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Abstract In this article, we introduce a recurrence for-

mula which only involves two adjacent values of the Rie-

mann zeta function at integer arguments. Based on the

formula, an algorithm to evaluate f-values (i.e., the values

of Riemann zeta function) at odd integers from the two

nearest f-values at even integers is posed and proved. The

behavior of the error bound is Oð10�nÞ approximately

where n is the argument. Our method is especially powerful

for the calculation of Riemann zeta function at large ar-

gument, while for smaller ones, it can also reach spec-

tacular accuracies such as more than ten decimal places.
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Introduction

Zeta functions of various kinds, such as Hurwitz zeta

function, Epstein zeta function and Dirichlet L-function, are

all-pervasive objects in modern mathematics, especially in

analytical number theory, and among which the prototype

zeta function is the famous Riemann zeta function. It is

classically defined as the sum of the infinite series [1–3]

fðsÞ ¼
X1

n¼1

1

ns
ð1Þ

with the complex variable s ¼ rþ it. Specially, the series

converges if r ¼ Re s[ 1. We can extend fðsÞ from s with

Re s[ 1 to s with Re ðsÞ[ 0; s 6¼ 1 by the following for-

mula

gðsÞ ¼
X1

n¼1

ð�1Þnþ1

ns
¼ 1� 21�s

� �
fðsÞ ð2Þ

where gðsÞ is the Dirichlet eta function or alternating eta

function.

Historically, people prefer to study the closed form of

the Riemann zeta function at positive integer arguments in

that those special values seem to dictate the properties of

the objects they associated. In condensed matter physics for

instance, the famous Sommerfeld expansion, which is

useful for the calculation of particle number and internal

energy of electrons, involves Riemann zeta function at

even integers [4], while the spin–spin correlation functions

of isotropic spin-1=2 Heisenberg model are expressed by

ln 2 and Riemann zeta functions with odd-integer argu-

ments [5]. It was, without doubt, a profound discovery of

Euler in 1736 to work out the prolonged Basel problem [6]

fð2Þ ¼ p2

6
ð3Þ

superbly. It is well known that for positive even-integer

arguments, the Riemann zeta function can be expressed

explicitly as [7]
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fð2nÞ ¼ ð�1Þnþ1ð2pÞ2n

2ð2nÞ! B2n ð4Þ

in terms of the Bernoulli numbers Bn. On the contrary,

however, the explicit formula for Riemann zeta function at

odd values is difficult if not fundamentally impossible to

obtain. Euler himself once conjectured that fð2nþ 1Þ ¼
cðnÞp2nþ1 and c involve the irrational constant gð1Þ ¼ ln 2

[8]. This suggests that Riemann zeta function at odd inte-

gers produces a recurrence relation that is self-recursive.

Even up to now, for positive odd-integer arguments, the

Riemann zeta function can only be expressed by series and

integral [see (35) and (36) for detail]. One possible integral

expression is [9]

fð2nþ 1Þ ¼ ð�1Þnþ1ð2pÞ2nþ1

2ð2nþ 1Þ!

Z 1

0

B2nþ1ðxÞ cotðpxÞdx

ð5Þ

where B2nþ1ðxÞ are Bernoulli polynomials. A relevant

aspect is that, for Riemann zeta function, the celebrated

Goldbach–Euler theorem[10] assumes the elegant form

X1

n¼2

fracðfðnÞÞ ¼ 1; ð6Þ

where fracðxÞ ¼ x� ½x� denotes the fractional part of the

real number x. It turns out that

X1

n¼1

fracðfð2nÞÞ ¼ 3

4
;
X1

n¼1

fracðfð2nþ 1ÞÞ ¼ 1

4
: ð7Þ

Indeed, the formulas (4) and (5), along with (7) do reveal

somewhat similarity for the values of Riemann zeta

function at even and odd arguments. Meanwhile, the

calculation of Riemann zeta function and related series is

a hot topic in computational mathematics. The traditional

methods are Euler–Maclaurin formula and Riemann–Sie-

gel formula, and algorithms are still being developed in

earnest ever since [11–14]. Typically, a particular nu-

merical method is limited to a special domain. Therefore,

when concentrating on Riemann zeta function at odd in-

tegers, a special method should be constructed in view of

the connection of Riemann zeta function values between

odd and even integers.

