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Abstract Sufficient conditions guaranteeing the exis-
tence of three Heteroclinic solutions of a class of bilateral
difference systems are established using a fixed point the-
orem. It is the purpose of this paper to show that the
approach to get Heteroclinic solutions of BVPs using
multi-fixed-point theorems can be extended to treat the
bilateral difference systems with the nonlinear operators

x — Alpd(Ax)] and y — Algy(Ay)]
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Introduction

Difference equations appear naturally as analogues and as
numerical solutions of differential and delay differential
equations having applications in applied digital control [1—
3], biology, ecology, economics, physics and so on.
Although difference equations are very simple in form, it is
extremely difficult to understand thoroughly the behaviors
of their solution [25]. In recent years, there have been many
papers interested in proving the existence of positive
solutions of the boundary value problems (BVPs for short)
for the finite difference equations since these BVPs have
extensive applications, see the papers [5-17] and the ref-
erences therein.
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Contrary to the case of boundary value problems in
compact domains, for which a very wide literature has
been produced, in the framework of unbounded intervals
many questions are still open and the theory presents
some critical aspects. One of the main difficulties consists
in the lack of good priori estimates and appropriate
compact embedding theorems for the usual Sobolev
spaces.

Recently, the authors [18-22] studied the existence of
solutions of the boundary value problems for infinite dif-
ference equations. In [19], the existence of multiple posi-
tive solutions of the boundary value problems for second-
order discrete equations

A’x(n — 1) — pAx(n — 1) — gx(n — 1) + f(n,x(n)) = 0,n € N,
2x(0) — pAx(0) = 0,
lim x(n) =0

n—+o00
(1.1)

was investigated using the cone compression and expan-
sion and fixed point theorems in Frechet spaces with
application, where N ={0,1,2,...} the set of all non-
negative integers, o« >0,>0, p>0,¢g>0 and f is a
continuous function and Ax(n) = x(n+ 1) — x(n).

In paper [22], it was considered the existence of solu-
tions of a class of the infinite time scale boundary value
problems. It is easy to see that the results in [22] can be
applied to the following BVP for the infinite difference
equation

A’x(n) +f(n,x(n)) =0, n€N,
x(0) =0,

x(n) is bounded.

(12)

The methods used in [22] are based upon the growth
argument and the upper and lower solutions methods.
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In [23], motivated by some models arising in hydrody-
namics, Rachunek and Rachunkoa studied the second-order
non-autonomous difference equation

Aﬂ@z( "

n+1

> (Ax(n — 1) + h’f(x(n))), n€EN,

which can be transformed to the following form:

A(nPAx(n — 1)) = K2(n + 1)*f(x(n)), n €N,

where i > 0 is a parameter and f is Lipschitz continuous
and has three real zeros Ly <0< L, conditions for f under
which for each sufficiently small 4 > O there exists a ho-
moclinic solution of the above equation were presented.
The homoclinic solution is a sequence {x(n)},~ satisfying
the equation and such that {x(n)} -, is increasing, x(0) =
x(1) € (Lo, 0) and lim,_,o x(n) = L.

We note that the difference equations discussed in [19,
22, 23] are those ones defined on N ={0,1,2,---}. The
existence of homoclinic solutions for second-order discrete
Hamiltonian systems have been studied in [24, 26] by using
fountain theorem.

Motivated by above mentioned papers, the purpose of
this paper was to investigate the following boundary value
problem of the second-order bilateral difference system
using a different method

Alp(n)¢(Ax(n))] + f(n,x(n),y(n)) =0, n€Z,
Alg(n)y(Ay(n))] + g(n,x(n),y(n)) =0, n € Z,
nEEnoox(n) - n;i apx(n) =0,
Jim y(n) — :Zi)o 7ay(n) =0,
Jim_ 67 ) Ax(n) — 55 f,Ax(n) =0,
im0 g)Ayn) = 5 uvn) =0,
(1.3)
where
(a) Z denotes the set of all integers,
Ax(n) =x(n+ 1) — x(n),
(b) p(n),q(n) >0 for all n € Z satisfying
+00 1 0 1
2 2 T <
+00 1 0 1
2w A e S

(©) o, Buy Py 0n >0 for all n € Z and satisfy
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+00
Z o, <1,

