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Abstract In this paper, new periodic fractional trigono-
metric functions with the period 2n, are presented. We
have generalized the Floquet system to the fractional Flo-
quet system. The fractional derivatives are described with
the use of modified Riemann-Liouville derivative. More-
over, the stability analysis of fractional Floquet system is
introduced.

Keywords Floquet system - Stability - Fractional
derivative - Modified Riemann-Liouville

Introduction

The study of systems governed by ordinary differential
equation with period coefficients is of basic importance in
many branches such as mathematics, physics, chemistry,
biology, mechanics and finance, such systems are known as
Floquet systems [1, 2]. The Floquet systems are defined
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with the n x n matrix function A as x’ = A(¢)x, where the
components in matrix A are continuous and periodic
function with smallest positive period w, that is, A(r+
w) = A(¢) for all #s. Although the coefficient matrix in ' =
A(t)x is periodic, in general solutions they are not con-
sidered as periodic. The idea of Floquet systems has been
stated by Gaston Floquet in the early 1880s, and later he
established his celebrated theorem on the structure of
solutions of periodic differential equations [3]. In this
paper, we first focus our attention on fractional Floquet
system, and then we consider the stability analysis for this
class system.

The fractional order calculus establishes the branch
of mathematics dealing with differentiation and inte-
gration under an arbitrary order of the operation, that is
the order can be any real or even complex number, not
only the integer one. Although the history of fractional
calculus is more than three centuries old, it only has
received much attention and interest in the past 20
years; the reader may refer to [4-6] for the theory and
applications of fractional calculus. The generalization of
dynamical equations using fractional derivatives proved
to be useful and more accurate in mathematical mod-
eling related to many interdisciplinary areas. Applica-
tions of fractional order differential equations include:
electrochemistry [7], porous media [8] and so on [9-—
11]. It is worth noting that recently much attention has
been paid to the distributed-order differential equations
and their applications in engineering fields that both
integer-order systems and fractional order systems are
special cases of distributed-order systems. The reader
may refer to [12-14]. The analytic results on the
existence and uniqueness of solutions to the fractional
differential equations have been investigated by many
authors [5, 6].
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Preliminaries and notations
Basic definitions

We give some basic definitions and properties of the
fractional calculus theory used in this work.

Definition 1 Letf : R — R, 7 — f(¢) denote a continuous
(but not necessarily differentiable) function and let parti-
tion 2 > 0 in the interval [0, 1]. The Jumarie’Derivative is
defined through the fractional difference [15]:

NP = (FW - 170 =S (-1 —, (1

70 = W = 1770) = Y0 ()i G-, (1)
where FW f(#) = f(¢ + h). Then the fractional derivative is
defined as the following limit
f(ot)(t) — fo(l‘) _ d’f (1) — lim A'[f(t) = £(0)] . (2)

dr* h—0 h

This definition is close to the standard definition of
derivatives, and as a direct result, the ath derivative of a
constant 0 < o < 1 is zero.

Definition 2 The Riemann-Liouville fractional integral
operator of order o« > 0 is defined as [16]:

(1) = ﬁ /0 = Fe)de, x> 0. (3)

Definition 3 The modified Riemann-Liouville derivative
is defined as [16]:

D= (r0) =y | =900~ )

0<a<l, (4)

and

n)

Dif(0) = (1) ",

n<oa<n+1, n>1.

The proposed modified Riemann—Liouville derivative as
shown in Eq. (4) is strictly equivalent to Eq. (2).

Definition 4 Fractional derivative of compounded func-
tions is defined as [16]:

df ~T(1+a)df, O<a<l. (5)
Definition 5 The integral with respect to (df)” is defined
as the solution of fractional differential equation [17]:

dy = £(1) (A1)’ ¥0)=0,  0<a<l. (6)

Lemma 1 Let f(r) denotes a continuous function then the
solution of the Eq. (6) is defined as [17]:

120,
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—Tﬁﬁy':ot[fpaflas o
y—/ofu(d.) /0(’ ) fe)de, O<a<l (7)

Definition 6 Function f(¢) is ath differentiable then the
following equalities holds:

FO(0) = 1im Y0

=0 h

A1)

h*

:l“(l—i—oc)}lim O<a<l.