In this paper, we mainly obtain a recurrence formula

(22) relating to the Riemann zeta function and based on

which we construct an algorithm for the calculation of

the Riemann zeta function at odd integers. In addition,

numerical calculation implies that the algorithm can

reach considerable accuracies with small odd-integer ar-

guments, not to speak of larger ones. Quantificationally,

the behavior of the error bound is Oð10�nÞ where n is

the argument.

Notations and preliminaries

We begin by recalling the definition of the Bernoulli

polynomials BnðxÞ and their basic properties in a nutshell to
render the paper essentially self-contained. The generating

function of the Bernoulli polynomials BnðxÞ is [1–3]
tetx

et � 1
¼

X1

n¼0

BnðxÞ
n!

tn: ð8Þ

Taking a derivative with respect to x on both sides of (8),

we find that

B0
nðxÞ ¼ nBn�1ðxÞ: ð9Þ

Bernoulli polynomials can also be expressed explicitly

from Bernoulli numbers

BnðxÞ ¼
Xn

k¼0

n

k

� �
Bkx

n�k: ð10Þ

For convenience, we introduce two kinds of reduced

Bernoulli numbers (RBNs), one relates to the even-labeled

Bernoulli numbers (denoted by þ)

Bþ
n ¼ ð�1Þnþ1

B2n; ð11Þ

and another relates to the odd-labeled Bernoulli polyno-

mials (denoted by �)

B�
n ¼ ð�1Þnþ1

Z 1

0

B2nþ1ðxÞ cotðpxÞdx: ð12Þ

In this section, we will demonstrate the asymptotic repre-

sentation of the two kinds of RBNs in a uniform framework

and establish their integral representation subsequently.

Asymptotic representations of RBNs

The asymptotic expressions of Bernoulli polynomials at

even and odd subscript are, respectively [17]

ð�1Þnþ1 ð2pÞ2n

2ð2nÞ!B2nðxÞ� cosð2pxÞ; ð13aÞ

ð�1Þnþ1 ð2pÞ2nþ1

2ð2nþ 1Þ!B2nþ1ðxÞ� sinð2pxÞ: ð13bÞ

Moreover, the Bernoulli polynomials can also be ex-

pressed in a stronger form based on Fourier sine and cosine

series expansion [18]

B2nðxÞ ¼ ð�1Þnþ1 2ð2nÞ!
ð2pÞ2n

X1

k¼1

cosð2pkxÞ
k2n

; ð14aÞ

B2nþ1ðxÞ ¼ ð�1Þnþ1 2ð2nþ 1Þ!
ð2pÞ2nþ1

X1

k¼1

sinð2pkxÞ
k2nþ1

: ð14bÞ
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Obviously, (13a, b) is just the corollary of (14a, b). Joining

together we, therefore, obtain the asymptotic behavior of

RBNs

Bþ
n ¼ ð�1Þnþ1

B2nð0Þ�
2ð2nÞ!
ð2pÞ2n

ð15aÞ

B�
n ¼ ð�1Þnþ1

Z 1

0

B2nþ1ðxÞ cotðpxÞdx�
2ð2nþ 1Þ!
ð2pÞ2nþ1

:

ð15bÞ

where we use the fact that
R 1

0
sinð2pxÞ cotðpxÞdx ¼ 1.

Integral representations of RBNs

Let us consider two auxiliary integrals [7]

Icðn;mÞ ¼
Z 1

0

B2nðtÞ cosðmptÞdt ð16aÞ

Isðn;mÞ ¼
Z 1

0

B2nþ1ðtÞ sinðmptÞdt ð16bÞ

with m and n are integers and n� 1. Specially, when n ¼ 1,

direct computation shows that

Icð1;mÞ ¼
Z 1

0

�
t2 � t þ 1

6

�
cosðmptÞdt

¼
0; m ¼ 1; 3; 5; . . .