£
On o < + o0,
n=-—00 s:—oo(rb ](p(S))
+00
> ,113” <1 imp>o,
e @ (p(n)) T (1+6)
and
+00
> <l
:-;o n—1 1

n —_ a < + 00,
n:z—:oc s;c!// '(q(s))
+00 5

i with 6 > 0,

1

Y (1+9)

@ f,g:Zx][0,4+00) x [0,+00) — [0,+00), both f
and g are Caratheodory functions (see Definition 1
in “Main results”), and for each ny € Z, f(n, 0, 0)2 +
g(n,0, O)2 % 0 for n <ny,

(e) ¢ is defined by ¢(x) = |x|"*x with s> 1, and

¥(x) = |x|"2x with 7 > 1, their inverse functions are

2 T

denoted by ¢! and !, respectively.

A pair of bilateral sequences {(x(n),y(n))} is called a
Heteroclinic solution of BVP (1.3) if x(n),y(n) sat-
isfy all equations in (1.3), x(n) >0,y(n) >0 for all n € Z
and either x(n) >0 for all n €Z or y(n) >0 for all
neZz.

We establish sufficient conditions for the existence of at
least three Heteroclinic solutions of BVP (1.3). This paper
may be the first one to study the solvability the boundary
value problems of bilateral difference systems. The most
interesting part in this article is to construct the nonlinear
operator and the cone; this constructing method is not
found in known papers.

The remainder of this paper is organized as follows: in
“Main results”, we first give some lemmas, then the main
result (Theorem 1 in “Main results”) and its proof are
presented. An example is given in “An example” to
illustrate the main result.

Main results

In this section, we present some background definitions in
Banach spaces, state an important three fixed point theorem
[4] and prove some technical lemmas. Then the main result
is given and proved.
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Denote

Definition 1 F is called a Caratheodory function if it
satisfies that

(x,y) - F(n,an, Qny)

is continuous, and for each r > 0 there exists a nonnegative
bilateral real number sequence {¢,(n)}  with
oo ¢,(n) < + oo such that

|F(n, Pux, Qny)| < ¢,(n)
forallne Z, |x| <r|y|<r.

As usual, let E be a real Banach space. The non-
empty convex closed subset P of E is called a cone in E
if axe P and x+y € P for all x,y€ P and a>0, and
x€Eand —x € E imply x =0. A map ¢ : P — [0, +0c0)
is a nonnegative continuous concave ( or convex )
functional map provided ¢ is nonnegative, continuous
and satisfies

p(tx+ (1 —t)y)>(or <) te(x) + (1 —1)p(y) for all
x,y € P,t €[0,1].

An operator T;E — E is completely continuous if it is
continuous and maps bounded sets into relatively compact
sets.

Let E be a real Banach space, P be a cone of E, ¢ :
P — P be a nonnegative convex continuous functional.
Denote the sets by

P.={xeP:|lx|]|<c}, Po={xeP:|x||<c}
and
P(p;b,d) = {x € P: ¢(x) > b, |x|| <d}.

Lemma 1 Suppose that E is a Banach space and P is a
cone of E. Let T: P. — P. be a completely continuous
operator and let ¢ be a nonnegative continuous concave
functional on P. Suppose that there exist 0<a<b<d<c
such that ¢(y) <||y|| for all y € P, and

(C1) {ye€P(p;b,d)|o(y) > b} #0 and ¢(Ty) > b for
y € P(p;b,d);

(C2)

(C3) @(Ty) > b for y € P(g;b,c) with ||Ty|| > d.

Then T has at least three fixed points y;, ¥, and y3 such
that ||y1||<a, @(y2) > b and ||ys|| > a with @(y;) <b.

Choose
x(n) ER,neZ,
there exist the limits
X = ne’lt:
{x(n) n } ) x(n) ) )C(I’l)
lim , lim
n—-+o00 n n——oo Pn
Define the norm
[x(n)|
||x[[x = [lx]| = sup x€X.
nez

P, ’
It is easy to see that X is a real Banach space.
Choose
y(n) ER,neZ,
there exist the limits
lim )@, lim M
n—-+oo Qn n——oQ Qn

Y=<{y(n):neZz}:

Define the norm

y(n)]
[I¥[ly = llyl| = sup , YEY.

nez Q
It is easy to see that Y is a real Banach space.