—

(3)

Mittag-Leffler function

The Mittag-Leffler function which plays a very important
role in the fractional differential equations was in fact
introduced by Mittag-Leffler in 1903 [18]. The Mittag-
Leffler function E,(¢) is defined by the power series:

0 e
ED’ = T/ 1\ i
(1) ;F(nu—i— 1) “>0 ©)
which
D*E,(i") = JE, ("), (10)

As further result of the above formula

E,Of)E,(M(£5)") ~ E,(Mt £5)"),  ieC.  (11)

The matrix extension of the mentioned Mittag-Liffler
function for A € M,, is defined as in the following
representation:

> Altgon
B =Y A
n=0

0.
[(no+1)° »=

(12)
If A,B € R™" and o > 0, then it is easy to prove the fol-
lowing nice properties of Mittag-Leffler matrix E,(At*):

() E,'(Ar*) =~ E,(—Ar),
@) If P is a non-singular
E,(P7'AP) = P'E,(A)P,
(i) E,((A + B)1*) ~ E,(A*)E,(Br*) if and only if
AB = BA,
(v)  E;'(Ar) ~ E,(A(—-1)%).

matrix, then

Corollary 1 [19] If the matrix A is diagonalizable, that
is, there exists an invertible matrix T such that

A = T'AT = diag (1,22, . ., /),

then, we have

E,(At*) = T E,(A)T™" = T diag(E,(\1"),
E,(Jot*), ..., Ey(Jn )T

Next, suppose the matrix A is similar to a Jordan canonical
form, that is there exists an invertible matrix 7 such that
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J =T7'AT = diag(J,,J»,. .., J,),

where j;, | < i < r has the following form

i 10 07
0 4 1
0 0| -
0o . Ji1
L0 0 0 Zipm

and Y, n; = n. Obviously,
E,(At") = Tdiag(E,(J1t"), E,(Jot*), .. ., E,(J,t*))T ",

and

Ik
0
oS I & ()
E,(Jit*) = =
(it") ,g)l“(ockJrl) ;F(akle)
0
i (t“)k k = (tx)k Cl)nlf_
ST (ak+ 1) ST (ak 4 1) ¥
(o
)\1'
0 k;)l“(ock—f— 1
0
o a 7 .4%
E,(Zt") FaEa(ﬂit )
0 Em(ii[a)
0 0

where C,{, 1<j<m —1,1<i<r are the binomial
coefficients.

Fractional trigonometric functions and Mittag-
Leffler logarithm function

The idea of the fractional trigonometric functions has been
stated by Jumarie [20] asserting that these functions are not
periodic. Now, we introduce new fractional trigonometric
functions which are periodic with the period 2m, ~ 2.
Analogous with the trigonometric function, we can write

E,((it)") = cos,(t*) + i sin, ("), (13)
and
E,((—it)") = cos,(t*) — isin,(1*), (14)

k—1 ni—1 1k—n;+1
Ci/ cptam
Ik
cy k!
0 *
1 e (t“)k ni—1 5 k=ni+1
Sk +1) 7%
& (fa)k 15k—1
C A
gomﬂ 1) k7
ank
0 i () )k
k=0 F(O(k =+ 1) '

10 )
ﬂai;biEog()vit )

Ea(},il“)
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Fig. 1 Plot of sin,(s*) with respect to ¢ for « = 1, 0.95, 0.9

with
COSa(l‘x) — E ((lt)a) +2E1((—il)1)’ and
E,((i1)") — Ex((=it)")

sin, (%) =

2i

These fractional functions have the period 2n, ~ 2n. Fig-
ure 1 shows sin, (1*) for « = 1, 0.95, 0.9 which is periodic
with the period 2n, ~ 2.