2!

ðmpÞ2
; m ¼ 2; 4; 6; . . .

;

8
<

:

ð17aÞ

Isð1;mÞ ¼
Z 1

0

t3 � 3

2
t2 þ 1

2
t

� �
sinðmptÞdt

¼
0; m ¼ 1; 3; 5; . . .

3!

ðmpÞ3
; m ¼ 2; 4; 6; . . .

:

8
<

:

ð17bÞ

By virtue of (9) and integrating by parts twice, readily

yields

Icðn;mÞ ¼ � ð2nÞð2n� 1Þ
ðmpÞ2

Icðn� 1;mÞ ð18aÞ

Isðn;mÞ ¼ � ð2nþ 1Þð2nÞ
ðmpÞ2

Isðn� 1;mÞ: ð18bÞ

Combining (17a, b) and (18a, b), we find that

Icðn;mÞ ¼
ð�1Þnþ1ð2nÞ!

ðmpÞ2n
ð19aÞ

Isðn;mÞ ¼
ð�1Þnþ1ð2nþ 1Þ!

ðmpÞ2nþ1
ð19bÞ

hold if m is even. Immediately, the integral representations

of the two RBNs Bþ
n and B�

n are

Bþ
n � 2ð�1Þnþ1

Icðn; 2Þ ð20aÞ

B�
n � 2ð�1Þnþ1

Isðn; 2Þ: ð20bÞ

Algorithm to calculate the Riemann zeta function

Mathematically, Riemann zeta function is said to be

monotonically decreasing since its values are only falling

and never rising with increasing values of s with s� 2.

Besides, fð2Þ ¼ p2
6
, fðþ1Þ[ 1, thus 0\fðsÞ � 1\1.

Analogously, one can show that 0\ 1
gðsÞ � 1\1. For

brevity, we denote the reciprocal function as below

qðsÞ � frac
� 1

gðsÞ

�
¼ 1

gðsÞ � 1: ð21Þ

Now that what we concerned most is the values of the

Riemann zeta function at integers for the moment, the

asymptotic behavior of the ratio of the reciprocal func-

tion (21) at odd integers and even integers interests us.

Motivated by (6) and (7), we manage to demonstrate a

formula, the so-called recurrence formula (not in a strict

sense, though), on condition that the argument is a

positive integer. Motivated by the recurrence, we manage

to construct an algorithm to compute the Riemann zeta

function.

Demonstration of the recurrence formula

Theorem 1 If n is a positive integer such that n� 1, the

recurrence relation holds

lim
n!1

qð2nþ 1Þ
qð2nÞ ¼ 1

2
: ð22Þ

Proof Using (4) and (5) and the definition of reciprocal

function (21), we have

qð2nþ 1Þ
qð2nÞ ¼ ð2nþ 1Þ!� ð22n � 1Þp2nþ1B�

n

ð2nÞ!� ð22n�1 � 1Þp2nBþ
n

Bþ
n

pB�
n

22n�1 � 1

22n � 1
:

ð23Þ

Since the limitation of the rightmost term is exactly equal

to 1=2 if n is large enough, what we want to prove is

ð2nþ 1Þ!� ð22n � 1Þp2nþ1B�
n

ð2nÞ!� ð22n�1 � 1Þp2nBþ
n

Bþ
n

pB�
n

� 1 ð24Þ

or equivalently

ð2nþ 1Þ!
p2nþ1

1

B�
n

� ð2nÞ!
p2n

1

Bþ
n

� 22n�1: ð25Þ

From the asymptotic formulae (15a) and (b) of the two

kinds of RBNs, we find that, without any difficulty, we
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have finished the demonstration of the recurrence formula

of the Riemann zeta function. h

As a matter of fact, we can extend the validity of (22)

from positive integers to positive real numbers straight-

forward. We, therefore, can obtain the asymptotic behavior

of Riemann zeta function as

1

fðsÞ �
2s�1 � 1

22s�3

� 2

fð2Þ � 1
�
þ 2s�1 � 1

2s�1
: ð26Þ

using (22). The application of (26) can be diverse, here we

just pick a example relating to prime number theorem. The

positive integer x is s-free if and only if in the prime fac-

torization of x, no prime number occurs more than s� 1.

