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Abstract In this paper, new periodic fractional trigono-

metric functions with the period 2pa are presented. We

have generalized the Floquet system to the fractional Flo-

quet system. The fractional derivatives are described with

the use of modified Riemann–Liouville derivative. More-

over, the stability analysis of fractional Floquet system is

introduced.

Keywords Floquet system � Stability � Fractional
derivative � Modified Riemann–Liouville

Introduction

The study of systems governed by ordinary differential

equation with period coefficients is of basic importance in

many branches such as mathematics, physics, chemistry,

biology, mechanics and finance, such systems are known as

Floquet systems [1, 2]. The Floquet systems are defined

with the n 9 n matrix function A as x0 ¼ AðtÞx, where the

components in matrix A are continuous and periodic

function with smallest positive period w, that is, Aðt þ
wÞ ¼ AðtÞ for all ts. Although the coefficient matrix in x0 ¼
AðtÞx is periodic, in general solutions they are not con-

sidered as periodic. The idea of Floquet systems has been

stated by Gaston Floquet in the early 1880s, and later he

established his celebrated theorem on the structure of

solutions of periodic differential equations [3]. In this

paper, we first focus our attention on fractional Floquet

system, and then we consider the stability analysis for this

class system.

The fractional order calculus establishes the branch

of mathematics dealing with differentiation and inte-

gration under an arbitrary order of the operation, that is

the order can be any real or even complex number, not

only the integer one. Although the history of fractional

calculus is more than three centuries old, it only has

received much attention and interest in the past 20

years; the reader may refer to [4–6] for the theory and

applications of fractional calculus. The generalization of

dynamical equations using fractional derivatives proved

to be useful and more accurate in mathematical mod-

eling related to many interdisciplinary areas. Applica-

tions of fractional order differential equations include:

electrochemistry [7], porous media [8] and so on [9–

11]. It is worth noting that recently much attention has

been paid to the distributed-order differential equations

and their applications in engineering fields that both

integer-order systems and fractional order systems are

special cases of distributed-order systems. The reader

may refer to [12–14]. The analytic results on the

existence and uniqueness of solutions to the fractional

differential equations have been investigated by many

authors [5, 6].
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Preliminaries and notations

Basic definitions

We give some basic definitions and properties of the

fractional calculus theory used in this work.

Definition 1 Let f : R ! R, t ! f ðtÞ denote a continuous
(but not necessarily differentiable) function and let parti-

tion h[ 0 in the interval [0, 1]. The Jumarie’Derivative is

defined through the fractional difference [15]:

Daf ðtÞ ¼ ðFW� 1Þaf ðtÞ ¼
X1

k¼0

ð�1Þk
a

k

� �
f ½t þ ða� kÞh�; ð1Þ

where FW f ðtÞ ¼ f ðt þ hÞ. Then the fractional derivative is

defined as the following limit

f ðaÞðtÞ ¼ Da
t f ðtÞ ¼

daf ðtÞ
dta

¼ lim
h!0

Da½f ðtÞ � f ð0Þ�
ha

: ð2Þ

This definition is close to the standard definition of

derivatives, and as a direct result, the ath derivative of a

constant 0\ a � 1 is zero.

Definition 2 The Riemann–Liouville fractional integral

operator of order a[ 0 is defined as [16]:

Iat f ðtÞ ¼
1

CðaÞ

Z t

0

ðt � eÞa�1
f ðeÞde; a[ 0: ð3Þ

Definition 3 The modified Riemann–Liouville derivative

is defined as [16]:

Da
t f ðtÞ¼ f ða�1ÞðtÞ

� �0
¼ 1

Cð1�aÞ
d

dt

Z t

0

ðt�eÞ�aðf ðeÞ�f ð0ÞÞde;

0\a�1; ð4Þ

and

Da
t f ðtÞ ¼ f ða�nÞðtÞ

� �ðnÞ
; n� a\nþ 1; n� 1:

The proposed modified Riemann–Liouville derivative as

shown in Eq. (4) is strictly equivalent to Eq. (2).

