkðyÞ
o
z

+

� 0; ð2:2Þ

X

j2Jt
vjGjðyÞ þ

X

k2Kt

wkHkðyÞ� 0; t 2 M; ð2:3Þ

y 2 X; z 2 CðyÞ; u 2 U; v 2 R
q
þ;w 2 Rr; ð2:4Þ

ð ~DIÞ MaximizePp
i¼1 uifiðyÞ þ

P
j2J0

vjGjðyÞ þ
P

k2K0
wkHkðyÞPp

i¼1 uigiðyÞ
subject to (2.2)–(2.4) and

F x; y;
Xp

i¼1

ui Dðy; uÞ rfiðyÞ þ
X

j2J0

vjrGjðyÞ þ
X

k2K0

wkrHkðyÞ
" #( 

�½Nðy; uÞ þ K0ðy; v;wÞ	rgiðyÞg þ
X

j2qnJ0

vjrGjðyÞ

þ
X

k2rnK0

wkrHkðyÞ

1

A� 0 for all x 2 F; ð2:5Þ

where Fðx; y; �Þ is a sublinear function from Rn to R.

Comparing (DI) and ð ~DIÞ, we see that ð ~DIÞ is relatively

more general than (DI) in the sense that any feasible solution of

(DI) is also feasible for ð ~DIÞ, but the converse is not necessarily

true. Furthermore, we observe that (2.1) is a system of n equa-

tions, whereas (2.5) is a single inequality. Clearly, from a

computational point of view, (DI) is preferable to ð ~DIÞ because

of the dependence of (2.5) on the feasible set of (P).

Despite these apparent differences, it turns out that

the statements and proofs of all the duality theorems for

ðPÞ � ðDIÞ and ðPÞ � ð ~DIÞ are almost identical and,

therefore, we shall consider only the pair ðPÞ � ðDIÞ.
In the proofs of our duality theorems, we shall make fre-

quent use of the following auxiliary result which provides an

alternative expression for the objective function of (P).

Lemma 2.1 [8] For each x 2 X,

uðxÞ ¼ max
1� i� p

fiðxÞ
giðxÞ

¼ max
u2U

Pp
i¼1 uifiðxÞPp
i¼1 uigiðxÞ

:

The next two theorems show that (DI) is a dual problem

for (P).

Theorem 2.2 (Weak duality) Let x and S � ðy; z; u; v;wÞ
be arbitrary feasible solutions of (P) and (DI), respectively,

and assume that any one of the following four sets of

hypotheses is satisfied:

1.

(a) n ! Uðn; y; u; v;wÞ is ðF ; b; �/; �q; h;mÞ-pseu-

dosounivex at y and �/ðaÞ� 0 ) a� 0;

(b) For each t 2 M; n ! Ktðz; v;wÞ is ðF ; b; ~/t;

~qt; h;mÞ-quasisounivex at y, ~/t is increasing,

and ~/tð0Þ ¼ 0;

(c) �qðx; yÞ þ
PM

t¼1 ~qtðx; yÞ� 0;

2.

(a) n ! Uðn; y; u; v;wÞ is prestrictly ðF ; b; �/; �q;
h;mÞ-quasisounivex at y and �/ðaÞ� 0 ) a� 0;

(b) for each t 2 M; n ! Ktðn; v;wÞ is ðF ; b; ~qt;

qt; h;mÞ-quasisounivex at y, ~/tis increasing, and
~/tð0Þ ¼ 0;

(c) �qðx; yÞ þ
PM

t¼1 ~qtðx; yÞ[ 0;

3.

(a) n ! Uðn; y; u; v;wÞ is prestrictly ðF ; b; �/; �q;
h;mÞ-quasisounivex at y; �/ is strictly increasing,

and �/ð0Þ ¼ 0;

(b) For each t 2 M; n ! Ktðn; v;wÞ is strictly

ðF ; b; ~/t; ~qt; h;mÞ-pseudosounivex at y, ~/t is

increasing, and ~/tð0Þ ¼ 0;

(c) �qðx; yÞ þ
PM

t¼1 ~qtðx; yÞ� 0;

4.

(a) n ! Uðn; y; u; v;wÞ is prestrictly ðF ; b; �/; �q;
h;mÞ-quasisounivex at y; �/ is strictly increasing,

and �/ð0Þ ¼ 0;

(b) For each t 2 M1; n ! Ktðn; v;wÞ is ðF ; b; ~/t; ~qt;
h;mÞ-quasisounivex at y, for each t 2 M2 6¼
;; n ! Ktðn; v;wÞ is strictly ðF ; b; ~/t; ~qt; h;mÞ-
pseudosounivex at y, and for each t 2 M; ~/t is

increasing and ~/tð0Þ ¼ 0, where fM1;M2g is a

partition of M;

(c) �qðx; yÞ þ
PM

t¼1 ~qtðx; yÞ� 0.

Then, uðxÞ�wIðy; u; v;wÞ, where wI is the objective

function of (DI).

Proof (a) : Since Fðx; y; �Þ is sublinear and bðx; yÞ[ 0,

it is clear that (2.1) and (2.2) can be expressed as

follows:
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F x; y; bðx; yÞ
Xp

i¼1

ui Dðy; uÞ rfiðyÞ þ
X

j2J0

vjrGjðyÞ
"( 

þ
X

k2K0

wkrHkðyÞ
#

� ½Nðy; uÞ þ K0ðy; v;wÞ	rgiðyÞ
)!

þ F x; y; bðx; yÞ
XM

t¼1

X

j2Jt
vjrGjðyÞ

" 

þ
X

k2Kt

wkrHkðyÞ
#!

� 0: ð2:6Þ

z;
Xp

i¼1

ui Dðy; uÞ r2fiðyÞ þ
X

j2J0

vjr2GjðyÞ þ
X

k2K0

wkr2HkðyÞ
" #(*

�½Nðy; uÞ þ K0ðy; v;wÞ	r2giðyÞ
)

z

+

þ z;
XM

t¼1

X

j2Jt
vjr2GjðyÞ þ

X

k2Kt

wkr2HkðyÞ
" #

z

* +

� 0: ð2:7Þ

Since for each t 2 M,

Ktðx; v;wÞ ¼
X

j2Jt
vjGjðxÞ þ

X

k2Kt

wkHkðxÞ

� 0 (by the primal feasibility of xÞ
�
X

j2Jt
vjGjðyÞ þ

X

k2Kt

wkHkðyÞ

(by (2.3) and the dual feasibility of S)

¼ Ktðy; v;wÞ;

and hence, ~/tðKtðx; v;wÞ � Ktðy; v;wÞÞ� 0, it follows

from (ii) that

F x; y; bðx; yÞ
X

j2Jt
vjrGjðyÞ þ

X

k2Kt

wkrHkðyÞ
" # !

