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Abstract The lower semicontinuity of the (weak) effi-

cient solution mappings for parametric vector equilibrium

problems under more weaker assumptions is established.

Some examples are developed to illustrate our results are

real generalization different from recent ones in the liter-

ature and to describe the essential conditions of the latest

results in the references are not real essential.
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Introduction

Several classes of problems, including the vector varia-

tional inequality problem, the vector complementarity

problem, the vector optimization problem and the vector

saddle point problem, have been unified as a model of the

vector equilibrium problem, which has been intensively

studied in the literature (see [1–16]). One of the important

topics in optimization theory is the stability analysis of the

solution mappings for vector equilibrium problems. Sta-

bility may be understood as some types of lower or upper

semicontinuity. Recently, the semicontinuity, especially

the lower semicontinuity, of the solution mappings for

parametric vector equilibrium problems has been inten-

sively studied in various directions (see [1, 2, 4, 6, 10, 15]

and references therein).

Anh and Khanh first obtained the semicontinuity of the

solution mappings of parametric multivalued vector quasi-

equilibrium problems (see [1]), and then obtained verifiable

sufficient conditions for solution sets of general quasi-

variational inclusion problems to have these semicontinu-

ity-related properties and discussed in detail a traffic

network problem as a sample for employing the main

results in practical situations (see [2]), and latter estab-

lished sufficient conditions for lower and Hausdorff lower

semicontinuity, upper semicontinuity, and continuity of

solution mappings of parametric quasi-equilibrium prob-

lems in topological vector spaces (see [3]).

Gong and Yao, by virtue of a density result and a scalar-

ization technique, first discussed the lower semicontinuity of

the set of efficient solutions to parametric vector equilibrium

problems with monotone bifunctions (see [4]), and studied

the continuity of the solution mapping to parametric weak

vector equilibrium problems (see [5]), recently, established

the lower semicontinuity of solutions to the parametric
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generalized strong vector equilibrium problem without the

assumptions of monotonicity of the objective mapping and

compactness of the constraintmapping (see [6]). Huang et al.

used local existence results to establish the lower semicon-

tinuity of solution mappings for parametric implicit vector

equilibrium problems (see [7]). By using a new proof which

is different from the ones of [4, 5], Chen et al. established the

lower semicontinuity and continuity of the solution map-

pings to a parametric generalized vector equilibrium prob-

lem (see [9]). Li and Fang investigated the lower

semicontinuity of the solutions mapping to parametric gen-

eralized Ky Fan inequality under a weaker assumption than

C-strict monotonicity (see [10]). Recently, by using an idea

of [4], Li et al. established the continuity of solution map-

pings to a parametric generalized strong vector equilibrium

problem for set-valuedmappings under an assumptionwhich

is different from theC-strictmonotonicity (see [11]). Kimura

and Yao discussed the semicontinuity of solution mappings

of parametric vector quasi-equilibrium problems (see [13]).

Cheng and Zhu obtained a lower semicontinuity result of the

solution mapping to weak vector variational inequalities in

finite-dimensional spaces by using the scalarization method

(see [14]).

Zhang et al. obtained the lower semicontinuity of solu-

tion mappings for parametric vector equilibrium problems

under the Höder-related assumptions [15]. Wangkeeree

et al. extended the results in [15] to the case of set-valued

mappings on parametric strong vector equilibrium prob-

lems (see [16]).

However, all these results arewith respect to the fixed order

relationship in the object space, that is, the cone partial order is

not perturbed by the parameters. Motivated by the idea of

variational domination structure, the main results in [15] will

be obtained under more weaker conditions in this paper.

The organization of this work is as follows. In Sect. 2, we

introduce the efficient solutions to parametric vector equi-

librium problems with the cone partial order being perturbed

by the parameters and recall some basic notions. In Sect. 3,

we discuss the lower semicontinuity of the (weak) efficient

solution mappings for parametric vector equilibrium prob-

lems in the case of weakly conditions. Some examples are

given to illustrate that the assumptions of the main results in

our work or in [15] are only sufficient for some special

problems and indicate also that our outcomes are real

extension from the corresponding ones in [15].