Definition 4 Fractional derivative of compounded func-

tions is defined as [16]:

daf � Cð1þ aÞdf ; 0\a\1: ð5Þ

Definition 5 The integral with respect to ðdtÞa is defined
as the solution of fractional differential equation [17]:

dy ¼ f ðtÞðdtÞa; t� 0; yð0Þ ¼ 0; 0\a� 1: ð6Þ

Lemma 1 Let f(t) denotes a continuous function then the

solution of the Eq. (6) is defined as [17]:

y ¼
Z t

0

f ðeÞðdeÞa ¼ a
Z t

0

ðt � eÞa�1
f ðeÞde; 0\a� 1: ð7Þ

Definition 6 Function f(t) is ath differentiable then the

following equalities holds:

f ðaÞðtÞ ¼ lim
h!0

Daf ðtÞ
ha

¼ Cð1þ aÞ lim
h!0

Df ðtÞ
ha

; 0\a� 1:

ð8Þ

Mittag-Leffler function

The Mittag-Leffler function which plays a very important

role in the fractional differential equations was in fact

introduced by Mittag-Leffler in 1903 [18]. The Mittag-

Leffler function EaðtÞ is defined by the power series:

EaðtÞ ¼
X1

n¼0

tn

Cðnaþ 1Þ ; a[ 0; ð9Þ

which

Da
t EaðktaÞ ¼ kEaðktaÞ: ð10Þ

As further result of the above formula

EaðktaÞEaðkð�sÞaÞ � Eaðkðt � sÞaÞ; k 2 C: ð11Þ

The matrix extension of the mentioned Mittag-Liffler

function for A 2 Mm is defined as in the following

representation:

EaðAtaÞ ¼
X1

n¼0

Antan

Cðnaþ 1Þ ; a[ 0: ð12Þ

If A;B 2 Rn	n and a[ 0, then it is easy to prove the fol-

lowing nice properties of Mittag-Leffler matrix EaðAtaÞ:

(i) E�1
a ðAtaÞ � Eað�AtaÞ;

(ii) If P is a non-singular matrix, then

EaðP�1APÞ ¼ P�1EaðAÞP,
(iii) EaððAþ BÞtaÞ � EaðAtaÞEaðBtaÞ if and only if

AB ¼ BA,

(iv) E�1
a ðAtaÞ � EaðAð�tÞaÞ.

Corollary 1 [19] If the matrix A is diagonalizable, that

is, there exists an invertible matrix T such that

K ¼ T�1AT ¼ diagðk1; k2; . . .; knÞ;

then, we have

EaðAtaÞ ¼ T EaðKtaÞT�1 ¼ T diagðEaðk1taÞ;
Eaðk2taÞ; . . .;EaðkntaÞÞT�1:

Next, suppose thematrixA is similar to a Jordan canonical

form, that is there exists an invertible matrix T such that
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J ¼ T�1AT ¼ diagðJ1; J2; . . .; JnÞ;

where ji, 1 � i � r has the following form

ki 1 0 . . . 0

0 ki 1 . .
. ..

.

..

.
0 . .

. . .
.

0

0 . .
. . .

.
ki 1

0 0 . . . 0 ki

2

666666664

3

777777775

ni	ni

;

and
Pr

i¼1 ni ¼ n. Obviously,

EaðAtaÞ ¼ TdiagðEaðJ1taÞ;EaðJ2taÞ; . . .;EaðJrtaÞÞT�1;

and

where C j
k, 1� j� ni � 1; 1� i� r are the binomial

coefficients.

Fractional trigonometric functions and Mittag-

Leffler logarithm function

The idea of the fractional trigonometric functions has been

stated by Jumarie [20] asserting that these functions are not

periodic. Now, we introduce new fractional trigonometric

functions which are periodic with the period 2pa � 2p.
Analogous with the trigonometric function, we can write

EaððitÞaÞ ¼ cosaðtaÞ þ i sinaðtaÞ; ð13Þ

and

Eaðð�itÞaÞ ¼ cosaðtaÞ � i sinaðtaÞ; ð14Þ

EaðJitaÞ ¼
P1

k¼0

ðJi taÞk

Cðak þ 1Þ ¼
X1

k¼0

ðtaÞk

Cðak þ 1Þ

kki C1kkk�1
i . . . Cni�1

k kk�niþ1
i

0 kki
. .
. ..

.

..

. . .
. . .

.
C1kk

k�1
i

0 . . . 0 kki

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

¼

P1

k¼0

ðtaÞk

Cðak þ 1Þ k
k
i

P1

k¼0

ðtaÞk

Cðak þ 1Þ C
1
kk

k�1
i . . .

P1

k¼0

ðtaÞk

Cðak þ 1Þ C
ni�1
k kk�niþ1

i

0
P1

k¼0

ðtaÞk

Cðak þ 1Þ k
k
i

. .
. ..