þ 1

2
z;
X

j2Jt
vjr2GjðyÞ þ

X

k2Kt

wkr2HkðyÞ
" #

z

* +

� � ~qtðx; yÞkhðx; yÞkm:

Summing over t 2 M and using the sublinearity of

Fðx; y; �Þ, we obtain

F
�
x; y; bðx; yÞ

XM

t¼1

hX

j2Jt
vjrGjðyÞ þ

X

k2Kt

wkrHkðyÞ
i�

þ 1

2

D
z;
XM

t¼1

hX

j2Jt
vjr2GjðyÞ þ

X

k2Kt

wkr2HkðyÞ
i
z
E

� �
XM

t¼1

~qtðx; yÞkhðx; yÞk
m: ð2:8Þ

Combining (2.6)–(2.8) and using (iii), we get

F
�
x; y;bðx; yÞ

Xp

i¼1

ui

n
Dðy; uÞ

h
rfiðyÞ þ

X

j2J0

vjrGjðyÞ þ
X

k2K0

wkrHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	rgiðyÞ
o�

þ 1

2

D
z;
Xp

i¼1

ui

n
Dðy; uÞ

h
r2fiðyÞ

þ
X

j2J0

vjr2GjðyÞ þ
X

k2K0

wkr2HkðyÞ
i
� ½Nðy; uÞ þ K0ðy; v;wÞ	r2giðyÞ

o
z
E

�
XM

t¼1

~qtðx; yÞkhðx; yÞkm � � �qðx; yÞkhðx; yÞkm;

ð2:9Þ

which by virtue of (i) implies that

�/
�
Uðx; y; u; v;wÞ � Uðy; y; u; v;wÞ

�
� 0:

However, �/ðaÞ� 0 ) a� 0, and hence, we get

Uðx; y; u; v;wÞ�Uðy; y; u; v;wÞ ¼ 0;

where the equality follows from the definitions of

D(y, u), N(y, u), and K0ðy; v;wÞ. Since x 2 F, the above

inequality reduces to

Xp

i¼1

uifDðy; uÞfiðxÞ � ½Nðy; uÞ þ K0ðy; v;wÞ	giðxÞ	g� 0:

ð2:10Þ

Now, using (2.10) and Lemma 2.1, we obtain the weak

duality inequality as follows:

uðxÞ ¼ max
a2U

Pp
i¼1 aifiðxÞPp
i¼1 aigiðxÞ

�
Pp

i¼1 uifiðxÞPp
i¼1 uigiðxÞ

� Nðy; uÞ þ K0ðy; v;wÞ
Dðy; uÞ ¼ wIðy; z; u; v;wÞ:

(b) The proof is similar to that of part (a).

(c) Suppose to the contrary that uðxÞ\wIðy; z; u; v;wÞ.
This implies that for each i 2 p,

Dðy; uÞfiðxÞ � ½Nðy; uÞ þ K0ðy; v;wÞ	giðxÞ\0: ð2:11Þ

Using these inequalities, we see that

Uðx;y;u;v;wÞ ¼
Xp

i¼1

ui

n
Dðy;uÞ

h
fiðxÞþ

X

j2J0

vjGjðxÞ

þ
X

k2K0

wkHkðxÞ
i
� ½Nðy;uÞþK0ðy;v;wÞ	giðxÞ

o
;

�
Xp

i¼1

uifDðy;uÞfiðxÞ� ½Nðy;uÞþK0ðy;v;wÞ	giðxÞg

(by the primal of feasibility of xÞ
\0(by (2.11))

¼Uðy;y;u;v;wÞ(by the definitions

of Dðy;uÞ;Nðy;uÞ; and K0ðy;v;wÞÞ;

and hence, �/ðUðx;y;u;v;wÞ�Uðy;y;u;v;wÞÞ\0 which by

virtue of (i) implies that
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F
�
x; y;bðx; yÞ

Xp

i¼1

ui

n
Dðy; uÞ

h
rfiðyÞ þ

X

j2J0

vjrGjðyÞ þ
X

k2K0

wkrHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	rgiðyÞ
o�

þ 1

2

D
z;
Xp

i¼1

ui

n
Dðy; uÞ

h
r2fiðyÞ

þ
X

j2J0

vjr2GjðyÞ þ
X

k2K0

wkr2HkðyÞ
i
� ½Nðy; uÞ

þ K0ðy; v;wÞ	r2giðyÞ
o
z
E
� � �qðx; yÞkhðx; yÞkm:

ð2:12Þ

Proceeding as in the proof of part (a), we obtain

~/t

�
Ktðx; v;wÞ � Ktðy; v;wÞ

�
� 0, which, because of (ii),

implies that

F
�
x; y; bðx; yÞ

hX

j2Jt
vjrGjðyÞ þ

X

k2Kt

wkrHkðyÞ
i�

þ 1

2

D
z;
hX

j2Jt
vjr2GjðyÞ

þ
X

k2Kt

wkr2HkðyÞ
i
z
E
\� ~qtðx; yÞkhðx; yÞkm:

Summing over t 2 M and using the sublinearity of

Fðx; y; �Þ, we obtain

F
�
x; y; bðx; yÞ

XM

t¼1

hX

j2Jt
vjrGjðyÞ þ

X

k2Kt

wkrHkðyÞ
i�

þ 1

2

D
z;
XM

t¼1

hX

j2Jt
vjr2GjðyÞ þ

X

k2Kt

wkr2HkðyÞ
i
z
E

\�
XM

t¼1

~qtðx; yÞkhðx; yÞkm:

Combining this inequality with (2.6) and (2.7) and using

(iii), we get

F
�
x; y;bðx; yÞ

Xp

i¼1

ui

n
Dðy; uÞ

h
rfiðyÞ þ

X

j2J0

vjrGjðyÞ þ
X

k2K0

wkrHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	rgiðyÞ
o�

þ 1

2

D
z;
Xp

i¼1

ui

n
Dðy; uÞ

h
r2fiðyÞ

þ
X

j2J0

vjr2GjðyÞ þ
X

k2K0

wkr2HkðyÞ
i
� ½Nðy; uÞ þ K0ðy; v;wÞ	r2giðyÞ

o
z
E

[
XM

t¼1

~qtðx; yÞkhðx; yÞkm � � �qðx; yÞkhðx; yÞkm;

which contradicts (2.12). Therefore, we conclude that
�/ðxÞ�wIðy; z; u; v;wÞ.

(d) The proof is similar to that of part (c).

h

Theorem 2.3 (Strong duality) Let x� be a normal opti-

mal solution of (P) and assume that any one of the four sets

of conditions specified in Theorem 2.2 is satisfied for all

feasible solutions of (DI). Then, for each z� 2 Cðx�Þ, there
exist u� 2 U; v� 2 R

q
þ, and w� 2 Rr, such that S� �

ðx�; z�; u�; v�;w�Þ is an optimal solution of (DI) and

uðx�Þ ¼ wIðS�Þ.

