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Abstract In this paper, we propose some analytical so-

lutions of stochastic differential equations related to

Martingale processes. In the first resolution, the answers of

some stochastic differential equations are connected to

other stochastic equations just with diffusion part (or drift

free). The second suitable method is to convert stochastic

differential equations into ordinary ones that it is tried to

omit diffusion part of stochastic equation by applying

Martingale processes. Finally, solution focuses on change

of variable method that can be utilized about stochastic

differential equations which are as function of Martingale

processes like Wiener process, exponential Martingale

process and differentiable processes.

Keywords Martingale process � Itô formula � Change of

variable � Differentiable process � Analytical solution

Introduction

The purpose of this article is to put forward some analytical

and numerical solutions to solve the Itô stochastic differ-

ential equation (SDE):

dXðtÞ ¼ AðXðtÞ; tÞdt þ BðXðtÞ; tÞdWt;

Xð0Þ ¼ X0;

�
ð1Þ

where WðtÞ is a Wiener process and triple ðX;F ;PÞ is a

probability space under some conditions and special rela-

tions between drift and volatility.

Both the drift vector A : R� ½0; T � �! R and the dif-

fusion matrix a :¼ BBT : R� ½0; T � �! R are considered

Borel measurable and locally bounded functions. It is as-

sumed that X0 is a non-random vector. As usual, A and B
are globally Lipschitz in R that is:

jAðX; tÞ � AðY ; tÞj þ jBðX; tÞ � BðY ; tÞj �DjX � Y j;
X; Y 2 R and t 2 ½0; T �;

and result in the linear growth condition:

jAðX; tÞj þ jBðX; tÞj �Cð1þ jXjÞ:

These conditions guarantee (see [1, 2]) the Eq. (1) has a

unique t-continuous solution adapted to the filtration

F tt� 0 generated by WðtÞ and

E

Z T

0

jXðsÞj2 ds
� �

\1: ð2Þ

It is generally accepted that, analytical solutions of partial

and ordinary differential equations are so important par-

ticularly in physics and engineering, whereas most of them

do not have an exact solution and even a limited number of

these equations, (e.g., in classical form), have implicit so-

lutions. Analytical methods and solutions, especially in
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stochastic differential equations, could be excessive fun-

damental in some cases therefore we draw to take a com-

parison and analyze computation error between them and

different numerical methods. Numerous numerical meth-

ods can be applied to solve stochastic differential equations

like Monte Carlo simulation method, finite elements and

finite differences [2, 3]. On the other hand, due to the

importance of Martingale processes and finding their rep-

resentation according to Martingale representation theo-

rem, it is struggled to express arbitrary stochastic processes

as a function of Martingale processes and found numerical

methods so as to solve drift-free SDEs [4].

In this paper, we resolve to represent analytical

methods for stochastic differential equations, specially

reputed and famous equations in pricing and investment

rate models, based on Martingale processes with various

examples about them which we have found in a couple of

papers like [2, 5–7]. There are two main reasons for this

approach. Firstly, the each solutions of these kind of

equations are Martingale processes or analytic function of

Martingale Processes. Thus, due to drift-free property, it

will be caused computational error less than numerical

computations with existing classic methods. Secondly, for

each Martingale process (especially differentiable pro-

cess), there exists a spectral expansion of two-dimensional

Hermite polynomials with constant coefficients [8].

Therefore, it could be made higher the strong order of

convergence with increasing the number of polynomials

in this expansion. Equations are just obtained with dif-

fusion part or drift free, by making Martingale process

from other process. This method can be done by Itô

product formula on initial process and an appropriate

Martingale process. Another suitable method to convert

SDEs into ODEs that we try is to omit the diffusion part

of the stochastic equation.

This article is organized as follows. In Sect. 2, it is

verified the making of Martingales processes by exponen-

tial Martingale process. In Sect. 3, we solve equations as a

function of Martingales with prominent analytical solution,

by applying change of appropriate variables method on

drift-free SDEs. In Sect. 5, some analytical and numerical

examples of expressed methods are demonstrated. Finally,

the conclusions and remarks are brought in last section.