Some properties of the fractional trigonometric func-
tions are presented as follows:

sin? 0" + cos2 0" ~ 1,
sin, (—1)* = — sin, (1*),
o8, (—1)" = cos,(1*),
D*(siny (%)) = 0*(i)* " cos,(w*1*),
D*(cos,(w*1*)) = (i)™ sin, (™).
The fractional functions sin,(w*#*) and cos,(w**) both

are periodic functions with the period (27, /).
In addition Eq. (11) provides the equalities

(15)
(16)

o8, (1 + )" A2 co8y(1*) cosy(s*) — sin, (1) siny(s”),
sin, (1 + 5)” &2 cos, (*) siny (s*) + cos,(s*) sin,(1*).

There are similar formulas like for cos,(f — s)*and
sin, (t — 5)".

Substituting 0 for both ¢ and s in the addition formulas
gives

cos, 20" = cos? 0" — sin? 0,

Additional formulas come from combining the equations

Y4
ﬁ @ Springer

sin,20” ~ 2 sin, 0" cos, 0*.

s 2 o 2 n% o~ 2 0% in2 %
sin; 0" + cos; 0" =~ 1, cos, 20" ~ cos; 0" — sin; 0%,

we add the two equations to get cos, 20" ~ 2 cos? 0 — 1
and subtract the second from the first to get
c0s, 20" ~ 1 — 25sin2 0"

Definition 7 Ln,t denotes the inverse function of the
E,(t), referred to as Mittag-Leffler logarithm, clearly
E,(Ln,t) =t and the Mittag-Leffler logarithm function is
defined as [20]:

td“i_ 1 t@
0 Cf_(l_“)!/o &

= L, (1). (17)

Fractional linear system and its stability analysis

Here, we will consider the following linear fractional dif-
ferential system with modified Riemann—Liouville frac-
tional derivative

D?x = Ax, (18)
with initial value x(0) = xo = (x10,X20, - - .,x,w)T, where
x=(x1,%2,..,%,)", «€(0,1] and A € R™". By imple-
mentation of the Laplace transform on the above system
and using the initial condition, the general solution can be
written as

x = xoE,(Ar%). (19)

The stability of the equilibrium of system (18) was first
defined and established by Matignon as follows [21].

Definition 8 The linear fractional differential system (18)
is said to be

(i) stable if for any initial value xy, there exists a ¢ > 0
such that for all t > 0,

(i) asymptotically stable if at first it is stable and
limy o ||x(#*)]| = 0.

Theorem 1 The linear fractional differential system (18)
is asymptotically stable if all the eigenvalues of A satisfy
on

|arg(4(A))] > —-.

. (20)

We can very easily prove Theorem 1 analogously using
Proposition 3.1 in [21].

Now, we state the following important existence—unique-
ness theorem for solutions of initial value problems (21).

Theorem 2 ([22]) Let O0<oa<1, (0,b) CR, U be an
open connected set in R, A=(0,b)x U and

(lo,)Co) c A If
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an(r*)  an(r”) an(t”) where a, (1*), (i,j=1,2,...,n) are given continuous
an(t*) axn(t*) az (1) periodic functions with smallest positive periodic w, on an

o
Ar") = : : and interval L.
) ) ) This system can be transformed to a vector—matrix form
an (t*)  an(t*) ann (1) as
o
bi(r) D x = Ay(F)x, (26)
B(t*) =
() : ’ where
b, (t*
n( ) X D¥ x,

are continuous matrices in [0, b, then equation = , Dix= ’

Dix = A(t")x + B(1"), (21) X, D*x,

has a unique solution x(¢*), continuous in (0, b], such that and

x(15) = xo.

aln (t) alzl (ﬁ) aﬂfm (ﬁ)
oy, (1) Gy, (1) Ao, (%)

Fractional Floquet system A1) = ;

In this Section, we will consider fractional order linear Ay (1) g, (1) a,,, (1)

periodic differential equations involving modified Rie-
mann-Liouville derivative that can be written in the form

Df x(1) = fu(r)x(1"), (22)

where we assume that f, : (a¢,b) — R is continuous peri-
odic function with smallest positive periodic w,, that is,

La((t4wy)") = fu(1).
Also, the solution of Eq. (22) obtained with respect to
the Mittag-Leffler function is as

)~ ([ ety (23)

where C is a constant.

Example 1 Consider the fractional order linear periodic
differential equation

D x(r) = sin, ()x(t*). (24)

Thus, by (23), x(1*) ~ C E,(zrc0s,(1*)), where for t € R
is a general solution on R for (24).