Proof Since x� is a normal optimal solution of (P), by

Theorem 2.1, for each z� 2 Cðx�Þ, there exist

u� 2 U; �v 2 R
q
þ, and �w 2 Rr, such that

Xp

i¼1

u�i ½Dðx�; u�Þrfiðx�Þ � Nðx�; u�Þrgiðx�Þ	

þ
Xq

j¼1

�vjrGjðx�Þ þ
Xr

k¼1

�wkrHkðx�Þ ¼ 0; ð2:13Þ

D
z�;
nXp

i¼1

u�i ½Dðx�; u�Þr2fiðx�Þ � Nðx�; u�Þr2giðx�Þ	

þ
Xq

j¼1

�vjr2Gjðx�Þ þ
Xr

k¼1

�wkr2Hkðx�Þ
o
z�
E
� 0; ð2:14Þ

max
1� i� p

fiðx�Þ
giðx�Þ

¼ Nðx�; u�Þ
Dðx�; u�Þ ; ð2:15Þ

�vjGjðx�Þ ¼ 0; j 2 q: ð2:16Þ

Now, choosing v�j ¼ �vj=Dðx�; u�Þ for each j 2 J0; v
�
j ¼ �vj

for each j 2 qnJ0;w
�
k ¼ �wk=Dðx�; u�Þ for each k 2 K0, and

w�
k ¼ �wk for each k 2 rnK0, and noticing that x� 2 F, we

deduce the following relations from (2.13) to (2.16):

Xp

i¼1

u�i

n
Dðx�; u�Þ

h
rfiðx�Þ þ

X

j2J0

v�j rGjðx�Þ þ
X

k2K0

w�
krHkðx�Þ

i

� ½Nðx�; u�Þ þ K0ðx�; v�;w�Þ	rgiðx�Þ
o
þ
X

j2qnJ0

v�j rGjðx�Þ

þ
X

k2rnK0

w�
krHkðx�Þ ¼ 0; ð2:17Þ

D
z�;
Xp

i¼1

u�i

n
Dðx�; u�Þ

h
r2fiðx�Þ þ

X

j2J0

v�jr2Gjðx�Þ þ
X

k2K0

w�
kr2Hkðx�Þ

i

� ½Nðx�; u�Þ þ K0ðx�; v�;w�Þ	r2giðx�Þ
o
þ
X

j2qnJ0

v�jr2Gjðx�Þ

þ
X

k2rnK0

w�
kr2Hkðx�Þ

o
z�
E
� 0;

ð2:18Þ
X

j2Jt
v�j Gjðx�Þ þ

X

k2Kt

w�
kHkðx�Þ ¼ 0; t 2 M [ f0g; ð2:19Þ

uðx�Þ ¼ Nðx�; u�Þ þ K0ðx�; v�;w�Þ
Dðx�; u�Þ : ð2:20Þ

From (2.17) to (2.19), it is clear that S� is a feasible

solution of (DI), and from (2.20), we see that

uðx�Þ ¼ wIðS�Þ. If S� were not an optimal solution of (DI),

then there would exist a feasible solution S� �
ðx�; z�; u�; v�;w�Þ of (DI), such that

wIðS�Þ[wIðS�Þ ¼ uðx�Þ, which contradicts Theorem 2.2.

Therefore, we conclude that S� is an optimal solution of

(DI). h
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Theorem 2.4 (Strict Converse Duality) Let x� be a

normal optimal solution of (P), let ~S � ð~x; ~z; ~u; ~v; ~wÞ be an

optimal solution of (DI), and assume that any one of the

following four sets of conditions holds:

(a) The assumptions specified in part (a) of Theorem 2.1

are satisfied for the feasible solution ~S of (DI),
�/ðaÞ[ 0 ) a[ 0, and the function n !
Uðn; ~x; ~u; ~v; ~wÞ is strictly ðF ; b; �/; �q; h;mÞ-pseu-
dosounivex at ~x.

(b) The assumptions specified in part (b) of Theorem 2.1

are satisfied for the feasible solution ~S of (DI),
�/ðaÞ[ 0 ) a[ 0, and the function n !
Uðn; ~x; ~u; ~v; ~wÞ is ðF ; b; �/; �q; h;mÞ-quasisounivex at

~x.

(c) The assumptions specified in part (c) of Theorem 2.1

are satisfied for the feasible solution ~S of (DI),
�/ðaÞ[ 0 ) a[ 0, and the function n !
Uðn; ~x; ~u; ~v; ~wÞ is ðF ; b; �/; �q; h;mÞ-quasisounivex at

~x.

(d) The assumptions specified in part (d) of Theorem 2.1

are satisfied for the feasible solution ~S of (DI),
�/ðaÞ[ 0 ) a[ 0, and the function n !
Uðn; ~x; ~u; ~v; ~wÞ is ðF ; b; �/; �q; h;mÞ-quasisounivex at

~x.

Then, ~x ¼ x� and uðx�Þ ¼ wIð~SÞ.

Proof Since x� is a normal optimal solution of (P), by

Theorem 2.3, there exist z� 2 Cðx�Þ; u�; v�, and w�, such

that S� � ðx�; z�; u�; v�;w�Þ is a feasible solution of (DI)

and uðx�Þ ¼ wIðS�Þ. (a): Suppose to the contrary that

~x 6¼ x�. Now, proceeding as in the proof of part (a) of

Theorem 2.2 (with x replaced by x� and S by ~S), we arrive

at the strict inequality

Xp

i¼1

~uifDð~x; ~uÞfiðxÞ � ½Nð~x; ~uÞ þ K0ð~x; ~v; ~wÞ	giðxÞg[ 0:

Using this inequality along with Lemma 2.1, as in the proof

of Theorem 2.2, we get uðx�Þ[wIð ~SÞ, which contradicts

the fact that uðx�Þ ¼ wIðS�Þ�wIð ~SÞ. (b)–(d): The proofs

are similar to that of part (a). h

As pointed out earlier, the duality models (DI) and ð ~DIÞ
are two families of dual problems whose members can

easily be identified by appropriate choices of the parti-

tioning sets J0; J1; . . .; JM;K0;K1; . . .;KM . To illustrate this

possibility, we shall next briefly discuss some special cases

of (DI) and ð ~DIÞ.
If we choose J0 ¼ q and K0 ¼ r in (DI) and ð ~DIÞ, then

we obtain the following dual problems for (P):

ðDIaÞMaximizePp
i¼1uifiðyÞþ

Pq
j¼1vjGjðyÞþ

Pr
k¼1wkHkðyÞPp

i¼1uigiðyÞ
subject to

Dðy; uÞ
hXp

i¼1

uirfiðyÞ þ
Xq

j¼1

vjrGjðyÞ þ
Xr

k¼1

wkrHkðyÞ
i

� ½Nðy; uÞ þ Kðy; v;wÞ	
Xp

i¼1

uirgiðyÞ ¼ 0;

D
z;
n
Dðy; uÞ

hXp

i¼1

uir2fiðyÞ þ
Xq

j¼1

vjr2GjðyÞ þ
Xr

k¼1

wkr2HkðyÞ
i

� ½Nðy; uÞ þ Kðy; v;wÞ	
Xp

i¼1

uir2giðyÞ	
o
z
E
� 0;

y 2 X; z 2 CðyÞ; u 2 U; v 2 R
q
þ;w 2 Rr;

where

Kðy; v;wÞ ¼
Xq

j¼1

vjGjðyÞ þ
Xr

k¼1

wkHkðyÞ;

ð ~DIaÞ MaximizePp
i¼1 uifiðyÞ þ

Pq
j¼1 vjGjðyÞ þ

Pr
k¼1 wkHkðyÞPp

i¼1 uigiðyÞ
subject to

F
�
x; y;Dðy; uÞ

hXp

i¼1

uirfiðyÞ þ
Xq

j¼1

vjrGjðyÞ þ
Xr

k¼1

wkrHkðyÞ
i

�½Nðy; uÞ þ Kðy; v;wÞ	
Xp

i¼1

uirgiðyÞ
�
� 0 for all x 2 F;

D
z;
n
Dðy; uÞ

hXp

i¼1

uir2fiðyÞ þ
Xq

j¼1

vjr2GjðyÞ þ
Xr

k¼1

wkr2HkðyÞ
i

� ½Nðy; uÞ þ Kðy; v;wÞ	
Xp

i¼1

uir2giðyÞ	
o
z
E
� 0;

y 2 X; z 2 CðyÞ; u 2 U; v 2 R
q
þ;w 2 Rr;

where Fðx; y; �Þ is a sublinear function from Rn to R.