Indeed, if Qðx; sÞ denotes the number of s-free integers

(e.g., 2-free integers being square-free integers) between 1

and x, one can show that[19]

Qðx; sÞ ¼ x

fðsÞ þ Oð
ffiffiffi
xs

p
Þ; ð27Þ

therefore, we find that the asymptotic density of s-free

integers Qðx; sÞ=x� 1
fðsÞ is nothing but (26).

Another intriguing issue is to what degree can (26) re-

veals its ability to obtain the f-values. Figure 1 is thus

plotted as follow.

The fact that all the stars ‘‘*’’ lie on the solid curve

indicates that (26) may be a suitable candidate for the

calculation of Riemann zeta function. The emergence of

the abnormal slope between s ¼ 3 and s ¼ 4 in the inserted

figure, however, implies that any f-value obtained from its

nearest neighbors should be much more accuracy. We,

therefore, come up with a satisfactory proposal which is

postponed until next subsection.

Basic ideas for the algorithm

Abundant methods to evaluate the fð2nÞ have appeared in

the mathematical literatures from now and then ever since

Euler’s seminal work. In contract, the explicit formula for

odd-argument f-values remains to be an open problem

though some results shed light on it [15, 16]. By analogy

to fð2nÞ, several authors have established the series and

integral representations of fð2nþ 1Þ, which, to some de-

gree, provides some perspectives on the difficulty of

evaluating fð2nþ 1Þ as opposed to fð2nÞ. From the

viewpoint of numerical method, one natural way to con-

struct the corresponding algorithm to evaluate the odd-

argument Riemann zeta function is by virtue of the even-

argument f-values near to them. In the current paper, only

the two nearest f-values are taken into consideration

currently for simplicity. When n is large enough, (22) can

be rewritten as

qlð2nþ 1Þ� 1

2
qð2nÞ ð28aÞ

qrð2nþ 1Þ� 2qð2nþ 2Þ ð28bÞ

where qlð2nþ 1Þ and qrð2nþ 1Þ represent two different

representations of the asymptotic behavior of qð2nþ 1Þ.
Judging by appearance, One can use any of the formula

above to calculate the Riemann zeta function at odd inte-

gers. When considering that those two formulae give the

upper and lower bound of the zeta-values at odd integers

(see Theorem 2), we come up with the idea that we can

combine them together by a special method. It happens to

us that there may exist a somewhat mysterious map from

fð2nÞ and fð2nþ 2Þ to fð2nþ 1Þ, which will ensure us to

obtain the approximation values of fð2nþ 1Þ with higher

precision. Let us give a proposition relating to Dirichlet eta

function first before we move forward to give another

theorem.

Lemma 1 If n is a positive integer such that n� 1, the

two inequalities hold

4

gð2nþ 2Þ �
1

gð2nÞ [ 3 ð29Þ

gð2nÞ[ 22n�1 � 2

22n�1 � 1
ð30Þ

Those two inequalities are quite new to the authors

because we have not seen them in any literature or

monograph before. However, we are not intended to give

the details here since the demonstration is rather

Fig. 1 Asymptotic behavior of Riemann zeta function. The solid line

represents the approximate values ðfapðsÞÞ obtained by (26), while the

stars represent the accurate values ðfacðsÞÞ when s is an integer. The

crosses in the inserted figure indicate the base 10 logarithm of the

absolute errors(�ðsÞ ¼ lg
�
jfapðsÞ � facðsÞj

�
) at integers
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elementary. The theorem below holds once we take ad-

vantage of Lemma 1.