Preliminaries

Let X and Z be two metric spaces, and let Y be a metric

vector space and C be a pointed closed convex cone in

Y with nonempty interior intC; the zero element in Y is

denoted by h. Let A be a nonempty subset of X and F be a

vector-valued mapping from A 9 A into Y. A vector

equilibrium problem, in short (VEP), is described as:

Find x 2 A such that Fðx; yÞ 62 �Cnfhg, for all y 2 A

A point x 2 A is said to be an efficient solution to (VEP)

if

Fðx; yÞ 62 �Cnfhg; for all y 2 A

When the subset A of X and the function F are perturbed

by the parameter k 2 K, where K , Z, a parametric vector

equilibrium problem, in short (PVEP), is a problem as

following:

Find x 2 A kð Þ such that Fðx; y; kÞ 62 �Cnfhg; for all y

2 A kð Þ

where A : K ! 2Xnf/g is a set-valued mapping, and

F:B 9 B 9 K , X 9 X 9 Z ? Y is a vector-valued

mapping with A(K) = [ k2K A(k) , B.

A point x 2 A(k) is said to be an efficient solution to

(PVEP) if

Fðx; y; kÞ 62 �Cnfhg; for all y 2 A kð Þ

In this work, we consider (PVEP) with cone C being

also perturbed by parameter k 2 K, described as follows:

Find x 2 A kð Þ such that Fðx; y; kÞ
62 �CðkÞnfhg; for all y 2 A kð Þ

where, for each k 2 K, C(k) is a pointed closed convex

cone in Y with nonempty interior, that is to say, C:K ? 2Y

is a cone-valued mapping. In this case, we call the (PVEP)

as parametric vector order-perturbed equilibrium problem,

in short (PVOPEP).

A point x 2 A(k) is called an efficient solution to

(PVOPEP) if

Fðx; y; kÞ 62 �CðkÞnfhg; for all y 2 A kð Þ

The set of efficient solutions to (PVOPEP) is denoted by

S(k), i.e.,

SðkÞ :¼ fx 2 AðkÞjFðx; y; kÞ 62 �CðkÞnfhg; 8y 2 AðkÞg

It is easy to see that S is a set-valued mapping

S:K ? 2X. Throughout this work, we always assume that

S(k) = /; for all k 2 K. Next, we recall some basic defi-

nitions and their properties which will be needed in the

following.

BX(k, d) denotes the open ball with center k and radius

d[ 0 in ametric spaceX,dX(�, �) denotes the distance inX, and
the distance from x to the set A , X is denoted by dX(x, A).

Definition 2.1 ([17]) A set-valued mapping S: K ? 2X is

said to be

1. lower semicontinuous (l.s.c.) at k0 2 K if for any open

set V satisfying V \ S(k0) = /, there exists d[ 0

such that for every k 2 BK(k0, d),V \ S(k) = /;
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2. upper semicontinuous (u.s.c.) at k0 2 K if for any open

set V satisfying S(k0) , V, there exists d[ 0 such that

for every k 2 BK(k0, d),S(k) , V;

3. l.s.c.(resp.,u.s.c.) on K if it is l.s.c.(resp.,u.s.c.) at each

k 2 K;
4. continuous on K if it is both l.s.c. and u.s.c. on K.

Proposition 2.1 ([18, 19])

1. S:K ? 2X is l.s.c. at k0 2 K if and only if for any

sequence {kn} , K with kn ? k0 and any x0 2 S(k0),
there exists xn 2 S(kn) such that xn ? x0.

2. If S has compact values (i.e., S(k) is a compact set for

each k 2 K), then S is u.s.c. at k0 2 K if and only if for

any sequence {kn} , K with kn ? k0 and for any

xn 2 S(kn), there exist x0 2 S(k0) and a subsequence

fxnkg of {xn} such that xnk ! x0.

Definition 2.2 A vector-valued mapping f: X ? Y is

called cone lower semicontinuity (c.l.s.c.) at x0 2 X if for

each open set V of f(x0), there exists a neighborhood U of

x0, such that f(x) , V ? C, for all x 2 U, where C , Y is a

cone.

Definition 2.3 Let K be a topology space, Y be a topology

vector space, and C:K ? 2Y be a cone-valued mapping, if

for every k 2 K, C(k) is a closed convex pointed cone in

Y. The closed unit ball with center h in Y is denoted by

BY(h). We call the cone-valued mapping C is an upper

semicontinuous cone-valued mapping, if for each k 2 K
and each open set Uin Y with U . C(k) \ BY(h), there
exists an open set V of k such that U . C(k

0
) \ BY(h) for

every k
0 2 V.