If we choose M ¼ qþ r; J0 ¼ ;;K0 ¼ ;; Jt ¼ ftg;
Kt ¼ ;; t 2 q, and Jt ¼ ;;Kt ¼ ftg; t 2 r, then (DI) and

ð ~DIÞ reduce to the following dual problems for (P):

ðDIbÞ Maximize

Pp
i¼1 uifiðyÞPp
i¼1 uigiðyÞ

subject to

Xp

i¼1

ui½Dðy; uÞrfiðyÞ � Nðy; uÞrgiðyÞ	 þ
Xq

j¼1

vjrGjðyÞ

þ
Xr

k¼1

wkrHkðyÞ ¼ 0;
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D
z;
nXp

i¼1

ui½Dðy; uÞr2fiðyÞ � Nðy; uÞr2giðyÞ	 þ
Xq

j¼1

vjr2GjðyÞ

þ
Xr

k¼1

wkr2HkðyÞ
o
z
E
� 0;

vjGjðyÞ� 0; j 2 q;

wkHkðyÞ� 0; k 2 r;

y 2 X; z 2 CðyÞ; u 2 U; v 2 R
q
þ; w 2 Rr;

ð ~DIbÞ Maximize

Pp
i¼1 uifiðyÞPp
i¼1 uigiðyÞsubject to

F
�
x; y;Dðy; uÞ

hXp

i¼1

uirfiðyÞ þ
Xq

j¼1

vjrGjðyÞ þ
Xr

k¼1

wkrHkðyÞ
i

�½Nðy; uÞ þ Kðy; v;wÞ	
Xp

i¼1

uirgiðyÞ
�
� 0 for all x 2 F;

D
z;
nXp

i¼1

ui½Dðy; uÞr2fiðyÞ � Nðy; uÞr2giðyÞ	 þ
Xq

j¼1

vjr2GjðyÞ

þ
Xr

k¼1

wkr2HkðyÞ
o
z
E
� 0;

vjGjðyÞ� 0; j 2 q;

wkHkðyÞ� 0; k 2 r;

y 2 X; z 2 CðyÞ; u 2 U; v 2 R
q
þ;w 2 Rr:

In a similar manner, we can identify many other special

cases of (DI) and ð ~DIÞ. Evidently, Theorems 2.1–2.3 can be

specialized for ðDIaÞ; ð ~DIaÞ; ðDIbÞ, and ð ~DIbÞ in a

straightforward fashion.

The dual problems ðDIaÞ; ð ~DIaÞ; ðDIbÞ, and ð ~DIbÞ were

investigated previously in [10] with F
�
x; x�;rf ðx�Þ

�
¼

hrf ðx�Þ; gðx; x�Þi, where g is a function from X � X to Rn,

and a great variety of duality results were established under

various (strict) ð/; g; q; h;mÞ-sonvexity, (strict) ð/; g; q;
h;mÞ-pseudosonvexity, and (prestrict) ð/; g; q; h;mÞ-qua-

sisonvexity hypotheses.

Duality model II and duality theorems

In Theorems 2.2–2.4, various generalized ðF ; b;/;
q; h;mÞ-sounivexity conditions were imposed on the

function n ! Uðn; y; u; v;wÞ, which is the weighted sum of

the functions

Uiðn; y; v;wÞ ¼ Dðy; uÞ
h
fiðnÞ þ

X

j2J0

vjGjðnÞ þ
X

k2K0

wkHkðnÞ
i

� ½Nðy; uÞ þK0ðy; v;wÞ	giðnÞ; i 2 p:

In this section, we consider some generalized versions of

(DI) and ð ~DIÞ, and prove weak and strong duality theorems

in which we assume that the individual functions

n ! Uiðn; y; v;wÞ; i 2 p, satisfy appropriate generalized

ðF ; b;/; q; h;mÞ-sounivexity hypotheses. This can be

accomplished by appending an additional system of

inequality constraints to (DI) and ð ~DIÞ.
Consider the following two problems:

(DII) MaximizePp
i¼1 uifiðyÞ þ

P
j2J0

vjGjðyÞ þ
P

k2K0
wkHkðyÞPp

i¼1 uigiðyÞ
subject to

Xp

i¼1

ui

n
Dðy; uÞ

h
rfiðyÞ þ

X

j2J0

vjrGjðyÞ þ
X

k2K0

wkrHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	rgiðyÞ
o
þ
X

j2qnJ0

vjrGjðyÞ

þ
X

k2rnK0

wkrHkðyÞ ¼ 0; ð3:1Þ

D
z;
Xp

i¼1

ui

n
Dðy; uÞ

h
r2fiðyÞ þ

X

j2J0

vjr2GjðyÞ þ
X

k2K0

wkr2HkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	r2giðyÞ
o
þ
X

j2qnJ0

vjr2GjðyÞ

þ
X

k2rnK0

wkr2HkðyÞ
o
z
E
� 0; ð3:2Þ

Dðy; uÞ
h
fiðyÞ þ

X

j2J0

vjGjðyÞ þ
X

k2K0

wkHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	giðyÞ� 0; i 2 p;

ð3:3Þ

X

j2Jt
vjGjðyÞ þ

X

k2Kt

wkHkðyÞ� 0; t 2 M; ð3:4Þ

y 2 X; z 2 CðyÞ; u 2 U; v 2 R
q
þ;w 2 Rr; ð3:5Þ

ð ~DIIÞ MaximizePp
i¼1 uifiðyÞ þ

P
j2J0

vjGjðyÞ þ
P

k2K0
wkHkðyÞPp

i¼1 uigiðyÞ
subject to (3.2)–(3.5) and

F
�
x; y;

Xp

i¼1

ui

n
Dðy; uÞ

h
rfiðyÞ þ

X

j2J0

vjrGjðyÞ þ
X

k2K0

wkrHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	rgiðyÞ
o
þ
X

j2qnJ0

vjrGjðyÞ þ
X

k2rnK0

wkrHkðyÞ
�

� 0 for all x 2 F;

where Fðx; y; �Þ is a sublinear function from Rn to R.