Theorem 2 If n is a positive integer such that n� 1, the

inequality holds

flð2nþ 1Þ[ frð2nþ 1Þ[ 1 ð31Þ

where flð2nþ 1Þ and frð2nþ 1Þ correspond to qlð2nþ 1Þ
and qrð2nþ 1Þ, respectively.

Since Riemann zeta function is a monotonic decreasing

function, the exact value fð2nþ 1Þ is just between flð2nþ
1Þ and frð2nþ 1Þ for any given positive integer n. For the

benefit of accuracy, we regard the geometric mean values

of (28a) and (b) as the approximate values of the reciprocal

function qð2nþ 1Þ, namely

qð2nþ 1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð2nÞqð2nþ 2Þ

p
ð32Þ

which is the most valuable ingredient of our algorithm.

The basic steps for the calculation of fð2nþ 1Þ are

presented as follow. First, qð2nÞ and qð2nþ 2Þ should be

calculated from (4), (2) and (21) in sequence. Second, the

value of qð2nþ 1Þ is ready to be obtained in light of (32).

Lastly, the ultimate aim, i.e., fð2nþ 1Þ is just at hand from

(21) and (2), reversely. Our algorithm does not bother

circulation of any kind, it just looks like a formula, there-

fore, we refer it as the direct formula method.

To start our method, we need to know some f-values at
even integers. For example, fð2Þ and fð4Þ should be

available to get fð3Þ. We can obtain fð2nÞ through (4)

systematically for small argument. However, it is almost

impossible to obtain Bernoulli numbers by the ordinary

recursive methods thus we hardly know the values of

fð2nÞ, if the argument is large enough. Many methods for

computing Bernoulli numbers have been invented. David

Harvey introduced an efficient multimodular algo-

rithm [20] which ensures us to obtain the Bernoulli num-

bers Bn at n ¼ 108. However, one can also use the intrinsic

function Zeta[s] in Mathematica since it is also based on an

efficient algorithm. Therefore, for convenience, our com-

putation platform is mainly on Mathematica and we regard

those values as benchmarks.

Calculation of Riemann zeta function at odd integers

The calculation of Riemann zeta function plays an essential

role in the study of number theory and associated subjects

such as statistical physics and condensed matter physics.

Various approaches to accomplish this task have been

proposed [11–13, 21], especially for the evaluation of zeta

function at integer arguments or in the critical strip (for the

computation of Riemann’s zeros). Most of the methods

available consist of using integral forms of some particular

functions or recursive series forms. Quite recently, Babo-

lian et al. transform fðsÞ to some appropriate integral forms

and introduce a method to compute the Riemann zeta

function based on Gauss–Hermite and Gauss–Laguerre

quadratures [11]. Numerical result shows that 20 points are

capable of producing an accuracy of seven-decimal place

for small arguments. Besides, many rapidly converging

series for fð2nþ 1Þ have been introduced by Srivastava in

a review article [13] and by other authors [12, 14]. In this

section, we first give some numerical examples according

to our method to illustrate its accuracy, then we compare

our method to two selected ones to show that our method is

especially powerful to calculate the f-values at large odd-

integer arguments.

Numerical test and error bound of the algorithm

We regard the f-values obtained by Mathematica as

benchmarks. The result of the Riemann zeta function at

odd integers with n ¼ 1; 2; . . .; 10 obtained by our method

(approximate value) is presented in Table 1. The accuracy

values and the absolute errors are also presented at the

same time.

Table 1 tells us that, the idea that making the geometric

mean instead of any of the upper or lower bound (see

Theorem 2) be the best estimate of the Riemann zeta

function dramatically reduces errors and satisfactory ac-

curacy such as twelve decimal places in the tenth odd ar-

gument of the Riemann zeta function can be achieved. It is

interesting to find that only the Apéry’s constant fð3Þ
sightly larger than the approximate value obtained by our

method. It is also funny to see the errors present an upside-

down stair configuration, which implies that the error de-

clines about ten times as long as the argument n increase 1.

