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Abstract Assume that two independent random samples

are distributed according to a log-logistic distribution

(LLD). In this study, the score functions for the locally

most powerful rank test were derived for the location and

scale parameters. The Wilcoxon rank-sum test was shown

to be locally most powerful rank test for the LLD. The

asymptotic efficiency of the Wilcoxon rank-sum test was

derived and compared with that of the modified Wilcoxon

rank-sum test for the LLD.

Keywords Asymptotic efficiency � Locally most

powerful rank test � Log-logistic distribution � Modified

Wilcoxon rank sum test � Wilcoxon rank sum test

Introduction

Testing hypotheses is one of the most important problems in

performing nonparametric statistics. Various nonparametric

statistics have been shown to be a locally most powerful

rank test (LMPRT) for a specific distribution over the course

of many years. For example, [9] obtained the LMPRTs for

comparing two possibly censored samples for a given

alternative, by deriving scores for censored and uncensored

observations. In finance literature, the Lévy distribution

arises as a special case for describing security price returns

by mixtures of distributions. Runde [13] derived the score

functions of LMPRTs for the location and scale parameters

with the Lévy distribution. Hájek et al. [5] discussed the

LMPRTs for various distributions. The most powerful test

for correlation is well-known, and the LMPRT uses Fisher-

Yates expected normal scores. However, the bivariate nor-

mal distribution does not fit some types of data. Conover [2]

considered the LMPRTs for correlation with four examples.

Pandit [11] investigated the LMPRT for testing indepen-

dence against a weighted contamination alternative. Few

studies have discussed the LMPRT when only a fraction of

treated subjects respond to treatment; however, [12]

examined the LMPRT for several of these case types.

Let {Xij; i ¼ 1; 2; j ¼ 1; . . .; ni} be two random sam-

ples of size n1 and n2 independent observations, each of

which have a continuous distribution described as F1 and

F2, respectively. Assume that Xij is distributed according to

a log-logistic distribution (LLD); see e.g., [14], with the

probability density function (pdf) f ðxÞ and the cumulative

distribution function (cdf) FðxÞ as follows:

fiðxÞ ¼
bifðx � liÞ=aigbi�1

ai½1 þ fðx � liÞ=aigbi �2
;

FiðxÞ ¼
ðx � liÞb

ab þ ðx � liÞb
; ai; bi [ 0; x [ li;

respectively. The parameters l; a and b denote the loca-

tion, scale and shape parameters, respectively. Note that

the median of the LLD is a þ l. This distribution is a

special case of Burr’s type-XII distribution; see e.g., [1]. In

addition, the LLD is a special case of the kappa distribu-

tions introduced by [6]. The LLD is often applied to eco-

nomics as a simple model for wealth or income distribution

[3]. Note that the LLD is known as the Fisk distribution in

economics. Additionally, the LLD is used in survival

analysis as a parametric model for events whose hazard

rate increases initially and decreases later.

On the basis of these data types, we proposed the fol-

lowing hypothesis:
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H0 : F1ðxÞ ¼ F2ðxÞ against HL : F1ðxÞ ¼ F2ðx � lÞ;
l 6¼ 0

or

H0 : F1ðxÞ ¼ F2ðxÞ against HS : F1ðxÞ ¼ F2ðx=aÞ;
a [ 0; a 6¼ 1:

For a recent comparison study of many nonparametric tests for

scale, see [8]. To test these hypotheses, we developed a linear

rank statistic. Let Vj ¼ 0 if the jth smallest of the N ¼
n1 þ n2 observations is from X1j; otherwise, Vj ¼ 1. This

provides a general two-sample linear rank statistic, as follows:

T ¼
XN

j¼1

aðjÞVj ¼
Xn2

j¼1

aðRjÞ:

Herein, Rj denotes the rank of sample X2j. In Sect. 2, we

derive a LMPRT for HL and HS. Since finite sample sizes

are used in practice, we investigate a small sample power

of the linear rank tests for the LLD in Sect. 3. Finally,

conclusions are presented in Sect. 4.

Locally most powerful linear rank test

In this section, we derive the LMPRT for HL and HS.