The comments and observations made earlier about the

relationship between (DI) and ð ~DIÞ are, of course, also

valid for (DII) and ð ~DIIÞ.
The following two theorems show that (DII) is a dual

problem for (P).
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Theorem 3.1 (Weak duality) Let x and S � ðy; z; u; v;wÞ
be arbitrary feasible solutions of (P) and (DII), respec-

tively, and assume that any one of the following seven sets

of hypotheses is satisfied:

(a)

(i) For each i 2 Iþ � fi 2 p : ui [ 0g; n !
Uiðn; y; v;wÞ is ðF ; b; �/i; �qi; h;mÞ-pseu-
dosounivex at y; �/i is strictly increasing, and
�/ið0Þ ¼ 0;

(ii) For each t 2 M; n ! Ktðn; v;wÞ is

ðF ; b; ~/t; ~qt; h;mÞ-quasisounivex at y; ~/t is

increasing, and ~/tð0Þ ¼ 0;

(iii)
P

i2Iþ ui �qiðx; yÞ þ
PM

t¼1 ~qtðx; yÞ� 0;

(b)

(i) For each i 2 Iþ; n ! Uiðn; y; v;wÞ is pre-

strictly ðF ; b; �/i; �qi; h;mÞ-quasisounivex at

y; �/i is strictly increasing, and �/ið0Þ ¼ 0;

(ii) For each t 2 m; n ! Ktðn; v;wÞ is strictly

ðF ; b; ~/t; ~qt; h;mÞ-pseudosounivex at y; ~/t is

increasing, and ~/tð0Þ ¼ 0;

(iii)
P

i2Iþ ui �qiðx; yÞ þ
PM

t¼1 ~qtðx; yÞ� 0;

(c)

(i) For each i 2 Iþ; n ! Uiðn; y; v;wÞ is pre-

strictly ðF ; b; �/i; �qi; h;mÞ-quasisounivex at

y; �/i is strictly increasing, and �/ið0Þ ¼ 0;

(ii) For each t 2 M; n ! Ktðn; v;wÞ is

ðF ; b; ~/t; ~qt; h;mÞ-quasisounivex at y; ~/t is

increasing, and ~/tð0Þ ¼ 0;

(iii)
P

i2Iþ ui �qiðx; yÞ þ
PM

t¼1 ~qtðx; yÞ[ 0;

(d)

(i) For each i 2 I1þ; n ! Uiðn; y; v;wÞ is

ðF ; b; �/i; �qi; h;mÞ-pseudosounivex at y , for

each i 2 I2þ; n ! Uiðn; y; v;wÞ is prestrictly

ðF ; b; �/i; �qi; h;mÞ-quasisounivex at y, and for

each i 2 Iþ; �/i is strictly increasing and
�/ið0Þ ¼ 0, where fI1þ; I2þg is a partition of

Iþ;

(ii) For each t 2 M; n ! Ktðn; v;wÞ is strictly

ðF ; b; ~/t; ~qt; h;mÞ-pseudosounivex at y; ~/t is

increasing, and ~/tð0Þ ¼ 0;

(iii)
P

i2Iþ ui �qiðx; yÞ þ
PM

t¼1 ~qtðx; yÞ� 0;

(e)

(i) For each i 2 I1þ 6¼ ;; n ! Uiðn; y; v;wÞ is

ðF ; b; �/i; �qi; h;mÞ-pseudosounivex at y, for

each i 2 I2þ; n ! Uiðn; y; v;wÞ is prestrictly

ðF ; b; �/i; �qi; hÞ-quasisounivex at y, and for

each i 2 Iþ; �/i is strictly increasing and
�/ið0Þ ¼ 0, where fI1þ; I2þg is a partition of

Iþ;

(ii) For each t 2 M; n ! Ktðn; v;wÞ is

ðF ; b; ~/t; ~qt; h;mÞ-quasisounivex at y; ~/t is

increasing, and ~/tð0Þ ¼ 0;

(iii)
P

i2Iþ ui �qiðx; yÞ þ
PM

t¼1 ~qtðx; yÞ� 0;

(f)

(i) For each i 2 Iþ; n ! Uiðn; y; v;wÞ is pre-

strictly ðF ; b; �/i; �qi; hÞ-quasisounivex at y; �/i

is strictly increasing, and �/ið0Þ ¼ 0;

(ii) For each t 2 M1 6¼ ;; n ! Ktðn; v;wÞ is

strictly ðF ; b; ~/t; ~qt; h;mÞ-pseudosounivex at

y, for each t 2 M2; n ! Ktðn; v;wÞ is

ðF ; b; ~/t; ~qt; h;mÞ-quasisounivex at y, and

for each t 2 M; ~/t is increasing and
~/tð0Þ ¼ 0, where fM1;M2g is a partition of

M;

(iii)
P

i2Iþ ui �qiðx; yÞ þ
PM

t¼1 ~qt � 0;

(g)

(i) For each i 2 I1þ; n ! Uiðn; y; v;wÞ is

ðF ; b; �/i; �qi; h;mÞ-pseudosounivex at y, for

each i 2 I2þ; n ! Uiðn; y; v;wÞ is prestrictly

ðF ; b; �/i; �qi; h;mÞ-quasisounivex at y, and for

each i 2 Iþ; �/i is strictly increasing and
�/ið0Þ ¼ 0, where fI1þ; I2þg is a partition of

Iþ;

(ii) For each t 2 M1; n ! Ktðn; v;wÞ is strictly

ðF ; b; ~/t; ~qt; h;mÞ-pseudosounivex at y,for

each t 2 M2; n ! Ktðn; v;wÞ is

ðF ; b; ~/t; ~qt; h;mÞ-quasisounivex at y, and

for t 2 M; ~/t is increasing and ~/tð0Þ ¼ 0,

where fM1;M2g is a partition of M;

(iii)
P

i2Iþ ui �qiðx; yÞ þ
PM

t¼1 ~qtðx; yÞ� 0;

(iv) I1þ 6¼ ;, M1 6¼ ;, or
P

i2Iþ ui �qiðx; yÞþPM
t¼1 ~qtðx; yÞ[ 0.

Then, uðxÞ�wIIðSÞ, where wII is the objective function of

(DII).