The main results

In this section, we present the lower semicontinuity of the

solution mapping to (PVOPEP).

Theorem 3.1. Suppose that the following conditions are

satisfied:

� A(�) is continuous with compact values on K.
` F(�, �, �) is c.l.s.c. on B 9 B 9 K.
´ C(�) is an upper semicontinuous cone-valued map-

ping on K.
ˆ If AðkÞnSðkÞ 6¼ / for each k 2 K, then for each

k 2 K,for each x 2 AðkÞnSðkÞ, there exist y 2 S(k)
and a positive function M:K ? (0, ? ?) which is

upper semicontinuous on K, such that

dXðx; yÞ�MðkÞ � dYðFðx; y; kÞ; Yn � intCðkÞÞ

Then, S(�) is l.s.c. on K.

Proof Suppose to the contrary that there exists k0 2 K
such that S(�)is not l.s.c. at k0. Then, there exists a sequence
{kn} , K with kn ? k0 and x0 2 S(k0) with some open set

V1 of x0, such that for any xn
0 2 S(kn), xn

0 62 V1.

From x0 2 S(k0), we have x0 2 A(k0) and

Fðx0; y; k0Þ 62 �Cðk0Þnfhg; 8y 2 Aðk0Þ ð1Þ

Since A(�) is l.s.c. at k0, there exists a sequence {xn} , -

A(kn) such that xn 2 V1. Then, for the above open set V1,

there exists a positive integer N; such that xn 2 V1, for all

n C N. Obviously, we have xn 2 AðknÞnSðknÞ for all

n C N. For the sake of convenience, we consider n as still

from one to infinity. By ˆ, for each xn 2 AðknÞnSðknÞ,
there exist yn 2 S(kn) and a positive function M:K ? (0, ?

?) which is upper semicontinuous on K, such that

dXðxn; ynÞ�MðknÞ � dYðFðxn; yn; knÞ; Yn � intCðknÞÞ ð2Þ

Since yn 2 A(kn), it follows from the upper semicontinuity

and compactness of A(�) at k0 that there exist y0 2 A(k0)
and a subsequence fynig of {yn} such that yni ! y0. In

particular, from (2), we have

dXðxni ; yniÞ�MðkniÞ � dYðFðxni ; yni ; kniÞ; Yn � intCðkniÞÞ
ð3Þ

Since the distance function d(�, �) is continuous, F(�, �, �) is
c.l.s.c., M(�) is u.s.c., and C(�) is an upper semicontinuous

cone-valued mapping, then let i ? ? ? on both sides of

(3), we have

dXðx0; y0Þ�Mðk0Þ � dYðFðx0; y0; k0Þ; Yn � intCðk0ÞÞ ð4Þ

If x0 = y0, by (4), we can obtain

Mðk0Þ � dYðFðx0; y0; k0Þ; Yn � intCðk0ÞÞ� dXðx0; y0Þ[ 0

From M(k0)[ 0, we have

dYðFðx0; y0; k0Þ; Yn � intCðk0ÞÞ[ 0

Thus, we have

Fðx0; y0; k0Þ 2 �intCðk0ÞÞ

which contradicts (1) as we see by taking y = y0. Therefore

x0 = y0. This is impossible by the contradiction assump-

tion. Thus, the proof is complete. h

Remark 3.1 The following examples indicate that the

assumption ˆ in Theorem 3.1 in our work (or the

assumption (iii) of Theorem 3.1 in [15]) cannot be applied

to the case when AðkÞnSðkÞ ¼ /, for some k 2 K. So the

assumption ˆ of Theorem 3.1 in our paper (or the

assumption (iii) of Theorem 3.1 in [15])is not essential.