Assume that f is absolutely continuous and that
Z

f 0ðxÞj jdx \1:

The LMPRT for HL is given by [5], as follows:

TL ¼
XN

j¼1

aNðj; f ÞVj ¼
XN

j¼1

E wLðUðj:NÞ; f Þ
� �

Vj

¼
XN

j¼1

E �
f 0ðF�1ðUðj:NÞÞÞ
f ðF�1ðUðj:NÞÞÞ

� �
Vj;

where Uð1:NÞ \ � � �\ UðN:NÞ are ordered statistics from the

uniform distribution in the interval ½0; 1�. In addition, the

LMPRT for HS is given by [5] as

TS ¼
XN

j¼1

aNðj; f ÞVj ¼
XN

j¼1

E wSðUðj:NÞ; f Þ
� �

Vj

¼
XN

j¼1

E �1 � F�1ðUðj:NÞÞ
f 0ðF�1ðUðj:NÞÞÞ
f ðF�1ðUðj:NÞÞÞ

� �
Vj:

By Theorem 3.1.2.4 in [5], the score function aNðj; f Þ can

be rewritten as

aNðj; f Þ ¼ N
N � 1

j � 1

� �Z 1

0

wðu; f Þuj�1ð1 � uÞN�j
du:

ð1Þ

LMPRT for the location parameter

In this section, the score function of the LMPRT is derived

for the LLD for the location parameter. The standard LLD

is given as follows:

f ðxÞ ¼ 1

ð1 þ xÞ2
and FðxÞ ¼ x

1 þ x
: ð2Þ

From (2), the first derivative of pdf and the inverse of cdf

for the standard LLD are, respectively, given by

f 0ðxÞ ¼ � 2

ð1 þ xÞ3
and F�1ðxÞ ¼ x

1 � x
:

The score function wLðUðj:NÞ; f Þ for HL is obtained from the

following:

wLðUðj:NÞ; f Þ ¼ 2ð1 � Uðj:NÞÞ; ð3Þ

and

XN

j¼1

aNðUðj:NÞ; f ÞVj ¼ 2

N þ 1

Xn2

j¼1

ðN þ 1 � RjÞ ð4Þ

using (1). (4) denotes the inverse function of Rj. Thus, the

Wilcoxon rank-sum test is the LMPRT for HL with LLDs.

Note that the LMPRT is valid in the neighborhood close to

the null hypothesis. In many cases, the asymptotic efficiency

of the LMPRT is the highest for the adjusted distribution.

However, moderate to large sample sizes are required to

assume a specific distribution for deriving the LMPRT.

Herein, we consider the asymptotic efficiency of both the

original and modified Wilcoxon rank-sum tests for the LLD.

Tamura [15] proposed the modified Wilcoxon rank-sum test

to raise the asymptotic relative efficiency as follows:

TðpÞ ¼
XN

i¼1

ipVi ¼
Xn2

i¼1

R
p
i ; p 2 R

þ: ð5Þ

Note that the test statistic TðpÞ is the original Wilcoxon

rank-sum test when p ¼ 1. By applying the idea of [15] to

the score function (3), we can obtain the score function of

the inverse rank test:

w�
LðUðj:NÞ; f Þ ¼ ðp þ 1Þð1 � Uðj:NÞÞp: ð6Þ

The asymptotic efficiency of the score function (6) for the

location parameter is given as follows:

Table 1 Asymptotic efficiency for the location parameter with the

LLD

p 0.1 0.5 1 1.5 2 2.5 3

AELðp; f Þ 0.250 0.720 1.333 2.041 2.813 3.630 4.480

AREðp; 1; f Þ 0.188 0.540 1.000 1.531 2.110 2.723 3.361
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AELðp; f Þ ¼ kð1 � kÞð2p þ 1Þðp þ 1Þ3

Z 1

�1
f ðxÞ2f1 � FðxÞgp�1

dx

� �2

;

where k ¼ limN!1 kN ¼ limN!1 n1=N. The asymptotic

efficiency AELðp; f Þ and asymptotic relative efficiency

AREðp; 1; f Þ to the original Wilcoxon rank-sum test for the

LLD are listed in Table 1.

The results shown in Table 1 indicate that the asymp-

totic efficiency of the TðpÞ test is higher than that of the

original Wilcoxon rank-sum test for LLDs when p [ 1.