Proof (a): Suppose to the contrary that uðxÞ\wIIðSÞ.
This implies that

Dðy; uÞfiðxÞ � ½Nðy; uÞ þ K0ðy; v;wÞ	giðxÞ\0; i 2 p: ð3:6Þ

Keeping in mind that v� 0, we see that for each i 2 Iþ,
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Uiðx; y; v;wÞ ¼ Dðy; uÞ
h
fiðxÞ þ

X

j2J0

vjGjðxÞ þ
X

k2K0

wkHkðxÞ
i

� ½Nðy; uÞ þ K0ðy; u; vÞ	giðxÞ
�Dðy; uÞfiðxÞ � ½Nðy; uÞ þ K0ðy; v;wÞ	giðxÞ

(by the primal feasibility of xÞ
\0 (by (3.6)) �Uiðy; y; v;wÞ (by (3.3)) ;

and so it follows from the properties of �/i that

�/i

�
Uiðx; y; v;wÞ � Uiðy; y; v;wÞ

�
\0;

which in view of (i) implies that

F
�
x; y; bðx; yÞ

n
Dðy; uÞ

h
rfiðyÞ þ

X

j2J0

ujrGjðyÞ þ
X

k2K0

wkrHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; u; vÞ	rgiðxÞ
o�

þ 1

2

D
z;
n
Dðy; uÞ

h
r2fiðyÞ

þ
X

j2J0

vjr2GjðyÞ þ
X

k2K0

wkr2HkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	r2giðxÞ
o
z
E
\� �qiðx; yÞkhðx; yÞkm:

Since u� 0; ui ¼ 0 for each i 2 pnIþ;
Pp

i¼1 ui ¼ 1, and

Fðx; y; �Þ is sublinear, the above inequalities yield

F
�
x; y;bðx; yÞ

nXp

i¼1

ui

n
Dðy; uÞ

h
rfiðyÞ þ

X

j2J0

ujrGjðyÞ þ
X

k2K0

wkrHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; u; vÞ	rgiðxÞ
oo�

þ 1

2

D
z;
nXp

i¼1

ui

n
Dðy; uÞ

h
r2fiðyÞ

þ
X

j2J0

vjr2GjðyÞ þ
X

k2K0

wkr2HkðyÞ
i
� ½Nðy; uÞ þ K0ðy; u; vÞ	r2giðxÞ

o
z
E

\�
X

i2Iþ
ui �qiðx; yÞkhðx; yÞkm:

ð3:7Þ

As seen in the proof of Theorem 2.2, our assumptions in

(ii) lead to

F
�
x; y; bðx; yÞ

XM

t¼1

hX

j2Jt
ujrGjðyÞ þ

X

k2Kt

wkrHkðyÞ
i�

þ 1

2

D
z;
hX

j2Jt
ujr2GjðyÞ þ

X

k2Kt

wkr2HkðyÞ
i
z
E

� �
XM

t¼1

~qtðx; yÞkhðx; yÞkm;

which when combined with (3.6) and (3.7) results in

F
�
x; y;bðx; yÞ

nXp

i¼1

ui

n
Dðy; uÞ

h
rfiðyÞ þ

X

j2J0

ujrGjðyÞ þ
X

k2K0

wkrHkðyÞ
i

� ½Nðy; uÞ þ K0ðy; u; vÞ	rgiðxÞ
oo�

þ 1

2

D
z;
nXp

i¼1

ui

n
Dðy; uÞ

h
r2fiðyÞ

þ
X

j2J0

vjr2GjðyÞ þ
X

k2K0

wkr2HkðyÞ
i

� ½Nðy; uÞ þ K0ðy; v;wÞ	r2giðxÞ
o
z
E
�
XM

t¼1

~qtðx; yÞkhðx; yÞkm:

In view of (iii), this inequality contradicts (3.7). Hence,

uðxÞ�wIIðSÞ. (b)–(g) : The proofs are similar to that of

part (a). h

Theorem 3.2 (Strong duality) Let x� be a normal optimal

solution of (P) and assume that any one of the seven sets of

conditions set forth in Theorem 3.1 is satisfied for all

feasible solutions of (DII). Then, for each z� 2 Cðx�Þ, there
exist u�; v�, and w�, such that ðx�; z�; u�; v�;w�Þ is an

optimal solution of (DII) and uðx�Þ ¼
wIIðx�; z�; u�; v�;w�Þ.

Proof The proof is similar to that of Theorem 2.2. h

The duality models (DII) and ð ~DIIÞ contain numerous

special cases that can easily be identified by appropriate

choices of the partitioning sets.

Duality model III and duality theorems

In this section, we discuss two additional duality models for (P).

In these duality formulations, we utilize a partition of p in

addition to those of q and r. This partitioning scheme, which is

an extended version of the one initially proposed by Mond and

Weir [7], was used by Yang [18] for formulating a generalized

duality model for a multiobjective fractional programming

problem. In our duality theorems, we impose appropriate

generalized ðF ; b; /; q; h;mÞ-sounivexity requirements on

certain combinations of the problem functions.

Let fI0; I1; . . .; I‘g be a partition of p, such that

L ¼ f0; 1; 2; . . .; ‘g � M ¼ f0; 1; . . .;Mg, and let the real-

valued function n ! Ptðn; y; u; v;wÞ be defined, for fixed

u, v, and w, on X by

Ptðn; y; u; v;wÞ ¼
X

i2It
ui½Dðy; uÞfiðxÞ

� Nðy; uÞgiðxÞ	 þ
X

j2Jt
vjGjðxÞ þ

X

k2Kt

wkHkðxÞ; t 2 M:

Consider the following two problems:

(DIII) Maximize

Pp
i¼1 uifiðyÞPp
i¼1 uigiðyÞ

subject to

Xp

i¼1

ui½Dðy; uÞrfiðyÞ � Nðy; uÞrgiðyÞ	 þ
Xq

j¼1

vjrGjðyÞ

þ
Xr

k¼1

wkrHkðyÞ ¼ 0; ð4:1Þ

D
z;
nXp

i¼1

ui½Dðy; uÞr2fiðyÞ � Nðy; uÞr2giðyÞ	

þ
Xq

j¼1

vjr2GjðyÞ þ
Xr

k¼1

wkr2HkðyÞ
o
z
E
� 0; ð4:2Þ

Math Sci (2016) 10:185–199 195

123



X

i2It
ui½Dðy; uÞfiðyÞ � Nðy; uÞgiðyÞ	 þ

X

j2Jt
vjGjðyÞ

þ
X

k2Kt

wkHkðyÞ� 0; t 2 M;
ð4:3Þ

X

j2Jt
vjGjðyÞ þ

X

k2Kt

wkHkðyÞ� 0; t 2 LnM; ð4:4Þ

y 2 X; z 2 CðyÞ; u 2 U; v 2 R
q
þ;w 2 Rr; ð4:5Þ

ð ~DIIIÞ Maximize

Pp
i¼1 uifiðyÞPp
i¼1 uigiðyÞ

subject to (4.2)–(4.5) and

F
�
x; y;

Xp

i¼1

ui½Dðy; uÞrfiðyÞ � Nðy; uÞrgiðyÞ	

þ
Xq

j¼1

vjrGjðyÞ þ
Xr

k¼1

wkrHkðyÞ
�
� 0 for all x 2 F;

where Fðx; y; �Þ is a sublinear function from Rn to R.

The comments and observations made earlier about the

relationship between (DI) and ð ~DIÞ are, of course, also

valid for (DIII) and ð ~DIIIÞ.
The following two theorems show that (DIII) is a dual

problem for (P).