.

..

. . .
. . .

. P1

k¼0

ðtaÞk

Cðak þ 1Þ C
1
kk

k�1
i

0 . . . 0
P1

k¼0

ðtaÞk

Cðak þ 1Þ k
k
i

0

BBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCA

¼

EaðkitaÞ
1

1!

o

oki
EaðkitaÞ . . .

1

ðni � 1Þ!
o

oki

� �ni�1

EaðkitaÞ

0 EaðkitaÞ . .
. ..

.

..

. . .
. . .

. 1

1!

o

oki
EaðkitaÞ

0 . . . 0 EaðkitaÞ

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

;
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with

cosaðtaÞ ¼
EaððitÞaÞ þ Eaðð�itÞaÞ

2
; and

sinaðtaÞ ¼
EaððitÞaÞ � Eaðð�itÞaÞ

2i
:

These fractional functions have the period 2pa � 2p. Fig-
ure 1 shows sinaðtaÞ for a ¼ 1; 0:95; 0:9 which is periodic

with the period 2pa � 2p.
Some properties of the fractional trigonometric func-

tions are presented as follows:

sin2a h
a þ cos2a h

a � 1;

sinað�tÞa ¼ � sinaðtaÞ;
cosað�tÞa ¼ cosaðtaÞ;

Da
t ðsinaðxataÞÞ ¼ xaðiÞa�1

cosaðxataÞ;
Da

t ðcosaðxataÞÞ ¼ xaðiÞaþ1
sinaðxataÞ:

The fractional functions sinaðxataÞ and cosaðxataÞ both
are periodic functions with the period ð2pa=xÞ.

In addition Eq. (11) provides the equalities

cosaðt þ sÞa � cosaðtaÞ cosaðsaÞ � sinaðtaÞ sinaðsaÞ; ð15Þ

sinaðt þ sÞa � cosaðtaÞ sinaðsaÞ þ cosaðsaÞ sinaðtaÞ: ð16Þ

There are similar formulas like for cosaðt � sÞaand
sinaðt � sÞa:

Substituting h for both t and s in the addition formulas

gives

cosa 2h
a � cos2a h

a � sin2a h
a; sina2h

a � 2 sina h
a cosa h

a:

Additional formulas come from combining the equations

sin2a h
a þ cos2a h

a � 1; cosa 2h
a � cos2a h

a � sin2a h
a;

we add the two equations to get cosa 2h
a � 2 cos2a h

a � 1

and subtract the second from the first to get

cosa 2h
a � 1� 2 sin2a h

a.

Definition 7 Lnat denotes the inverse function of the

EaðtÞ, referred to as Mittag-Leffler logarithm, clearly

EaðLnatÞ ¼ t and the Mittag-Leffler logarithm function is

defined as [20]:
Z t

0

dan
n

¼ 1

ð1� aÞ!

Z t

0

ðdnÞa

na
¼ LnaðtÞ: ð17Þ

Fractional linear system and its stability analysis

Here, we will consider the following linear fractional dif-

ferential system with modified Riemann–Liouville frac-

tional derivative

Da
t x ¼ Ax; ð18Þ

with initial value xð0Þ ¼ x0 ¼ ðx10; x20; . . .; xnoÞT , where

x ¼ ðx1; x2; . . .; xnÞT , a 2 ð0; 1� and A 2 Rn	n. By imple-

mentation of the Laplace transform on the above system

and using the initial condition, the general solution can be

written as

x ¼ x0EaðAtaÞ: ð19Þ

The stability of the equilibrium of system (18) was first

defined and established by Matignon as follows [21].

Definition 8 The linear fractional differential system (18)

is said to be

(i) stable if for any initial value x0, there exists a e[ 0

such that for all t C 0,

(ii) asymptotically stable if at first it is stable and

limt!1 xðtaÞk k ¼ 0.

Theorem 1 The linear fractional differential system (18)

is asymptotically stable if all the eigenvalues of A satisfy

argðkðAÞÞj j[ ap
2
: ð20Þ

We can very easily prove Theorem 1 analogously using

Proposition 3.1 in [21].

Now, we state the following important existence–unique-

ness theorem for solutions of initial value problems (21).