LMPRT for the scale parameter

Consider the score function of the LMPRT for HS. Using a

similar procedure as that applied to the location case, we

obtain the score function, given below:

wSðUði:NÞ; f Þ ¼ 2Uði:NÞ � 1:

Therefore,

XN

j¼1

aNðUðj:NÞ; f ÞVj ¼ 2

N þ 1

Xn2

j¼1

Ri �
n2ðN þ 1Þ

2

 !

ð7Þ

using (1). Thus, (7) reveals that the Wilcoxon rank-sum test

is the LMPRT for HS with a LLD. Note that the score

function of the modified Wilcoxon rank-sum test is given

as [4]:

w�
SðUði:NÞ; f Þ ¼ ðp þ 1ÞUp

ði:NÞ � 1:

From this, the asymptotic efficiency of the modified Wil-

coxon rank-sum test for the scale parameter is given by

AESðp; f Þ ¼ kð1 � kÞð2p þ 1Þðp þ 1Þ2

�
Z 1

�1
xf ðxÞ2

FðxÞp�1
dx

� �2

:

The asymptotic efficiency AESðp; f Þ and the asymptotic

relative efficiency AREðp; 1; f Þ to the original Wilcoxon

rank-sum test for the LLD are listed in Table 2.

Therefore, the results shown in Table 2 reveal that the

original Wilcoxon rank-sum test is suitable for testing

LLDs.

Herein, we consider another distribution, as follows:

f �ðxÞ ¼ 2q � 1

xqþ1f1 þ ð2q � 1Þx�qgð1þ qÞ=q
;

F�ðxÞ ¼ 1

f1 þ ð2q � 1Þx�qg1=q
; ðx [ 0Þ:

For the case q ¼ 1, this distribution is equivalent to that of

the standard LLD. Thus, f � and F� is another extension of

the standard LLD. Using a procedure similar to the one

presented earlier in this section, the score function

wSðUði:NÞ; f Þ is given by

wSðUði:NÞ; f �Þ ¼ ðq þ 1ÞUq

ði:NÞ � 1:

Therefore, the modified Wilcoxon rank-sum test is the

LMPRT for HS with f �. Additionally, we compared the

asymptotic efficiency of the modified Wilcoxon rank-sum

test with that of the original Wilcoxon rank-sum test for f �

in Table 3.

Table 3 shows that the modified Wilcoxon rank-sum test

is more efficient than is the original Wilcoxon rank-sum

test for f �.

Powers of small sample sizes

In this section, we present our investigation of the behavior

of the original Wilcoxon rank-sum test and the modified

Wilcoxon rank-sum test for the LLD f ðxÞ. In a previous

section, we obtained asymptotic results. However, because

finite sample sizes are used in practice, we investigated a

small sample power of the original and modified Wilcoxon

rank-sum tests. Generally, the location, scale, location–

scale, and shape parameters of the X1j and X2j samples are

unequal. Here, we considered a two-sample problem in

which the hypothesis, H0 : F1ðxÞ ¼ F2ðxÞ, was tested

against H1 : F1ðxÞ 6¼ F2ðxÞ. The following assumptions

were made for LLDs, as follows:

Table 2 Asymptotic efficiency

for the scale parameter with the

LLD

p 0.1 0.5 1 1.5 2 2.5 3

AESðp; f Þ 0.272 0.320 0.333 0.327 0.313 0.296 0.280

AREðp; 1; f Þ 0.817 0.961 1.000 0.982 0.940 0.889 0.841

Table 3 Asymptotic efficiency

for the scale parameter with

the f �

q 0.1 0.5 1 1.5 2 2.5 3

AESðq; f �Þ 0.008 0.125 0.333 0.562 0.800 1.042 1.286

AESð1; f �Þ 0.007 0.120 0.333 0.551 0.750 0.926 1.080

AREðq; 1; f Þ 1.225 1.042 1.000 1.021 1.067 1.125 1.190
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Table 4 Simulated power: n1 ¼ n2 ¼ 10 for a ¼ 0:05