Definition 9 We say x is a solution of (22) on an interval
L C (0,b) if x is a continuously ath differentiable function
on L and for ¢ € L, x satisfies (22).

In the rest of this section, we will generalize linear
periodic systems to fractional periodic systems involving
modified Riemann—Liouville derivative form
Df‘xl = Aoy, (tx)xl + Aoy (t“)x2 +oee a“]n(ﬂ)xﬂ’

D?{ X2 = oy, (t“)xl + Ay, (t“)XZ Tt Ay, (ta)xm
(25)

D xy = Ay, (1*)X1 + @y, (£*)x2 + - + a5, (%)X,

where the components in matrix A, are continuous and
periodic functions with smallest positive period w,, (saying
Au((t+wy)%) = Ay(t%).

Consider the matrix fractional differential equation

Df X = Am(t“)X, (27)
where
X111 X12 X1n
X211 X22 X2n
X = , and
Xnl  Xn2 oo Xmn
D?‘xl 1 Df‘xn Df‘xln
D?le D?(XZZ D?‘xzn
o .
DX = ,
DXx,1 Dixip DX

are n X n matrix variables and A, is an n X n continuous
matrix function on L.

Theorem 3 (Existence-Uniqueness Theorem) If the
entries of the square matrix A, are continuous on an
interval L containing ty, then the initial value problem

DX =A, ("X, X(t) =X € RV,
has one and only one solution X on the whole interval L.

Proof The proof is similar to that of Theorem 2.21 in
[2]. O

Definition 10 An n x n matrix fractional function ®,,
defined on an interval L, is called a fractional fundamental

’r @ Springer
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matrix of the linear system (3.5) if @, is a solution of the
fractional matrix equation (27) on L and det ®,(¢*) # 0 on
L.

Theorem 4 If @, is a fractional fundamental matrix for
D x = A,(1*)x, then, for an arbitrary n x n non-singular
constant matrix C, ¥, = ®,C is a general fractional fun-
damental matrix of DY x = A,(t")x.

Proof Since @, is a fractional fundamental matrix solu-
tion to D¥x = A,(t*)x and setting ¥, = ®,C, we have

D™, (1*) = D*®,(1*)C = Ay (1) ®,(*)C
= A,() P, (),

and also ¥, is continuously «th differentiable function on
L. Thus, ¥, = ®,C is a solution of the matrix fractional
equation (3.6). Since @, is a fractional fundamental matrix
solution to (26), Definition 10 implies that det[®,(#*)] # O.
As well, since, det[C] # 0. Hence,

det[¥,(r*)] = det[®,(t*)C]
= det[®,(*)] det[C] # 0,

for ¢t € L, and by Definition 10, ¥, = ®,C is a fractional
fundamental matrix of (27). ]

Theorem 5 [f C is an n X n non-singular matrix, then
there is a matrix B such that E,(B) = C.

Proof To avoid some tedious calculations, we prove this
theorem for a 2 x 2 matrices. For the eigenvalues y;, y, /
= 0 of nonsingular matrix C. We consider two special
cases:

Case I Let
I 0
C— M }
L0

then, in this case we are looking for a diagonal matrix

[ by 0]
L0 b )

B =

so that E,(B) = C. For this purpose, according to the
definition of the Mittag-Leffler function, we pick b, and b,

so that
|: 1 :|
0 125

Hence, the matrix B can be taken as

b= Fnzéﬂl) lna?ﬂz)}

E,(b1) 0 }

E“(B) - |: 0 Eoc(bZ)

’r @ Springer

Case II Let
I 1
C— H } ’
L0
then, we seek a matrix B of the form
B— _al ay :| ’
L0
so that E,(B) = C. We choose the parameters a; and a, so
that
E,(a aE,(a 1
E,(B) = { war)  aEy( 1)} _ [M ]
0 E,(a1) 0y

Hence, in the view of the inverse function derivative, the
matrix B can be taken as

1

1 J—

B— n, (1) m
0 lnoc(.ul)

Case IIl When C € R*? is an arbitrary matrix such that
det[C] # 0. By the Corollary 1, there is a non-singular
matrix P such that C = PJP~!, where

0 1
C:[Nl } or C:[HI }
0 1 0w
Now, by the previous two cases there is a matrix B; so that

E,(By) =J.
If we set the matrix B as

B=PBP !,
then, we see that
E,(B) = E,(PB,P"") = PE,(B,)P~' = C.