Theorem 2 ([22]) Let 0\a� 1, ð0; bÞ 
 R, U be an

open connected set in Rnþ1, D ¼ ð0; bÞ 	 U and

ðt0; x0Þ 2 D. If

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

1
0.95
0.9

Fig. 1 Plot of sinaðtaÞ with respect to t for a ¼ 1; 0:95; 0:9
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AðtaÞ ¼

a11ðtaÞ a12ðtaÞ . . . a1nðtaÞ
a21ðtaÞ a22ðtaÞ . . . a2nðtaÞ

..

. ..
. . .

. ..
.

an1ðtaÞ an2ðtaÞ . . . annðtaÞ

2

66664

3

77775
and

BðtaÞ ¼

b1ðtaÞ
..
.

bnðtaÞ

2

664

3

775;

are continuous matrices in 0; b½ �, then equation

Da
t x ¼ AðtaÞxþ BðtaÞ; ð21Þ

has a unique solution xðtaÞ, continuous in (0, b], such that

xðta0Þ ¼ x0:

Fractional Floquet system

In this Section, we will consider fractional order linear

periodic differential equations involving modified Rie-

mann–Liouville derivative that can be written in the form

Da
t xðtaÞ ¼ faðtaÞxðtaÞ; ð22Þ

where we assume that fa : ða; bÞ ! R is continuous peri-

odic function with smallest positive periodic wa, that is,

faððt þ waÞaÞ � faðtaÞ.
Also, the solution of Eq. (22) obtained with respect to

the Mittag-Leffler function is as

xðtaÞ � C Ea

Z t

0

faðsaÞðdsÞa
� �

; ð23Þ

where C is a constant.

Example 1 Consider the fractional order linear periodic

differential equation

Da
t xðtaÞ ¼ sinaðtaÞxðtaÞ: ð24Þ

Thus, by (23), xðtaÞ � C Eað 1
iaþ1 cosaðtaÞÞ, where for t 2 R

is a general solution on R for (24).

Definition 9 We say x is a solution of (22) on an interval

L 
 ð0; bÞ if x is a continuously ath differentiable function

on L and for t 2 L, x satisfies (22).

In the rest of this section, we will generalize linear

periodic systems to fractional periodic systems involving

modified Riemann–Liouville derivative form

Da
t x1 ¼ aa11ðtaÞx1 þ aa12ðtaÞx2 þ � � � þ aa1nðtaÞxn;

Da
t x2 ¼ aa21ðtaÞx1 þ aa22ðtaÞx2 þ � � � þ aa2nðtaÞxn;

..

. ..
. ..

. ..
.

Da
t xn ¼ aan1ðtaÞx1 þ aan2ðtaÞx2 þ � � � þ aannðtaÞxn;

ð25Þ

where aaijðtaÞ, ði; j ¼ 1; 2; . . .; nÞ are given continuous

periodic functions with smallest positive periodic wa on an

interval L.

This system can be transformed to a vector–matrix form

as

Da
t x ¼ AaðtaÞx; ð26Þ

where

x ¼
x1

..

.

xn

2

664

3

775; Da
t x ¼

Da
t x1

..

.

Da
t xn

2

664

3

775;

and

AaðtaÞ ¼

aa11ðtaÞ aa21ðtaÞ . . . aa1nðtaÞ
aa21ðtaÞ aa22ðtaÞ . . . aa2nðtaÞ

..

. ..
. . .

. ..
.

aan1ðtaÞ aan2ðtaÞ . . . aannðtaÞ

2

66664

3

77775
;

where the components in matrix Aa are continuous and

periodic functions with smallest positive period wa (saying

Aaððt þ waÞaÞ � AaðtaÞ).
Consider the matrix fractional differential equation

Da
t X ¼ AaðtaÞX; ð27Þ

where

X ¼

x11 x12 . . . x1n

x21 x22 . . . x2n

..

. ..
. . .

. ..
.

xn1 xn2 . . . xnn

2
66664

3
77775
; and

Da
t X ¼

Da
t x11 Da

t x12 . . . Da
t x1n

Da
t x21 Da

t x22 . . . Da
t x2n

..

. ..
. . .

. ..
.

Da
t xn1 Da

t xn2 . . . Da
t xnn

2
66664

3
77775
;

are n	 n matrix variables and Aa is an n 9 n continuous

matrix function on L.

Theorem 3 (Existence–Uniqueness Theorem) If the

entries of the square matrix Aa are continuous on an

interval L containing t0, then the initial value problem

Da
t X ¼ AaðtaÞX; Xðt0Þ ¼ X0 2 Rn	n;

has one and only one solution X on the whole interval L.