Change of measure and Martingale process

In this section under some conditions, we intend to make

a Martingale process from a random one in

L
2ðR� ½0; T�Þ, where T is called maturity time. The ex-

ponential Martingale process associated with kðtÞ is de-

fined as follows:

Zk
t ¼ exp

Z t

0

kðsÞ dWs �
1

2

Z t

0

k2ðsÞ ds
� �

: ð3Þ

It can be indicated by Itô formula that Zk
t is a Martingale

due to the drift-free property:

dZk
t ¼ kZk

t dWt; Zk
t ð0Þ ¼ 1: ð4Þ

Theorem 1 Suppose that stochastic processes Xt verify in

differential equation:

dXt ¼ lðXt; tÞdt þ rðXt; tÞdWt; ð5Þ

and let kðtÞ :¼ �lðXt; tÞ=rðXt; tÞ: Therefore, XZk
t is a

Martingale process.

Proof With attention to real function kðtÞ, we have:

dX¼lðX;tÞdtþrðX;tÞdWt¼�kðtÞrðX;tÞdtþrðX;tÞdWt;

dZk
t ¼Zk

t kdWt:

�

By utilizing Itô product formula, we get:

dðXZk
t Þ ¼ XdðZk

t Þ þ Zk
t dX þ dXdðZk

t Þ
¼ kXZk

t dWt þ lðX; tÞZk
t dt þ rðX; tÞZk

t dWt

þ krðX; tÞZk
t dt:

According to theorem assumption, we obtain:

dðXZk
t Þ ¼ Zk

t ðXkþ rðX; tÞÞdWt: ð6Þ

It emphasizes that XZk
t is a P-Martingale. h

Therefore, kðtÞ ¼ �lðX;tÞ
rðX;tÞ is the sufficient condition for

following SDEs equivalence:

dX ¼ lðX; tÞdt þ rðX; tÞdWt , dðXZk
t Þ ¼ Zk

t ðXkðtÞ
þ rðX; tÞÞdWt:

ð7Þ

Consequently, by solving the obtained equation in Eq. (6),

we obtain the following result when Zk
0 ¼ 1:

XZk
t ¼

Z t

0

Zk
t ðXkðsÞ þ rðX; tÞÞ dWt þ X0: ð8Þ

By taking mathematical expectation from both sides of

Eq. (8):

EP½XZk
t � ¼ X0 ) EP½X� ¼ X0ðZk

t Þ
�1: ð9Þ

In addition, to compute the variance of this stochastic

process:
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EP½ðXZk
t Þ

2� ¼ X2
0 þ E

Z t

0

ðZk
s Þ

2ðXkðsÞ þ rðX; tÞÞ2 ds
� �

ð by It�o isometry Þ

¼ X2
0 þ

Z t

0

ðZk
s Þ

2
E ðXkðsÞ þ rðX; tÞÞ2

h i� �
ds:

var ðXZk
t Þ ¼ ðZk

t Þ
2
var ðXÞ

¼
Z t

0

ðZk
s Þ

2
E ðXkðsÞ þ rðX; tÞÞ2

h i� �
ds: ð10Þ

Applying (6) and using numerical approximation by EM

method, we have:

DXiZk
ti
¼ Zk

ti
ðXikðtiÞ þ riÞDWi:

Xtiþ1
Zk

tiþ1
¼ XtiZk

ti
þZk

ti
ðXtikðtiÞ þ riÞDWi:

Xtiþ1
¼ ðZk

tiþ1
Þ�1Zk

ti
ðXti þ ðXtikðtiÞ þ riÞDWiÞ:

Direct calculations would lead to the conclusion that:

Rti¼ðZk
tiþ1

Þ�1Zk
ti
¼exp �

Z tiþ1

ti

kðsÞdWsþ
1

2

Z tiþ1

ti

jk2ðsÞjds
� �

:

So the following Milstein recursive method is inferred as a

good numerical method to find Xðtiþ1Þ:

Xtiþ1
¼ RtiðXti þ ðXtikðtiÞ þ riÞDWiÞ

þ 1

2
R2
ti
kðtiÞ XtikðtiÞ þ rið ÞðD2Wi � DtiÞ:

ð11Þ

In example 1, we compare this method with usual Milstein

method in the case that a stochastic differential equation

contains drift and volatility both parts and indicate that this

method could be better in some cases.