In Table 2, we present the absolute errors �ðnÞ versus n,
for the purpose of exploring the error bound when the ar-

gument n is large enough.

Table 1 Comparison between accurate values facð2nþ 1Þ and ap-

proximate values facð2nþ 1Þ

n fapð2nþ 1Þ facð2nþ 1Þ Errors

1 1.201335874256 1.202056903160 -0.007210289040

2 1.036972837734 1.036927755143 0.000045082590

3 1.008365209797 1.008349277382 0.000015932415

4 1.002011075857 1.002008392826 0.000002683031

5 1.000494555053 1.000494188604 0.000000364486

6 1.000122758824 1.000122713348 0.000000045476

7 1.000030593607 1.000030588236 0.000000005371

8 1.000007637815 1.000007637198 0.000000000617

9 1.000001908283 1.000001908213 0.000000000070

10 1.000000476941 1.000000476933 0.000000000008
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It is clear that, fromTable 2, the error is of the orderOð10�nÞ
approximately. Using least square method, we notice that

lgð�ðnÞÞ ¼ �0:9542n� 1:6884: ð33Þ

This formula suggests that when the argument of Riemann

zeta function is large enough, our algorithm should be

powerful enough to obtain the f-values at odd integers.

Comparison with the existed methods

In this subsection, we aim to compare our algorithm with the

already existed ones, namely the Gauss–Hermite quadrature

(Integral method, see [11], Corollary 3.1) and rapid con-

verging series (Series method, see [13, eq.(3.30)]). The

Gauss–Hermite quadrature formula has the form [11]

Z 1

�1
f ðxÞe�x2dx ¼

XN

k¼1

wkf ðxkÞ þ RN ð34Þ

where xk is one of the zeros of HNðxÞ, the Hermite poly-

nomial of degree N, and wk ¼ � 2Nþ1N!
ffiffi
p

p

H0
N
ðxkÞHNþ1ðxkÞ is the corre-

sponding weight. RN ¼ N!
ffiffi
p

p

2N ð2NÞ! f
2NðgÞ,g 2 ð�1;1Þ is,

obviously, the error bound of the above integral. Riemann

zeta function is such an amazing function that it can be

transformed into [11]

fðsÞ ¼

R1
�1 jxj2s�1

e�x2=
�
1� e�x2

�� �
dx

R1
�1 jxj2s�1

e�x2dx
ð35Þ

whose numerator and denominator are of the form pre-

sented in (34). Among all the series representations of

Riemann zeta function, the series below

fð2nþ 1Þ ¼ ð�1Þn�1ð2pÞ2n

ð2nÞ!½22nð2n� 3Þ � 2nþ 1� �

	
Xn�1

m¼1

ð�1Þm
2n� 1

2m� 2

� �
ð2mÞ!ð22m � 1Þ

ð2pÞ2m
fð2mþ 1Þ

"

þ 2
X1

k¼0

fð2kÞ
ð2k þ 2n� 1Þðk þ nÞð2k þ 2nþ 1Þ22k

#

ð36Þ

converges most rapidly as pointed out by Srivastava [13].