Let E = X x Y be endowed with the norm

[1Ge, ) = max{[|x]], [Iy[l},  (xy) € E.

Then E is a real Banach space.
Let h(n) > 0 for every n € Z be a bilateral sequence with

+00
>~ h(n) converging. Consider the following BVP:

n=—00

Alp(n)¢(Ax(n))] + h(n) =0, neZ,
l’ll—i>IPOC )C(I’l) B ::OO_OO OCnx(l’l) - 0’ (21)
Jim ¢ (p(m)) Ax(n) = 35,2 B, Ax(n) =

Lemma 2 Suppose that (b), (c) and (e) hold. Then x € X
is a solution of BVP (2.1) if and only if

n—1

x(n) = Zocnzd) :
1 — Z o, —00 §=—00

n=—oo

+Z

A—*OO

! (Ah + f“ﬂ)

f/’ ! <Ah + ich(f)),

(2.2)

§=—00

where A, € [O,%Z“’i h(s )} such that

¢~ (An) = ZOO: = (’; ) (A +Zh > (2.3)

o
% @ Springer
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Proof Step 1. We prove that there a unique A, €
[O,%Z:Zoioo h(s )} such that (2.3) holds. In fact, let

G(u)lf(ﬁ fp()) (1+ Zh )

n=—0o0
It is easy to see that G is continuous and increasing on
(—00,0) and (0, +00) respectively.
One sees from (c) that

. 1 = :Bn
00 =1 2 T

hrn G(u) = 400,

u—0

hrn G(u) = —o0,

+OO ﬁn —
<Zooh ) - 2 om?

Then there is a unique A;, € { /;Zr—oo (s)} such that
(2.3) holds.

Step 2. Prove that x satisfies (2.2)—(2.3) if x is a solution
of (2.1).

If x is a solution of (2.3), then there exist the limits

Tim ¢ (p(m)Ax(n) = ¢, Tim_ ¢ (p(n)) Ax(n)

"(1+B)>0

and
6 o)) = 7 (e ) ).
So
1 +00

Ax(n)=—— ' ¢ s) .

(n) ¢,1(p(n))¢ ( +;h( )>
i 0 ; o0 en lim x(n) =
Since D oo 5 (o) < + 00, th nifoo (n)=de
R such that

—d+ Z ¢ <c+§h(r)>. (2.4)

From the boundary conditions in (2.1), we get

d= Z Ol i 1<c++zoch(t))
1-— Z o, n=-—00 :—700 t=s

(2.5)
and

- if ﬁn¢“<c+-§flwﬂ> =

n=-—00 t=n

@ Springer

By Step 1, we see that c = A,. We now prove that

X(n)

111+n

- © (2.6)
97 (p(s))

In fact, if ¢ = 0, then for any € > O there exists H > 0 such
that

¢~ (p(m)|Ax(n) < 3.

It follows that

n>H.

[x(n)| < |x(H |+Z\AX ) < |x(H)]
+6§ ! n>H
2597 (p(s)” T
Then
[x(n)]
n—1
L Yo 5700
n—1
< x(H) 1 EZ _11
]‘+ZA7—OO(/ I 1+Zaf—oo(/, . 2&:H¢ (p(S))
el e
1+ L2
§=700 ())
Since eroom = 00, we can choose H' > H large

enough so that

[x(n)] x(H)| ¢

+ 3 <e, n>H,
1 +Zs‘-—oc¢ Tp(s)) +Zv- oo—))
which implies that
lim - x(n) =0.
n—oo
+ Zv—foc ¢ (P )
If ¢ #0, then lim (¢~ ' (p(n))Ax(n) —c) = 0. It follows
n—o0
that
. n—1 1
lim ¢~ (p(n))A| x(n) — ¢ —— | =0.
neo s;occb '(p(s))
Then we get similarly that
()~ et
n) = C2 =0 =1/ 7y
lim ¢ : () _ g,
. 1 + Er—foc
¢~ (p(s)
Together with Zv*foom oo, it follows that (2.6)

holds. Then llzn x(n) =d, (2.4), (2.5) and (2.6) imply

that x € X and x satisfies (2.2) and (2.3).
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Step 3. Prove that x € X and is a solution of (2.1) if x
satisfies (2.2) and (2.3). The proof is simple and is omitted.
The proof is complete. O