l2 a2

1.0 2.0 3.0 4.0

LLDð0; 1; 1Þ and LLDðl2; a2; 1Þ
0.0

T(0.5) 0.044 0.312 0.748 0.959

T(0.75) 0.044 0.312 0.757 0.964

T(1) 0.044 0.318 0.761 0.965

T(2) 0.044 0.305 0.736 0.954

0.5

T(0.5) 0.115 0.438 0.819 0.973

T(0.75) 0.106 0.426 0.816 0.974

T(1) 0.097 0.413 0.809 0.973

T(2) 0.074 0.360 0.764 0.958

1.0

T(0.5) 0.209 0.545 0.864 0.981

T(0.75) 0.187 0.522 0.855 0.981

T(1) 0.167 0.499 0.845 0.979

T(2) 0.113 0.414 0.788 0.962

1.5

T(0.5) 0.310 0.628 0.895 0.986

T(0.75) 0.276 0.599 0.885 0.985

T(1) 0.244 0.570 0.872 0.983

T(2) 0.158 0.463 0.810 0.966

LLDð0; 1; 1Þ and LLDðl2; a2; 0:5Þ
0.0

T(0.5) 0.070 0.522 0.933 0.997

T(0.75) 0.059 0.489 0.918 0.996

T(1) 0.050 0.450 0.900 0.994

T(2) 0.027 0.322 0.802 0.976

0.5

T(0.5) 0.142 0.599 0.944 0.998

T(0.75) 0.118 0.557 0.929 0.996

T(1) 0.098 0.515 0.911 0.994

T(2) 0.050 0.367 0.813 0.974

1.0

T(0.5) 0.227 0.662 0.952 0.998

T(0.75) 0.189 0.616 0.938 0.996

T(1) 0.158 0.571 0.921 0.995

T(2) 0.080 0.408 0.825 0.975

1.5

T(0.5) 0.313 0.711 0.958 0.998

T(0.75) 0.264 0.664 0.944 0.997

T(1) 0.223 0.618 0.928 0.995

T(2) 0.116 0.445 0.834 0.975
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Table 4 continued

l2 a2

1.0 2.0 3.0 4.0

LLDð0; 1; 1Þ and LLDðl; a2; 1:5Þ
0.0

T(0.5) 0.036 0.195 0.517 0.813

T(0.75) 0.041 0.217 0.554 0.844

T(1) 0.046 0.236 0.584 0.865

T(2) 0.066 0.289 0.645 0.897

0.5

T(0.5) 0.105 0.332 0.652 0.884

T(0.75) 0.103 0.337 0.666 0.896

T(1) 0.102 0.341 0.676 0.904

T(2) 0.102 0.348 0.689 0.913

1.0

T(0.5) 0.206 0.460 0.747 0.923

T(0.75) 0.192 0.451 0.747 0.927

T(1) 0.180 0.441 0.747 0.929

T(2) 0.147 0.409 0.730 0.925

1.5

T(0.5) 0.315 0.567 0.811 0.946

T(0.75) 0.289 0.548 0.804 0.947

T(1) 0.266 0.530 0.798 0.946

T(2) 0.200 0.467 0.762 0.936

Table 5 Simulated power: n1 ¼ 5; n2 ¼ 10 for a ¼ 0:05

l2 a2

1.0 2.0 3.0 4.0

LLDð0; 1; 1Þ and LLDðl2; a2; 1Þ
0.0

T(0.5) 0.050 0.253 0.610 0.878

T(0.75) 0.050 0.255 0.614 0.881

T(1) 0.050 0.255 0.612 0.876

T(2) 0.049 0.241 0.573 0.833

0.5

T(0.5) 0.121 0.351 0.676 0.900

T(0.75) 0.113 0.343 0.671 0.899

T(1) 0.104 0.329 0.659 0.892

T(2) 0.080 0.285 0.599 0.840

1.0

T(0.5) 0.201 0.434 0.724 0.915

T(0.75) 0.184 0.417 0.714 0.912

T(1) 0.166 0.395 0.696 0.903

T(2) 0.115 0.324 0.620 0.846

1.5

T(0.5) 0.276 0.502 0.760 0.926

T(0.75) 0.253 0.480 0.747 0.921

T(1) 0.228 0.452 0.726 0.912

T(2) 0.149 0.358 0.639 0.852
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LLDðl; a; bÞ with location parameter l, scale parameter

a and shape parameter b.