Similarly, for the higher order of n, the matrix B can be
easily found. O

Example 2 For example, consider

1 1
(o + 1)i* ' cos, () — T + 1) sin, (£*)
Mcosx(ﬂ))

jot1

Dix= 10
(24 T(o + 1) sin, (%) —

Here, we know that the solution is in general

x1 (1) ~ pE,(t") + ﬂ(%cosa(t“) — 2),
%cosﬂt“)),

X (1) ~ /3(2 + (o + 1) sing (#*) —

for t € R, where f5, 1 € R denote two constants. Using all
the above definitions, the fractional fundamental matrix is
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I(a+1)

0.~ oD cosy() -2 E(7)
o _ a4+ 1)
2+ Do+ 1) sin, (#) — — 7 cos,(t") 0
I
I(o+1) "
B e cos,(1*) — 2 1 {1 0 ]
= NE
2+ (o + 1) sin, (£*) — [le+1) cos,(t*) 0 0 Edr)

jotl

Theorem 6 (Fractional Floquet’s Theorem) Every frac-
tional fundamental matrix solution ®,(1*) of (26) has the
Sform

@, (1) = P, (1*)E,(Br*), (28)

where P,(1%), B are n x n matrices, P,((t +wy)") = P,(t*)
for all t and B is a constant.

Proof Assume that ®,(*) is a fractional fundamental
matrix solution of (26). Then @,((t+w,)”) is also a
fractional fundamental matrix solution, since A,(t*) is
periodic of period w,. Therefore, there is a nonsingular
matrix C such that

D, ((1+w,)") = D (1)C.
From Theorem 3, there is a matrix B so that C = E,(wyB).
For this matrix B, let P,(t*) =~ ®,(t*)E,(B(—1)"). Then
Po((t4 wa)") m @y ((1 + wy))Ey(B(—1 — wy)")
~ O, (1) Ey(B(wy)" ) EL(B(—t — wy)™) & Py (1%),
and the theorem is proved. O

Definition 11 The eigenvalues gy, u,,...,pu, of C =
@, '(0)®,(w,) are called the multipliers of the fractional

o
Floquet system DY x = A, (t*)x, where @, (¢*) is a fractional

fundamental matrix of system DY x = A,(t*)x.

Example 3 Solving the following equation,

D x = sin?(t*)x, (29)
we get that
1 I'(e+1) .
O,(t") ~ E, (5 - (41_(171 >s1na(2t“)>
1, I'a+1) . ”
~ E“(Et )Eyl( 4T sing (2¢ ))
so that

C = 01 (0),(m) = E, ((”g)x) .

As a result E, (”§>1> is the multiplier for this fractional
differential equation.

Theorem 7 Let ®,(1*) =~ P,(*)E,(Bt*) be the fractional
fundamental matrix in Theorem 6. Then, x is a solution of

the fractional Floquet system D} x = A,(t*)x if and only if
the vector function y defined by y(t*) = P, (*)x(t*) be a
solution of

D?y = By. (30)

Proof Assume that x is a solution of the fractional Flo-
quet system D?x = A,(t*)x. Then, for some vector xy €
R™! we have x(1*) = @, (t*)xo.
Now, by setting y(#*) = P, ' (£*)x(*), we get
y() = P;l(ta)q)%(ta)x() ~ Pgl(ta)Pa(tx)E%(th)xo
CJBZ‘“))C(),

which is a solution of (30).

Conversely, assume that y is a solution of system (30)
and set x(#*) = P,(r*)y(*). Since y is a solution of
D*y = By, there is a vector yp € R™! such that
¥(1*) = Ey(Bt*)yo.