Let i(n) > 0 for every n € Z be a bilateral sequence with

+o0
n=—00

Alg(n)(Ay(n))] +h(n) =0, neZ,

h(n) converging. Consider the following BVP:

m y(n) - :ZZ 7ay(n) =0, o)
Tim g (g(n)Ay(n) — S SuAy(n) =

Lemma 3 Suppose that (b), (c) and (e) hold. Theny € Y
is a solution of BVP (2.7) if and only if

+00 n—1

1 1 +00
yn) =——5— n ——y! <B + h(t)>
1 — Z y n;oc S:*OOlP (q(S)) ! ;

(2.8)

where B, € [0,13°7° h(s)] such that

§=—00

Y (By) = n—imilﬂ_l?;(”)) ! (Bh + gh(s)) (29)

Proof The proof is similar to that of Lemma 2 and is
omitted. |

Let ki, ky € Z with k; + 2 <k,. Denote

{P,q | 1
@ = min

P Py ¢ N(p(ki — 1)Py, (2.10)

Ou 1 !
O, O Y (qlky = 1))Qs, |
Choose

x(n)>0, y(n)>0 forallneZ,
x(n) x(n)

min ——= > usu
P =2 (x,y) € X: nelkik] Py psap
Y S sup? )

nez Qn ’

min >
nefky k] On

It is easy to see that P is a nontrivial cone in X.
Define the nonlinear operator 7 on P by

(T(x,3))(n) = (Ti(x,)(n), T2(x,y) (n))

with

1 400 n—1 1 _1
Ti)0) = gy 3 o 3 s

where Ay € [

5 fls.x(s),

Y_*OC

(s))] such that

67 (Ay) = fj(blfp(n))as (Af+zfsx ()))

n=—oo

and B, € [0,15°7°° (s, x(s),¥(s))] such that

+o0 +o0
lpil(Bg) = Z ﬁ;(l’l))d/l (Bg + Zg(svx(s)7y(s))> .

n=—00

(2.12)

Lemma 4 Suppose that (b)—(e) hold. Then T : P — P is
well defined, (x,y) € P is a positive solution of BVP (1.3)
if (x,y) is a fixed point of T, and T is completely
continuous.

Proof For (x,y) € P, we know that there exist r > 0 such
that

x(n) = *(n) <r, neZ,
pEED e oo
S R D

fo*w ())+1 On

Since f and g are nonnegative Caratheodory functions, we
know that there exists a nonnegative sequence ¢, (n) with

e ¢,(n) < + oo such that

0</tnur(n)50) =1 (1.2, 5005 ) <o), nez,

(02 < nez

0<g(n,x(n),y(n))

@ Springer
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By the definitions of 77 and 7,, we get that
Ti(x,y)(n) 20, To(x,y)(n) >0, neZ (2.13)

and

Alp(n)¢(ATi (x,y)(n))] +£(n,x(n),y(n)) = 0, n€Z,
Alg(n)y(ATx(x,y)(n))] + g(n, x(n),y(n)) = 0, n€Z,

+o0

Jim Ti)n) = 5 sl (5)) = 0
Jdim Ta(ey)n) = 5 7 Ta(e)n) =0,

Jdim 97 (p)AT (6 )n) 55 BT )(n) =0,
dim g7 (g ATa (e )0) = 53 8,ATa(xy)(m) = 0.

(2.14)

Since Alp(n)¢(AT(x,y)(n))] = —f(n,x(n),y(n)) <0 for
all n € Z, we see that p(n)¢p(AT(x,y)(n)) is decreasing.