Proof The proof is similar to that of Theorem 2.21 in

[2]. h

Definition 10 An n 9 n matrix fractional function Ua,

defined on an interval L, is called a fractional fundamental

Math Sci (2016) 10:13–21 17
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matrix of the linear system (3.5) if Ua is a solution of the

fractional matrix equation (27) on L and detUaðtaÞ 6¼ 0 on

L.

Theorem 4 If Ua is a fractional fundamental matrix for

Da
t x ¼ AaðtaÞx, then, for an arbitrary n 9 n non-singular

constant matrix C, Wa ¼ UaC is a general fractional fun-

damental matrix of Da
t x ¼ AaðtaÞx.

Proof Since Ua is a fractional fundamental matrix solu-

tion to Da
t x ¼ AaðtaÞx and setting Wa ¼ UaC, we have

Da
tWaðtaÞ ¼ Da

tUaðtaÞC ¼ AaðtaÞUaðtaÞC
¼ AaðtaÞWaðtaÞ;

and also Wa is continuously ath differentiable function on

L. Thus, Wa ¼ UaC is a solution of the matrix fractional

equation (3.6). Since Ua is a fractional fundamental matrix

solution to (26), Definition 10 implies that det½UaðtaÞ� 6¼ 0.

As well, since, det½C� 6¼ 0. Hence,

det½WaðtaÞ� ¼ det½UaðtaÞC�
¼ det½UaðtaÞ� det½C� 6¼ 0;

for t 2 L, and by Definition 10, Wa ¼ UaC is a fractional

fundamental matrix of (27). h

Theorem 5 If C is an n 9 n non-singular matrix, then

there is a matrix B such that EaðBÞ ¼ C.

Proof To avoid some tedious calculations, we prove this

theorem for a 2 9 2 matrices. For the eigenvalues l1; l2 6
¼ 0 of nonsingular matrix C. We consider two special

cases:

Case I Let

C ¼
l1 0

0 l2

� �
;

then, in this case we are looking for a diagonal matrix

B ¼
b1 0

0 b2

� �
;

so that EaðBÞ ¼ C. For this purpose, according to the

definition of the Mittag-Leffler function, we pick b1 and b2
so that

EaðBÞ ¼
Eaðb1Þ 0

0 Eaðb2Þ

� �
¼

l1 0

0 l2

� �
:

Hence, the matrix B can be taken as

B ¼
lnaðl1Þ 0

0 lnaðl2Þ

� �
:

Case II Let

C ¼
l1 1

0 l1

� �
;

then, we seek a matrix B of the form

B ¼
a1 a2

0 a1

� �
;

so that EaðBÞ ¼ C. We choose the parameters a1 and a2 so

that

EaðBÞ ¼
Eaða1Þ a2Eaða1Þ

0 Eaða1Þ

� �
¼

l1 1

0 l1

� �
:

Hence, in the view of the inverse function derivative, the

matrix B can be taken as

B ¼
lnaðl1Þ

1

l1
0 lnaðl1Þ

2

4

3

5:

Case III When C 2 R2	2 is an arbitrary matrix such that

det½C� 6¼ 0. By the Corollary 1, there is a non-singular

matrix P such that C ¼ PJP�1, where

C ¼
l1 0

0 l2

� �
; or C ¼

l1 1

0 l1

� �
:

Now, by the previous two cases there is a matrix B1 so that

EaðB1Þ ¼ J.

If we set the matrix B as

B ¼ PB1P
�1;

then, we see that

EaðBÞ ¼ EaðPB1P
�1Þ ¼ PEaðB1ÞP�1 ¼ C:

Similarly, for the higher order of n, the matrix B can be

easily found. h

Example 2 For example, consider

Da
t x ¼

1 1

0
Cðaþ 1Þia�1 cosaðtaÞ � Cðaþ 1Þ sinaðtaÞ

ð2þ Cðaþ 1Þ sinaðtaÞ �
Cðaþ 1Þ

iaþ1
cosaðtaÞÞ

2
664

3
775x:

Here, we know that the solution is in general

x1ðtaÞ � lEaðtaÞ þ b
Cðaþ 1Þ

iaþ1
cosaðtaÞ � 2

� �
;

x2ðtaÞ � b 2þ Cðaþ 1Þ sinaðtaÞ �
Cðaþ 1Þ

iaþ1
cosaðtaÞ

� �
;

for t 2 R, where b; l 2 R denote two constants. Using all

the above definitions, the fractional fundamental matrix is

18 Math Sci (2016) 10:13–21
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UaðtaÞ �

Cðaþ 1Þ
iaþ1

cosaðtaÞ � 2 EaðtaÞ

2þ Cðaþ 1Þ sinaðtaÞ �
Cðaþ 1Þ

iaþ1
cosaðtaÞ 0

2
664

3
775

¼

Cðaþ 1Þ
iaþ1

cosaðtaÞ � 2 1

2þ Cðaþ 1Þ sinaðtaÞ �
Cðaþ 1Þ

iaþ1
cosaðtaÞ 0

2
664

3
775

1 0

0 EaðtaÞ

� �
:

Theorem 6 (Fractional Floquet’s Theorem) Every frac-

tional fundamental matrix solution UaðtaÞ of (26) has the

form

UaðtaÞ � PaðtaÞEaðBtaÞ; ð28Þ

where PaðtaÞ, B are n	 n matrices, Paððt þ waÞaÞ � PaðtaÞ
for all t and B is a constant.

Proof Assume that UaðtaÞ is a fractional fundamental

matrix solution of (26). Then Uaððt þ waÞaÞ is also a

fractional fundamental matrix solution, since AaðtaÞ is

periodic of period wa. Therefore, there is a nonsingular

matrix C such that

Uaððt þ waÞaÞ ¼ UaðtaÞC:

From Theorem 5, there is a matrix B so that C ¼ EaðwaBÞ.
For this matrix B, let PaðtaÞ � UaðtaÞEaðBð�tÞaÞ. Then

Paððt þ waÞaÞ � Uaððt þ waÞaÞEaðBð�t � waÞaÞ
� UaðtaÞEaðBðwaÞaÞEaðBð�t � waÞaÞ � PaðtaÞ;

and the theorem is proved. h

Definition 11 The eigenvalues l1; l2; . . .; ln of C ¼
U�1

a ð0ÞUaðwaÞ are called the multipliers of the fractional

Floquet system Da
t x ¼ AaðtaÞx, where UaðtaÞ is a fractional

fundamental matrix of system Da
t x ¼ AaðtaÞx.

Example 3 Solving the following equation,

Da
t x ¼ sin2aðtaÞx; ð29Þ

we get that

UaðtaÞ � Ea
1

2
ta � Cðaþ 1Þ

4ia�1
sinað2taÞ

� �

� Eað
1

2
taÞE�1

a
Cðaþ 1Þ
4ia�1

sinað2taÞ
� �

so that

C ¼ U�1
a ð0ÞUaðpaÞ ¼ Ea

ðpaÞa

2

� �
:

As a result Ea
ðpaÞa
2

� �
is the multiplier for this fractional

differential equation.

Theorem 7 Let UaðtaÞ � PaðtaÞEaðBtaÞ be the fractional

fundamental matrix in Theorem 6. Then, x is a solution of

the fractional Floquet system Da
t x ¼ AaðtaÞx if and only if

the vector function y defined by yðtaÞ ¼ P�1
a ðtaÞxðtaÞ be a

solution of

Da
t y ¼ By: ð30Þ

Proof Assume that x is a solution of the fractional Flo-

quet system Da
t x ¼ AaðtaÞx. Then, for some vector x0 2

Rn	1 we have xðtaÞ ¼ UaðtaÞx0.
Now, by setting yðtaÞ ¼ P�1

a ðtaÞxðtaÞ, we get

yðtaÞ ¼ P�1
a ðtaÞUaðtaÞx0 � P�1

a ðtaÞPaðtaÞEaðBtaÞx0
¼ EaðBtaÞx0;

which is a solution of (30).

Conversely, assume that y is a solution of system (30)

and set xðtaÞ ¼ PaðtaÞyðtaÞ. Since y is a solution of

Da
t y ¼ By, there is a vector y0 2 Rn	1 such that

yðtaÞ ¼ EaðBtaÞy0.
It follows that

xðtaÞ ¼ PaðtaÞyðtaÞ ¼ PaðtaÞEaðBtaÞy0
� UaðtaÞy0;

which is a solution of the fractional Floquet system

Da
t x ¼ AaðtaÞx. h

Theorem 8 Two matrices A and B are called similar if

there exists a nonsingular matrix A such that A ¼ TBT�1

[23].