Change of variable method

This section intends to analyze the change of variable

method like [9], to get explicitly the solution of arbitrary

SDE:

dX ¼ AðX; tÞdt þ BðX; tÞdWt; Xð0Þ ¼ x:

By finding appropriate variables uðYÞ ¼ X and their con-

ditions so that Y is the answer of a well-known SDEs re-

lated to Martingale processes.

dY ¼ f ðX; tÞdt þ gðX; tÞdWt; yð0Þ ¼ y:

For more explanation and different conditions under which

they are possible, we could see [5, 10]. Now we consider

following various cases.

Case 1 Consider the following SDE:

dY ¼ aðtÞdt þ bðtÞdWt: ð12Þ

Applying Itô formula for uðYÞ ¼ X, to (12), we get:

u0ðaðtÞÞ þ 1

2
u00b2ðtÞ ¼ AðuðYÞ; tÞ;

u0bðtÞ ¼ BðuðYÞ; tÞ:

8<
: ð13Þ

Thus, it concludes that:

aðtÞ
bðtÞ B þ 1

2
BB0 ¼ A ) A

B � 1

2
B0 ¼ aðtÞ

bðtÞ : ð14Þ

Finally, the equation o
oY

A
B � 1

2
B0	 


¼ 0 is necessary condi-

tion to solve an equation via change of variable in (12)

B0 ¼ oB
oX

	 

.

Case 2 Consider the exponential Martingale process SDE

(3):

dY ¼ kðtÞYdWt;

Yð0Þ ¼ Y0:

�
ð15Þ

Applying Itô formula for uðYÞ ¼ X, to (15), we acquire:

u0kY ¼ Bðu; tÞ ¼ kðtÞYB̂ðuÞ or u0 ¼ B̂ðuÞ;
1

2
u00k2Y2 ¼ Aðu; tÞ:

8<
: ð16Þ

So from the last equality, we have B0

kðtÞ � 2A
B ¼ kðtÞ.

Therefore, o
ou

B0
u �

2kðtÞA
B

� �
¼ 0 is necessary condition to

solve SDE, with this change of variable.

Case 3 Consider the well-known equation:

dY ¼ aðtÞYdt þ bðtÞYdWt;

Yð0Þ ¼ Y0:

�
ð17Þ

Which is Black–Scholes equation with exact solution

Y0 ¼ exp

Z t

0

bðsÞdWs þ
Z t

0

aðsÞ � 1

2
b2ðsÞ

� �
ds

� �
:

Applying Itô formula for uðYÞ ¼ X, to (17), we get:

u0aðtÞY þ 1

2
u00b2ðtÞY2 ¼ Aðu; tÞ;

u0YbðtÞ ¼ Bðu; tÞ ¼ bðtÞYB̂ðuÞ:

8<
: ð18Þ

For this reason, u0 ¼ B̂ðuÞ and we have:

aðtÞ
bðtÞ ¼

A
B � 1

2
ðB0

u � bðtÞÞ ¼ cðu; tÞ: ð19Þ

It means that o
ou
cðu; tÞ ¼ 0, is a necessary condition to

solve the initial stochastic differential equation by this

change of variable.

Case 4 Another appropriate and prominent case is as

follows:

dYt ¼ f ðYt; tÞdt þ cðtÞYtdWt;

Yð0Þ ¼ Y0:

�
ð20Þ
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This kind of equations, applying Itô formula on

Xt ¼ YtZc
t ðtÞ

�1
, is converted to a ordinary differential

equations.

Theorem 2 The stochastic differential equations in (20)

given by continuous functions f : R� R ! R and C : R !
R can be written as:

dðYtðZc
t ðtÞÞ

�1Þ ¼ ðZc
t ðtÞÞ

�1
f ðYt; tÞdt; ð21Þ

where Zc
t ðtÞ is an exponential Martingale process.