Table 4 and Table 5 show the analysis results of the power

of the TðpÞ for ðn1; n2Þ ¼ ð10; 10Þ and (5,10). The sig-

nificance level was 5%, and the simulations were repeated

1,000,000 times. In this study, we assumed p ¼
0:5; 0:75; 1 and 2. The exact probability of the original

Wilcoxon rank-sum test Tð1Þ is 0.044 for n1 ¼ n2 ¼ 10

under the null hypothesis. Thus, we adopted an exact

probability of 0.044 for the TðpÞ test.

The results indicated that a smaller p in the TðpÞ test was

more powerful than a larger p in the TðpÞ test for equal and

unequal sample sizes, with b� 1 for the shifted location,

scale, and location–scale parameters. For the case of b [ 1,

Table 5 continued

l2 a2

1.0 2.0 3.0 4.0

LLDð0; 1; 1Þ and LLDðl2; a2; 0:5Þ
0.0

T(0.5) 0.092 0.428 0.813 0.965

T(0.75) 0.084 0.407 0.795 0.959

T(1) 0.073 0.376 0.766 0.948

T(2) 0.048 0.273 0.620 0.847

0.5

T(0.5) 0.160 0.487 0.829 0.967

T(0.75) 0.145 0.462 0.811 0.961

T(1) 0.126 0.427 0.782 0.951

T(2) 0.073 0.300 0.630 0.849

1.0

T(0.5) 0.228 0.537 0.842 0.969

T(0.75) 0.208 0.510 0.724 0.963

T(1) 0.183 0.472 0.796 0.953

T(2) 0.100 0.325 0.638 0.850

1.5

T(0.5) 0.292 0.579 0.853 0.970

T(0.75) 0.269 0.551 0.835 0.964

T(1) 0.241 0.512 0.807 0.954

T(2) 0.125 0.348 0.645 0.851

LLDð0; 1; 1Þ and LLDðl; a2; 1:5Þ
0.0

T(0.5) 0.033 0.154 0.406 0.693

T(0.75) 0.036 0.166 0.429 0.718

T(1) 0.040 0.178 0.451 0.738

T(2) 0.052 0.207 0.485 0.757

0.5

T(0.5) 0.103 0.265 0.518 0.766

T(0.75) 0.099 0.266 0.527 0.779

T(1) 0.095 0.264 0.532 0.785

T(2) 0.086 0.258 0.528 0.778

1.0

T(0.5) 0.190 0.365 0.602 0.813

T(0.75) 0.177 0.356 0.601 0.817

T(1) 0.162 0.344 0.596 0.818

T(2) 0.126 0.306 0.565 0.795

1.5

T(0.5) 0.274 0.450 0.665 0.845

T(0.75) 0.253 0.433 0.658 0.846

T(1) 0.230 0.413 0.646 0.842

T(2) 0.166 0.349 0.596 0.809
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a larger p in the TðpÞ test was more efficient than a small p

in the TðpÞ test for the changed scale parameter, but not the

location and location–scale parameters. The results indi-

cated Tð0:5Þ and Tð0:75Þ tests were suitable for a wide

range of LLD. Therefore, a smaller p in the TðpÞ test is

suitable for parameters associated with LLDs.

Conclusion and discussions

In this paper, we considered the LMPRT for the location

and scale parameters with the LLD. We showed that the

Wilcoxon rank-sum test is suitable for hypothesis testing

with the LLD. In addition, the asymptotic efficiency of the

modified Wilcoxon rank-sum test was higher than that of

the original Wilcoxon rank-sum test for the location

parameter with a LLD. For the scale parameter, the

asymptotic efficiency of the original Wilcoxon rank-sum

test was highest for the LLD. Additionally, the score

function of another extension of the LLD was derived as

the modified Wilcoxon rank-sum test. However, because

finite sample sizes are used in practice, we investigated a

small sample power of the original and modified Wilcoxon

rank-sum tests. The results indicated that a smaller p in the

TðpÞ test was suitable for parameters associated with

LLDs. Future research directions should consider the two-

sample location–scale problem—i.e., where two null

hypotheses H0 are simultaneously tested, see; e.g., [7,

10]—for the LLD.
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