Example 3.1 Let X = Z = R,K1 ¼ ½1
4
; 2
3
�, K2 = [2, 3],

A(k) = B = [0, 1], Y = R2, C(k) = R?
2 and
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F(x, y, k) = (k(y - x), k(y - x)). It follows from a direct

computation that

S1 kð Þ ¼ 0f g; 8k 2 K1 and S2 kð Þ ¼ 0f g; 8k 2 K2

For each k 2 K1 [ K2, for every x 2 AðkÞnSðkÞ ¼ ð0; 1�,
taking y = 0 2 S(k); we have

dX x; yð Þ ¼ x and dYðFðx; y; kÞ; Yn � intCðkÞÞ ¼ kx

Obviously,

dXðx; yÞ� dYðFðx; y; kÞ; Yn � intCðkÞÞ;8k 2 K1

dXðx; yÞ� dYðFðx; y; kÞ; Yn � intCðkÞÞ;8k 2 K2

From above two inequalities, it easy to see that the

assumption (iii) in Theorem 3.1. in [15] is violated when

k 2 K1. However, S1(�) and S2(�) are all continuous on K1

and K2, respectively. If we take M: K1 ? (0, ? ?),

defined by MðkÞ ¼ 4; 8k 2 K1 ¼ 1
4
; 2
3

� �
, then

dXðx; yÞ�MðkÞ � dYðFðx; y; kÞ; Yn � intCðkÞÞ; 8k 2 K1

Thus, the example 3.1 satisfies all the assumptions of

Theorem 3.1. in our work, and then, it is obtained that S(�)
is l.s.c. on K.Consequently, Theorem 3.1. in our work is

real extension from Theorem 3.1. in [15]. h

Example 3.2 Let X = Y = R, C(k) = R?, K = (0, 1],

A(k) = B = [k2, 1 ? k] and F(x, y, k) = k(y - x). It fol-

lows from a direct computation that S(k) = {k2}, Vk 2 K.
And it is easy to check that S(�) is continuous on K. For any
k 2 (0, 1], for each x 2 AðkÞnSðkÞ ¼ ðk2; 1þ k�, taking the

unique element y = k2 2 S(k), we have

x� k2 ¼ dXðx; yÞ� dYðFðx; y; kÞ; Yn � intCðkÞÞ
¼ kðx� k2Þ

Obviously, the assumption (iii) of Theorem 3.1. in [15] is

violated, but if taking M: K ? (0, ? ?) as following:

MðkÞ ¼ a
k ; 8k 2 K where a is a constant number and

a C 1.

Thus, the example 3.2 satisfies all the assumptions of

Theorem 3.1. in our work, and it follows from Theo-

rem 3.1. in our work that S(�) is l.s.c. on K. But the The-

orem 3.1. in [15] is invalid.

Example 3.3 Let X = Y = Z = R, C(k) = R?, K = [0,

1], A(k) = B = [1 - k2, 1 ? k2] and F(x, y, k) = x(1 ?

k - y).

It follows from a direct computation that

S(k) = [1 - k2, 1 ? k2] = A(k). For any k 2 [0, 1],

AðkÞnSðkÞ ¼ /. Obviously, we cannot take any

x 2 AðkÞnSðkÞ. So the condition (iii) of Theorem 3.1 in

[15] (or the assumption ˆ in Theorem 3.1 in our work)

cannot be applied. But it is easy to check that S(�) is con-
tinuous on K.

Our approach can also be applied to study the lower

semicontinuity of the weak solution mappings. A point

x 2 A(k) is called a weak efficient solution to (PVOPEP) if

Fðx; y; kÞ 62 �intCðkÞ; 8y 2 AðkÞ

The set of weak efficient solutions to (PVOPEP) is

denoted by SW(k), i.e.,

SWðkÞ :¼ fx 2 AðkÞjFðx; y; kÞ 62 �intCðkÞ; 8y 2 AðkÞg

We can also obtain the following theorem on the lower

semicontinuity of the weak efficient solution map to

(PVOPEP) with a trivial adaptation of the proof.

Theorem 3.2 Suppose that the following conditions are

satisfied:

� A(�) is continuous with compact values on K.
` F(�, �, �) is c.l.s.c. on B 9 B 9 K.
´ C(�) is an upper semicontinuous cone-valued map-

ping on K.
ˆ If AðkÞnSWðkÞ 6¼ /; for each k 2 K, then for each

k 2 K,for each x 2 AðkÞnSWðkÞ, there exist y 2 SW(-

k) and a positive functionM:K ? (0, ? ?) which is

upper semicontinuous on K, such that

dXðx; yÞ�MðkÞ � dYðFðx; y; kÞ; Yn � intCðkÞÞ

Then, SW(�) is l.s.c. on K.
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