(See Oksendal [1], Chapter 5, Exercise 17]). To be more

precise, using change of variable V ¼ XðZcðtÞ
t Þ�1

, it is

enough to solve

X0
t ¼ ðZcðtÞ

t Þ�1
f ðXtZcðtÞ

t Þ;
Xð0Þ ¼ X0:

(
ð22Þ

Applying Itô formula for uðYÞ ¼ Mt, in (20) we get:

dMt ¼ M0
tdY þ 1

2
M00

t ðdYÞ
2:

f ðY ; tÞM0
t þ

1

2
M00

t c
2ðtÞY2 ¼ AðMt; tÞ; ð1Þ

cðtÞYM0
t ¼ BðMt; tÞ; uðY0Þ ¼ M0: ð2Þ

8<
:

ð23Þ

According to (23), we have BðMt; tÞ ¼ cðtÞB̂ðMtÞ. Besides,
if the new stochastic differential equation is related to a

Martingale process, we have AðMt; tÞ ¼ 0 and:

f ðY ; tÞ ¼ � c2ðtÞY
2

ðB̂ðMtÞ0 � 1Þ: ð24Þ

Again, applying Itô formula for /ðMtÞ ¼ Vt to Martingale

equation contributes to

dMt ¼ BðMt; tÞdWt ¼ cðtÞB̂ðMtÞdWt;

we can achieve to a novel group of stochastic differential

equation that its solution is as a function of a Martingale

process.

Examples

Example 1 Consider the following SDE

dX ¼ ðaðtÞ
ffiffiffiffi
X

p
Þdt þ ðbðtÞ

ffiffiffiffi
X

p
ÞdWt;

Xð0Þ ¼ X0:

(
ð25Þ

from (9), we can get immediately E½X� ¼ X0ðZk
t Þ

�1
such

that k ¼ aðtÞ
bðtÞ : The graphs of various numerical solutions of

this example by Milstein method, proposed formula (11)

that is drift free and Taylor method of order 2 introduced as

exact solution.

Example 2 Consider the following SDE that is named

Black–Scholes equation.

dX ¼ lðtÞXdt þ rðtÞXdWt:

Using (6), we have:

dðXZk
t Þ ¼ Zk

t ðXkþ rðtÞÞdWt ¼ Zk
t ðXkþ XrðtÞÞdWt

¼ XZk
t ðkþ rðtÞÞdWt:

From this equality we could conclude that XZk
t , is the

exponential Martingale Zkþr
t . Finally, X ¼ ðZk

t Þ
�1Zkþr

t

¼ exp
R t

0
rðtÞ dWs þ

R t

0
ðlðtÞ � r2Þ ds

	 

. This is the exact

solution of Black–Scholes equation.

Example 3 Consider the following stochastic model

dX ¼ 3

4
t2X2dt þ tX3=2dWt;

Xð0Þ ¼ 0:

8<
:
It can be checked that for this equation the necessary

condition holds for this equation. According to (13), we

have u0bðtÞ ¼ tu3=2. Since u is just a function of Y , we

should get bðtÞ ¼ t, u ¼ 4
Y2 and

aðtÞ
bðtÞ ¼ 0 (or aðtÞ ¼ 0). Thus,

dY ¼ tdWt and Y ¼
R t

0
sdWs þ Yð0Þ, and ultimately

X ¼ uðYÞ ¼ 4
R t

0
sdWs þ Yð0Þ

	 
�2
, is the exact solution

(Fig. 1).

Example 4 Consider the following SDE model

dX¼1

2
ðc2ðtÞrX2r�1�c2ðtÞXrÞdtþcðtÞXrdWt; ðr 6¼�1Þ

Xð0Þ¼0:

8<
:
First of all, we check the necessary condition in case 2:

B0
u�

2A
B ¼cðtÞrur�1�c2ðtÞru2r�1�c2ðtÞur

cðtÞur ¼cðtÞ¼kðtÞ:

Utilizing the first equation in Eq. (16), u0kðtÞY¼cðtÞur.
Hence, lnY¼ u�rþ1

�rþ1
, that r 6¼�1, Yð0Þ¼1 and uð1Þ¼0.