It follows that
x(ta) = Poz(t“)y(ﬂ) = Poc(ta)Ea(Bta)y()

~ (Da(t“)yOa
which is a solution of the fractional Floquet system
D! x = A, (1")x. d

Theorem 8 Two matrices A and B are called similar if

there exists a nonsingular matrix A such that A = TBT~!
[23].

Theorem 9 A fractional Floquet system D}x = A,(t")x
with the multipliers ., l,, . .., 1, is

(i) asymptotically stable on [0,00) if all multipliers
satisfy |p;| <1, 1<i<n,

(ii)  unstable on [0, c0), when there is an iy, 1 <ip <n,
such that },u,»o| > 1.

Proof Without loss of generality, we prove this theorem
for 2 x 2 matrices A,. Let ®,(¢*) & P,(*)E,(Bt*) and C be
the same as in the Theorem 6. Therefore, the matrix B can
be chosen such that E,(Bw*) = C.

Suppose the matrix B is similar to a Jordan canonical
form, i.e., there exists an invertible matrix M such that
B = MJM~"'. Now by letting 4;, 4, as the eigenvalues of B,
we see that for the matrix C we have

C = E,(BW*) = E,(MIM~'w*) = ME,(Jw*)M~' = MHM ",

where either
E,(J4w*
H = |: ( v ) 0 :|7 or
0 E“(/IQW“)
o {Ea(ilw“) W“Ea(llw“)]
- 0 E,(Aw?)

’r @ Springer
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—1
—0.98
—0.95

10

0 200 400 600 800 1000
t

Fig. 2 The numerical approximations of equation (3.8) when
o=1, 098, 0.95

Since the eigenvalues of H are the same as the eigenvalues
of C, we take the multipliers y; as y; = E,(4w*), i = 1,2.
Since |y;| = E4(Re(2;)w™), we have that

l:ﬁ Re(/l,) <0,
lﬁc Re(i,-) > 0.

] <1
] > 1

Since according to the Theorem 7, there is a one-to-one
correspondence between solutions of the fractional Floquet
system D? x = A,(¢*)x and system (30).

For constant Q; > 0, we have

1) = 1Py ()| < [Py ()] < Qilly (),

and for constant O, > 0, we get

Iy (@)l = {125 ()x(e)| < [|P2 @) (e < allx(e)]]-

Finally by Theorem 1 the results can be derived. O

In Example 3, we saw that the multiplier of the frac-
tional differential equation (29) is pu = Ea(%) When
0<a <1, then the solution fractional differential equation
(29) is unstable, since we always have |u| > 1. Figure 2

indicates that equation (29) with parameters o =
1, 0.98, 0.95 is unstable.

Example 4 We can show ®@,(¢*) in the form

E,(—1*) 0
O, (")~ | 1 o ;
i“—_lEa(—t“) sin, (%) E,(—1*)
is a fractional fundamental matrix for the fractional Floquet
system

@ Springer

0.6

1
—0.98
—0.95

600 700

0.6

1
—0.98
—0.95

0.5

0 100 200 300 400 500 600 700
t

Fig. 3 The numerical approximations of fractional Floquet system
(31) when « = 1, 0.98, 0.95

o) ~Leowien ]l3) )

Since

E,(—(2m,)%) 0
0 E,(—(2m,)")

3

C=,'(0)0,(2n,) = {

the multipliers are p; = u, = E,(—(27,)*). When
0<a <1, then the solution system (31) is asymptotically
stable, as we always have || <1 for i = 1,2. Figure 3
indicates that the solution fractional Floquet system (3.10)
with parameters « = 1, 0.98, 0.95 is asymptotically stable.

Conclusion

In the present article, we have recalled some properties of
the Mittag-Leffler function and Mittag-Leffler logarithm
function as described in [20]. Then we have presented
fractional trigonometric function and the fractional Floquet
system based on the modified Riemann—Liouville
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derivation. Since, the study of stability for the fractional
Floquet system is very important, the asymptotical stability
for such systems has been investigated. We have shown the
fractional Floquet system is asymptotically stable if all
multipliers have real parts between -1 and 1. Finding the
stability of nonlinear periodic fractional systems and delay
linear periodic fractional systems can be an interesting
topic for future research work.
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