Theorem 4.1 (Weak duality) Let x and S � ðy; z; u; v;wÞ
be arbitrary feasible solutions of (P) and (DIII), respec-

tively, and assume that any one of the following seven sets

of hypotheses is satisfied:

(a)

(i) for each t 2 L; n ! Ptðn; y; u; v;wÞ is strictly

ðF ; b;/t; qt; h;mÞ-pseudosounivex at y, /t is

increasing, and /tð0Þ ¼ 0;

(ii) for each t 2 MnL; n ! Ktðn; v;wÞ is

ðF ; b;/t; qt; h;mÞ-quasisounivex at y, /t is

increasing, and /tð0Þ ¼ 0;

(iii)
P

t2M qtðx; yÞ� 0 for all x 2 F;

(b)

(i) For each t 2 L; n ! Ptðn; y; u; v;wÞ is pre-

strictly ðF ; b;/t; qt; h;mÞ-quasisounivex at y,

/t is increasing, and /tð0Þ ¼ 0;

(ii) For each t 2 MnL; n ! Ktðn; v;wÞ is strictly
ðF ; b;/t; qt; h;mÞ-pseudosounivex at y, /t is

increasing, and /tð0Þ ¼ 0;

(iii)
P

t2M qtðx; yÞ� 0 for all x 2 F;

(c)

(i) For each t 2 L; n ! Ptðn; y; u; v;wÞ is pre-

strictly ðF ; b;/t; qt; h;mÞ-quasisounivex at y,

/t is increasing, and /tð0Þ ¼ 0;

(ii) For each t 2 MnL; n ! Ktðn; v;wÞis
ðF ; b;/t; qt; h;mÞ-quasisounivex at y, /t is

increasing, and /tð0Þ ¼ 0;

(iii)
P

t2M qtðx; yÞ[ 0 for all x 2 F;

(d)

(i) For each t 2 L1; n ! Ptðn; y; u; v;wÞ is

strictly ðF ; b;/t; qt; h;mÞ-pseudosounivex at

y, for each t 2 L2; n ! Ptðn; y; u; v;wÞ is

prestrictly ðF ; b;/t; qt; h;mÞ-quasisounivex
at y, and for each t 2 L;/t is increasing and

/tð0Þ ¼ 0, where fL1;L2g is a partition of L;

(ii) For each t 2 MnL; n ! Ktðn; v;wÞ is strictly
ðF ; b;/t; qt; h;mÞ-pseudosounivex at y, /t is

increasing, and /tð0Þ ¼ 0;

(iii)
P

t2M qtðx; yÞ� 0 for all x 2 F;

(e)

(i) for each t 2 L1 6¼ ;; n ! Ptðn; y; u; v;wÞ is

strictly ðF ; b;/t; qt; h;mÞ-pseudosounivex at

y, for each t 2 L2; n ! Ptðn; y; u; v;wÞ is

prestrictly ðF ; b;/t; qt; h;mÞ-quasisounivex
at y, and for each t 2 L;/t is increasing and

/tð0Þ ¼ 0, where fL1;L2g is a partition of L;

(ii) For each t 2 MnL; n ! Ktðn; v;wÞ is

ðF ; b;/t; qt; h;mÞ-quasisounivex at y, /t is

increasing, and /tð0Þ ¼ 0;

(iii)
P

t2M qtðx; yÞ� 0 for all x 2 F;

(f)

(i) for each t 2 L; n ! Ptðn; y; u; v;wÞ is pre-

strictly ðF ; b;/t; qt; h;mÞ-quasisounivex at y,

/t is increasing, and /tð0Þ ¼ 0;

(ii) for each t 2 ðMnLÞ1 6¼ ;; n ! Ktðn; v;wÞ is

strictly ðF ; b;/t; qt; h;mÞ-pseudosounivex at

y, for each t 2 ðMnLÞ2; n ! Ktðn; v;wÞ is

ðF ; b;/t; qt; h;mÞ-quasisounivex at y, and for

each t 2 L;/t is increasing and /tð0Þ ¼ 0,

where fðMnLÞ1; ðMnLÞ2g is a partition of

MnLÞ;
(iii)

P
t2M qtðx; yÞ� 0 for all x 2 F;

(g)

(i) for each t 2 L1; n ! Ptðn; y; u; v;wÞ is

ðF ; b;/t; qt; h;mÞ-pseudosounivex at y, for

each t 2 L2; n ! Ptðn; y; u; v;wÞ is prestrictly

ðF ; b;/t; qt; h;mÞ-quasisounivex at y, and for

each t 2 L;/t is increasing and /tð0Þ ¼ 0,

where fL1;L2g is a partition of L;

(ii) for each t 2 ðMnLÞ1; n ! Ktðn; v;wÞ is

strictly ðF ; b;/t; qt; h;mÞ-pseudosounivex at

y, for each t 2 ðMnLÞ2; n ! Ktðn; v;wÞ is
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ðF ; b;/t; qt; h;mÞ-quasisounivex at y, and for

each t 2 MnL;/t is increasing and

/tð0Þ ¼ 0, where fðMnLÞ1; ðMnLÞ2g is a

partition of MnL;

(iii)
P

t2M qtðx; yÞ� 0 for all x 2 F;

(iv) L1 6¼ ;; ðMnLÞ1 6¼ ;, or
P

t2M qtðx; yÞ[ 0.

Then, uðxÞ�wIIIðSÞ, where wIII is the objective function

of (DIII).

Proof (a): Suppose to the contrary that uðxÞ\wIIIðSÞ.
This implies that

Dðy; uÞfiðxÞ � Nðy; uÞgiðxÞ\0; ; i 2 p:

Since u� 0 and u 6¼ 0, we see that for each t 2 L,
X

i2It
ui½fiðxÞ � Nðy; uÞgiðxÞ	� 0: ð4:6Þ

Now, using this inequality, we see that

Ptðx;y;u;v;wÞ ¼
X

i2It
ui½Dðy;uÞfiðxÞ�Nðy;uÞgiðxÞ	þ

X

j2Jt
vjGjðxÞ

þ
X

k2Kt

wkHkðxÞ�
X

i2It
ui½Dðy;uÞfiðxÞ�Nðy;uÞgiðxÞ	

(by the primal feasibility of xÞ�0 (by (4.6))

�
X

i2It
ui½Dðy;uÞfiðyÞ�Nðy;uÞgiðyÞ	þ

X

j2Jt
vjGjðyÞ

þ
X

k2Kt

wkHkðyÞ (by (4.3) and the dual feasibility of S)

¼Ptðy;y;u;v;wÞ;

and hence

/t

�
Ptðx; y; u; v;wÞ �Ptðy; y; u; v;wÞ

�
� 0;

which in view of (i) implies that

F
�
x; y; bðx; yÞ

nX

i2It
ui½Dðy; uÞrfiðyÞ � Nðy; uÞrgiðyÞ	 þ

X

j2Jt
vjrGjðyÞ

þ
X

k2Kt

wkrHkðyÞ
o�

þ 1

2

D
z;
nX

i2It
ui½Dðy; uÞr2fiðyÞ � Nðy; uÞr2giðyÞ	

þ
X

j2Jt
vjr2GjðyÞ þ

X

k2Kt

wkr2HkðyÞ
o
z
E
\� qtðx; yÞkhðx; yÞkm:

Summing over t 2 L and using the sublinearity of

Fðx; y; �Þ, we obtain

F
�
x; y;bðx; yÞ

nXp

i¼1

ui½Dðy; uÞrfiðyÞ � Nðy; uÞrgiðyÞ	 þ
X

t2L

hX

j2Jt
vjrGjðyÞ

þ
X

k2Kt

wkrHkðyÞ
io�

þ 1

2

D
z;
nXp

i¼1

ui½Dðy; uÞr2fiðyÞ � Nðy; uÞr2giðyÞ	

þ
X

t2L

hX

j2Jt
vjr2GjðyÞ þ

X

k2Kt

wkr2HkðyÞ
io

z
E
\�

X

t2L
qtðx; yÞkhðx; yÞkm:

ð4:7Þ

Proceeding as in the proof of Theorem 2.2, we get for each

t 2 MnL,

Ktðx; v;wÞ�Ktðy; v;wÞ;

and so

/t

�
Ktðx; v;wÞ � Ktðy; v;wÞ

�
� 0;

which in view of (ii) implies that

F
�
x; y; bðx; yÞ

hX

j2Jt
vjrGjðyÞ þ

X

k2Kt

wkrHkðyÞ
i�

þ 1

2

D
z;
hX

j2Jt
vjr2GjðyÞ

þ
X

k2Kt

wkr2HkðyÞ
i
z
E
� � qtðx; yÞkhðx; yÞkm:

Summing over t 2 MnL and using the sublinearity of

Fðx; y; �Þ, we get

F
�
x; y; bðx; yÞ

X

t2MnL

hX

j2Jt
vjrGjðyÞ þ

X

k2Kt

wkrHkðyÞ
i�

þ 1

2

D
z;
X

t2MnL

hX

j2Jt
vjr2GjðyÞ þ

X

k2Kt

wkr2HkðyÞ
i
z
E

\�
X

t2MnL
qtðx; yÞkhðx; yÞkm: ð4:8Þ

Now, combining (4.7) and (4.8) and using (iii), we obtain

F
�
x; y; bðx; yÞ

nXp

i¼1

ui½Dðy; uÞrfiðyÞ � Nðy; uÞrgiðyÞ	 þ
Xq

j¼1

vjrGjðyÞ

þ
Xr

k¼1

wkrHkðyÞ
o�

þ 1

2

D
z;
nXp

i¼1

ui½Dðy; uÞr2fiðyÞ � Nðy; uÞr2giðyÞ	

þ
Xq

j¼1

vjr2GjðyÞ þ
Xr

k¼1

wkr2HkðyÞ
o
z
E

\�
X

t2M
qtðx; yÞkhðx; yÞkm � 0:

ð4:9Þ

Now, multiplying (4.1) by b, applying the sublinear func-

tion Fðx; y; �Þ to both sides of the resulting equation, and

then adding the equation to (4.2), we get

F
�
x; y; bðx; yÞ

nXp

i¼1

ui½Dðy; uÞrfiðyÞ � Nðy; uÞrgiðyÞ	 þ
Xq

j¼1

vjrGjðyÞ

þ
Xr

k¼1

wkrHkðyÞ
o�

þ 1

2

D
z;
nXp

i¼1

ui½Dðy; uÞr2fiðyÞ � Nðy; uÞr2giðyÞ	

þ
Xq

j¼1

vjr2GjðyÞ þ
Xr

k¼1

wkr2HkðyÞ
o
z
E
� 0;

which contradicts (4.9). Therefore, we conclude that

uðxÞ�wIIIðSÞ. (b)–(g): The proofs are similar to that of

part (a). h

Theorem 4.2 (Strong Duality) Let x� be a normal opti-

mal solution of (P) and assume that any one of the seven

sets of conditions set forth in Theorem 4.1 is satisfied for all

feasible solutions of (DIII). Then, for each z� 2 Cðx�Þ,
there exist u�; v�;w�, and k�, such that ðx�; z�; u�; v�Þ is an

optimal solution of (DIII) and uðx�Þ ¼ wIIIðx�; z�; u�; v�Þ.

Proof The proof is similar to that of Theorem 2.2. h
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The generalized duality models (DIII) and ð ~DIIIÞ sub-

sume a great variety of special cases which can be identified

explicitly by appropriate choices of the partitioning sets

fI0; I1; . . .; I‘g; fJ0; J1; . . .; JMg, and fK0;K1; . . .;KMg.

Concluding remarks

Remark 5.1 Using a direct nonparametric approach, in

this paper, we have formulated six generalized second-

order parameter-free duality models for a discrete

minmax fractional programming problem and estab-

lished numerous duality results using a variety of

generalized ðF ; b;/; q; h;mÞ-sounivexity assumptions.

Each one of the six duality models considered in this

paper is, in fact, a family of dual problems whose

members can easily be identified by appropriate choices

of certain sets and functions. The generalized duality

models and the related duality theorems collectively

provide a vast number of new second-order dual

problems and duality theorems for the principal min-

max problem (P) and its special cases designated as

ðP1Þ � ðP3Þ in Sect. 2. Furthermore, the style of pre-

sentation adopted in this paper as well as the main

results derived here will prove useful in investigating

other related classes of nonlinear programming prob-

lems and utilizing similar generalized convexity con-

cepts. For example, employing similar techniques, one

can investigate the second-order sufficient optimality

and duality aspects of the following ’semiinfinite’

minmax fractional programming problem:

Minimize max
1� i� p

fiðxÞ
giðxÞ

subject to

Gjðx; tÞ� 0 for all t 2 Tj; j 2 q;Hkðx; sÞ ¼ 0 for

all s 2 Sk; k 2 rx 2 X;

where X; fi, and gi; i 2 p, are as defined in the description of

(P), for each j 2 q and k 2 r; Tj and Sk are compact subsets

of complete metric spaces, for each j 2 q; n ! Gjðn; tÞ is a

real-valued function defined on X for all t 2 Tj, for each

k 2 r; n ! Hkðn; sÞ is a real-valued function defined on

X for all s 2 Sk, for each j 2 q and k 2 r; t ! Gjðx; tÞ and

s ! Hkðx; sÞ are continuous real-valued functions defined,

respectively, on Tj and Sk for all x 2 X.

Remark 5.2 The generalized parametric duality model

results, established in this paper applying generalized

ðF ; b;/; q; h;mÞ-sounivexity assumptions, can be gener-

alized to the case of the generalized ðF ; b;/; hðx�; zÞ;
jðx�; zÞ; q; h;mÞ-sounivexity.

Definition 5.1 The function f is said to be (strictly)

ðF ; b;/; hðx�; zÞ; jðx�; zÞ; q; h;mÞ-sounivex at x� of higher

order if there exist functions b : X � X ! Rþnf0g �
ð0;1Þ; / : R ! R; q : X � X ! R; h : X � X ! Rn, and

a sublinear function Fðx; x�; �Þ : Rn ! R, such that for

each x 2 Xðx 6¼ x�Þ and z 2 Rn,

/
�
f ðxÞ � f ðx�Þ

�
ð[ Þ�F

�
x; x�; bðx; x�Þ½rz jðx�; zÞ	

�

þ hz;rz hðx�; zÞi � hðx�; zÞ
þ qðx; x�Þkhðx; x�Þkm;

where h; j : Rn � Rn ! Rn are differentiable.
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