Therefore, the exact solution is as follows:

X ¼ uðYÞ ¼ ð1� rÞ
Z t

0

cðsÞ; dWt �
1

2

Z t

0

c2ðsÞds
� �� � 1

1�r

:

In a particular case, if r ¼ 1
2
, we reach the following model:

dX ¼ c2ðtÞ
4

� c2ðtÞ
ffiffiffiffi
X

p� �
dt þ cðtÞ

ffiffiffiffi
X

p� �
dWt;

X ¼ 1

4

Z t

0

cðtÞdWt �
1

2

Z t

0

c2ðsÞds
� �2

:

Example 5 Consider the following SDE model:
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dX ¼ X3dt þ X2dWt;

Xð0Þ ¼ 1:

�
ð26Þ

First of all, we check the necessary condition in Case 3:

cðu; tÞ ¼ u� 1

2
ð2u� bðtÞÞ ¼ aðtÞ

bðtÞ ¼
bðtÞ
2

:

From (18), we should have u0bðtÞY ¼ u2. Therefore, if

bðtÞ ¼ 1, we can get immediately u ¼ �1
lnY

and aðtÞ ¼
b2ðtÞ
2

¼ 1
2
, so that Y is the solution of following equation.

dY ¼ 1

2
Ydt þ YdWt;

Yð0Þ ¼ 1

e
:

8><
>:
Therefore, according to geometric Brownian motion pro-

cess, the exact solution is determined

Y ¼ 1
e
exp

R t

0
dWt

	 

¼ eWðtÞ�1, and finally exact solution is

equal to X ¼ 1
1�WðtÞ.

Example 6 Consider the stochastic model as follows:

dZt ¼
�Z2

t

2
� ðln 2ÞZtdt þ ðln 2þ ZtÞdWt;

Ztð0Þ ¼ 0:

8<
: ð27Þ

First, by applying Girsanov theorem so that

W
Q
t ¼ Wt þ ðln 2Þ2

2
t, we reach the following equation:

dZt ¼ �ðln 2Þ2

2
þ�Z2

t

2
� ðln 2ÞZtdt þ ðln 2þZtÞdWQ

t ;

Ztð0Þ ¼ 0:

8<
:

ð28Þ

Applying Itô formula for Xt ¼ eZt , to the last equation, we

obtain the following drift-free stochastic equation:

dXt ¼ Xt lnð2XtÞdWQ
t ;

Xtð0Þ ¼ 1:

(
ð29Þ

according to (23), we have Yu0 ¼ u lnð2uÞ. Consequently,
Y ¼ lnð2XÞ

2
, X ¼ uðYÞ ¼ 1

2
e2Y .

From (24), we have f ¼ �Y2 and consequently, the

exact solution of corresponding SDE is X ¼ 1
2
e2Y such that

its related stochastic equation is:

dY ¼ �Ytdt þ YtdW
Q
t ;

Yð0Þ ¼ lnð2Þ
2

:

8<
:
As we know, the exact solution of this linear stochastic

differential equation is as follows:

Yt ¼
lnð2Þ
2

exp WQ
t � 3t

2

� �
: ð30Þ

Finally, the exact solution of this example is:

a b

Fig. 1 a The graphs of the numerical solutions of Example 1 by

Milstein method, proposed formula (11) and Taylor method of order 2

introduced as exact solution. In this example, it is considered that

drift, volatility and initial condition respectively are:

aðtÞ ¼ �0:2; bðtÞ ¼ �1:0, X0 ¼ 1:5, maturity time T ¼ 2 and number

of points N ¼ 30. b The graphs of absolute error
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Zt ¼ lnðXtÞ ¼ ln
1

2
e2Yt

� �

¼ 2Yt � ln 2 ¼ ln 2 exp WQ
t � 3t

2

� �
� 1

� �
:

ð31Þ

Conclusions and remarks

In this paper, a couple of analytical solutions of some de-

termined set of stochastic differential equations was indi-

cated via making the Martingale process from a stochastic

process. Converting stochastic differential equations to

ordinary ones as another suitable method was posed. In-

deed, it is tried to omit diffusion part of stochastic equation

by applying Martingale processes. In addition, change of

variable method on SDEs related to Martingale process-

eswas discussed. Last of all with some examples, we

analyzed and obtained its exact solutions and in some cases

their solutions compared with other numerical methods.
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