When n ¼ 1 for instance, the error bound R
ðsÞ
N of the N-th

partial sum of the infinite series in (36) satisfies

jRðsÞ
N j ¼ 4p2

15

X1

k¼Nþ1

fð2kÞ
ð2k þ 1Þðk þ 1Þð2k þ 3Þ4k

\
4p2

15

fð2N þ 2Þ
ð2N þ 3ÞðN þ 2Þð2N þ 5Þ

X1

k¼Nþ1

1

4k

¼ 4p2

45

1

ð2N þ 3ÞðN þ 2Þð2N þ 5Þð4N � 1
2
Þ

ð37Þ

where we have used the fact that fðsÞ\ 1
1�21�s since

gðsÞ\1. If N ¼ 25, the error bound is jRðsÞ
25 j\1:0	 10�20,

which is superior to other rapid series jR25j\0:9	 10�18

as noted in [8, 12]. Specially, when N is larger than some

typical numbers, the asymptotic behavior of (37) reads

lgðjRðsÞ
N jÞ � � 2 lg 2ðN þ 1Þ � 3 lgN: ð38Þ

The accuracy of the latter two methods relies on the

number of zeros (denoted as N1) of the associated poly-

nomial (in this occasion, it is Hermite polynomial) and the

terms (denoted as N2) of partial sum of the infinite series,

respectively. We set two integers to be the same value, i.e.,

N1 ¼ N2 ¼ 25 since the corresponding methods are both

efficient as have been declared by many Mathematicians.

The behaviors of the error bound of integral method and

series method, as can be seen from Table 3, are totally dif-

ferent.When the argument increases, the errors of the former

decrease exponential from a high level, while the latter

maintain at a nearly constant low level despite of the varia-

tion of n. Our method exhibits the worst results for small

arguments, but the errors decrease dramatically with argu-

ment increasing. It outstrips integration method and series

method before n ¼ 12 and n ¼ 21, respectively. Our method

Table 2 The errors of fð2nþ 1Þ based on our method

n Errors n Errors

1	 102 1:05	 10�97 1	 104 1:04	 10�9544

2	 102 3:94	 10�193 2	 104 3:92	 10�19087

5	 102 2:10	 10�479 5	 104 2:08	 10�47714

1	 103 1:59	 10�956 1	 105 1:56	 10�95426

2	 103 9:09	 10�1911 2	 105 8:75	 10�190851

5	 103 1:70	 10�4773 5	 105 1:55	 10�477123

Table 3 Errors of three different methods for fð2nþ 1Þ

n Integral method Series method (	10�20) Our method

3 2:42	 10�7 3:17434484 1:50	 10�5

6 1:21	 10�10 3:14630746 4:52	 10�8

9 4:31	 10�11 3:14592124 4:99	 10�11

12 1:36	 10�12 3:14591532 9:79	 10�14

15 7:40	 10�13 3:14591522 1:35	 10�16

18 6:20	 10�13 3:14591522 1:85	 10�19

21 8:46	 10�14 3:14591522 2:54	 10�22

24 7:99	 10�15 3:14591522 3:48	 10�25

27 7:77	 10�16 3:14591522 4:78	 10�28

30 1:11	 10�16 3:14591522 6:55	 10�31
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superior to them absolutely afterwards. To reach the accu-

racy obtained by our method, the number of nodes and terms

in the above two methods should be augmented largely. In

the series method for instance, the terms of the order n in the

infinity series should be included according to (33) and (38).

Obviously, it is almost impossible to carry on within the

limited CPU time when n is an astronomical number.

Conclusion

In summary, we first introduce two kinds of reduced

Bernoulli numbers (RBNs) and prove their asymptotic be-

haviors in an uniform framework, and their series and inte-

gral representations are available at the same time. What is

more, we discover and prove a recurrence formula (22) of the

Riemann zeta function original and construct an algorithm to

evaluate the Riemann zeta function at odd integers based on

it. The idea of ourmethod is quiet simple, but it turns out to be

a competent algorithm. The behavior of the error bound �ðnÞ
is governed by lgð�ðnÞÞ ¼ �0:9542n� 1:6884 or �ðnÞ ¼
Oð10�nÞ approximately, which, of course, suggests that our

method is especially suit for the calculation of f-values at
large odd-integer arguments. Therefore, our results can also

work as benchmarks to test the accuracy of other related

algorithms. However, more works should be carried on to

improve the accuracy at small arguments in future. Re-

markably, the recurrence formula (22) is likely to act as a

touchstone to explore the closed form of the Riemann zeta

function at positive integers since it witnesses the connection

between f-values at odd integers and even integers.
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