Then ¢~ ' (p(n))AT;(x,y)(n) is decreasing. It is easy to see
that

i ¢ (p(m) AT (x,)( = S BT )

n=-—0oo

= . L “p(n))AT; (x,y)(n
> ¢,1(p(n))¢ (p(n))AT, (x,y)(n)

S
2 3 G 8 AT ) )

Then (c) implies that
lim ¢~ (p(n))AT; (x,y)(n) > 0.

n—-+00

Hence
¢~ (p(n)AT(x,y)(n) >0, neZ

It follows that AT (x,y)(n) >0 forall n € Z. So T} (x,y)(n)
is increasing. We consider two cases:

Case 1: there is ng € Z such that

T T
sup 10, y)(n) _ Ti(x,y)(m0)
nez Pn Pno

For nj,n,n, € Z with ny<n<un,, Since qb*l(p(n))
AT (x,y)(n) is decreasing, we get

¢~ (p()) AT (x,y)(5) < &~ (p(k)) AT (x, ) (k)

@ Springer

for all s > k. So there there is A such that

¢~ (p(5))ATi (x,y)(s) <2< ¢~ (p(k)) AT (x, y) (k),

s>n > k.

Then we get

T (xay)(n2) -1 (xay)(n)
P,, — Pn

(Po—=Po)) 0 o
Pn, — P
T o e @ (PE)AT (@ )(s)
Z?Z"]qﬁ '(p(s)
r=ys ) Ee )
- Zf;l ¢! <lp< )
RN e n g PR
b ey
 Z o Zem i ¢ (PODATI(3)(6)
B Z_’:;n‘m
= Ti(x,9)(n) = Ti(x,y)(m).

So

(Pn_Pnl)

($))AT (x,y)(s)

Ti(x,y)(m2) = Th(x, y)(n)
P, — P,

Ti(x,y)(n) <O0.

(Pn_Pn])

+T1 (x,y)(nl) -
It follows that

Pnzfpn
p, —P,

Pn 7Pn1
P, — P,

Ty (x,y)(n) > Ty (x,y)(n1) + Ti(x,y)(n2).

(2.15)

1

If ny = ki, we get

T )() | Toley)(h)
nelk) Py - Py,

ki—1
Ti(xy)mg) 1+, <p< )
- no 1 kz 1
Lo Do 5T |+ e 700
Py, T (x y)(n)
n—1
f L+ e 70

S TEs e

min

§=T00 ¢ (P( )
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If ny > ki, choose ny =k; — 1, n = k; and n, = ngp, by
using (2.15) we have

y(n) o Ti(xy) (ki)
ne[kI kz] P, — Py,
Py, — Py Pr, — Py,
S5 T1(x,y) (ki — 1) + 5——"—T1(x,y)(no)
>Pn0 Pkl 1 Pno_Pkl—l
=z Py
P, — Py _ Py — Py, _
Po P, N0 Pupi Ry
> T T ki—1 _ ng — Tki—1 l(xvy)(no)
- sz sz Pn()
L Ny, T
¢ (p(k] - l))sz Pﬂo neNy Pn
If ng <k, we have
min D10 y)(n) > I (x, y) (k1)
nE[k] ,kz] Pn sz
> Tl (X,y)(l’l()) — ﬂTl (x,y)(no)
- sz Pk2 Pno
> 1 Tl(an)( ) Z,USUP Tl(x,y)(n)
sz PnU neNy Pn
Case 2: supw = lim M Choose n' > ks,

nez " n—too  n
similarly to Case 1 we can prove that

!/
y TED@) T ).
nelky ka P, P,y

Let W — +00, one sees

Ti(x,y)(n))

Ty (x,
min DN S oo T ) ()
nelk ko p, neNy P,

Case 3: supwz lim

nez n n——odo

similarly to Case 1 we can prove that

Tl(x’y)(n)) > Tl(-xvy)(n/)
Pn o Pn’ ’

M. Choose n' <k,

min
I’lE[kl ,kz]

Let W — —o0, one sees

T
i T2
nelk k| P, neNy P,

- Ti(x,y)(n)) Ti(x,y)(n)
min ——————= > usup ———= 2.16
116[](1,/(2] PVL - M}’LG[\EJ Pn ( )
Similarly we can prove that
T T,
min Q(X,y)(n)) 2 'u Sup Q(X,y)(n) . (217)
nelk k| On neNy On

From (2.13), (2.16) and (2.17), we know that T(x,y) € P.
Thus T : P — P is well defined.

From (2.14), we get AT (x,y)(n) >0 for all n € Z. So
T)(x,y)(n) is increasing. Then

+00
nHIPm T] (x,y)(n) = Z anTl (x7y)(n)
+0o0 .
> Z %, lim Ty (x,y)(n).

n=-—0o0

It follows that

+00
<1 - Z oc,,> IlEEnOO Ty(x,y)(n) >0.