Theorem 9 A fractional Floquet system Da
t x ¼ AaðtaÞx

with the multipliers l1; l2; . . .; ln is

(i) asymptotically stable on ½0;1Þ if all multipliers

satisfy lij j\1; 1� i� n;

(ii) unstable on ½0;1Þ, when there is an i0; 1� i0 � n;

such that li0
�� ��[ 1.

Proof Without loss of generality, we prove this theorem

for 2	 2 matrices Aa. Let UaðtaÞ � PaðtaÞEaðBtaÞ and C be

the same as in the Theorem 6. Therefore, the matrix B can

be chosen such that EaðBwaÞ ¼ C.

Suppose the matrix B is similar to a Jordan canonical

form, i.e., there exists an invertible matrix M such that

B ¼ MJM�1. Now by letting k1; k2 as the eigenvalues of B,
we see that for the matrix C we have

C ¼ EaðBwaÞ ¼ EaðMJM�1waÞ ¼ MEaðJwaÞM�1 ¼ MHM�1;

where either

H ¼
Eaðk1waÞ 0

0 Eaðk2waÞ

� �
; or

H ¼
Eaðk1waÞ waEaðk1waÞ

0 Eaðk1waÞ

� �
:
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Since the eigenvalues of H are the same as the eigenvalues

of C, we take the multipliers li as li ¼ EaðkiwaÞ, i ¼ 1; 2.

Since lij j ¼ EaðReðkiÞwaÞ, we have that

lij j\1 iff ReðkiÞ\ 0;

lij j[ 1 iff ReðkiÞ[ 0:

Since according to the Theorem 7, there is a one-to-one

correspondence between solutions of the fractional Floquet

system Da
t x ¼ AaðtaÞx and system (30).

For constant Q1 [ 0, we have

xðtaÞk k ¼ PaðtaÞyðtaÞk k� PaðtaÞk k yðtaÞk k�Q1 yðtaÞk k;

and for constant Q2 [ 0, we get

yðtaÞk k ¼ P�1
a ðtaÞxðtaÞ

		 		� P�1
a ðtaÞ

		 		 xðtaÞk k�Q2 xðtaÞk k:

Finally by Theorem 1 the results can be derived. h

In Example 3, we saw that the multiplier of the frac-

tional differential equation (29) is l ¼ EaððpaÞ
a

2
Þ. When

0\a� 1, then the solution fractional differential equation

(29) is unstable, since we always have lj j[ 1. Figure 2

indicates that equation (29) with parameters a ¼
1; 0:98; 0:95 is unstable.

Example 4 We can show UaðtaÞ in the form

UaðtaÞ �
Eað�taÞ 0

1

ia�1
Eað�taÞ sinaðtaÞ Eað�taÞ

2

4

3

5;

is a fractional fundamental matrix for the fractional Floquet

system

Da
t x

Da
t y

� �
¼

�1 0

cosaðtaÞ �1

� �
x

y

� �
: ð31Þ

Since

C ¼ U�1
a ð0ÞUað2paÞ ¼

Eað�ð2paÞaÞ 0

0 Eað�ð2paÞaÞ

� �
;

the multipliers are l1 ¼ l2 ¼ Eað�ð2paÞaÞ. When

0\a� 1, then the solution system (31) is asymptotically

stable, as we always have lij j\1 for i ¼ 1; 2. Figure 3

indicates that the solution fractional Floquet system (3.10)

with parameters a ¼ 1; 0:98; 0:95 is asymptotically stable.

Conclusion

In the present article, we have recalled some properties of

the Mittag-Leffler function and Mittag-Leffler logarithm

function as described in [20]. Then we have presented

fractional trigonometric function and the fractional Floquet

system based on the modified Riemann–Liouville

0 200 400 600 800 1000
0

5

10

15

t

x
1
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Fig. 2 The numerical approximations of equation (3.8) when

a ¼ 1; 0:98; 0:95
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Fig. 3 The numerical approximations of fractional Floquet system

(31) when a ¼ 1; 0:98; 0:95
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derivation. Since, the study of stability for the fractional

Floquet system is very important, the asymptotical stability

for such systems has been investigated. We have shown the

fractional Floquet system is asymptotically stable if all

multipliers have real parts between -1 and 1. Finding the

stability of nonlinear periodic fractional systems and delay

linear periodic fractional systems can be an interesting

topic for future research work.
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