So the assumption (c) implies that lim Tj(x,y)(n) >0.
Similarly, we can prove that lim T5(x,y)(n) > 0. If there

exists ny,ny such that Ty(x,y)(n) =0 and Tx(x,y)(n2)
=0, then Ti(x,y)(n)=T"Ta(x,y)(n)=0 for all
n < min{n;,n,}. Hence (2.14) shows us that f(n,0,0) =0
and g(n,0,0) = 0 for all n< min{n;,n,}, a contradiction
to assumption (d). Hence we know that (x,y) € P is a
positive solution of BVP (1.3) if and only if (x,y) € Pis a
fixed point of T.

Now, we prove that T is completely continuous. It
suffices to prove that both 7} : P — X and 7, : P — Y are
completely continuous. So we need to prove that both T
and T, are continuous on P, map bounded subsets into
relatively compact sets. We divide the proof into three
steps:

Step 1: Prove that both 7| and 7, are continuous. For
X EE(kZO,l,Z,“-) with Xy — Xy as k — 400, we
prove that T(X;) — Xo as k — +oo. Suppose that

Xi(n) = (xx(n),yx(n)). Then
X S o nZ'lem & (Ap + ST F(txi(1), ye(2)))
1 (Xi)(n) = e
e ‘(Aﬂ«+f‘;f<r,xk<z>7yk<t>>>,
T>(Xe) () :z”z“‘ ’”Z?:lxm (Bu + 225 8, x(1), (1))

- Z:lr:oix Tn

+00
(ng + Zg(z,xm),yk(z))) ,

n—1 1

2 T’

where Ag € {0,% oo f(s,xk(s),yk(s))} such that

§=—00

o B! (Afk n %Cf(s,xk(s),yk(s)))

sS=n

¢~ (p(n)) 7

¢~ (Ap) =

k=0,1,2,...
(2.18)

§=—00

+00
and By € {0,% > g(s,xk(s),yk(s))} such that

@ Springer
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o

B = S O Bt S5 805 (s) ()
=2 v (q(n)
k=0,1,2,....
(2.19)
We know that there exist » > 0 such that
O<f"1¢ MSE k=0,1,2,...n€Z,
1 + Zsf—oc ¢ (p ) P"
0< yi(n) :)’k(n)gr k=0.12... nez

— n—1 1
2smoo Ty T !

Since f and g are nonnegative Caratheodory functions,
we know that there exists a nonnegative sequence ¢, (n)

with 327 ¢.(n) < + oo such that

x(n) o yi(n)
On
yi(n)

Qn

7Qn

0§f(”7xk(n)7yk(n)) :f<”7 ) < ¢r(n)7 ne Z7

xk(n)

0<slnxln ) = e (2, 5. 0,

) <¢,(n), neZz

We first prove that Ag — Ao as k — +oo and By —
Bgo as k — +o0. It is easy to show that

Zfsxk k(s))

Y_—OC

Zqﬁ . k=0,1,2,..., nez

A*—OO

0<Az <

Without loss of generality, suppose that Agx — A # Ayo.
Then there exist two subsequences Aj and A7 with
A}kl — A; and A}k‘_ — Ay as i — +o00. From

,I(A;ki)_ 2.0 :Bn < +Zf(sxk )

2 5 o)
= B,
( > b+ 3 o >n_zm¢ )

§=—00 §=—00

Let i — 400, we get

-1 N — o ﬁn -1 . = s, xo(s ols
oA = > —¢_1(p(n))¢ <A1+Zf(, (5), o( >>).

n=—o0 s=n

Together with (2.18), we get A; = A, = Ayy. Then
Apg — Apo as k — +oo. Similarly, we can prove that
By — Bgy as k — +400. These together with the con-
tinuous property of f imply that 7 is continuous at Xj.
Similarly, we can prove that T, is continuous at Xy. So T
is continuous at Xj.

@ Springer

Step 2: For each bounded subset QQ C P, prove that TQ
is bounded. In fact, for each bounded subset Q C D, and
(x,y) € Q. Then there exists r > 0 satisfying

[|(x,y)|| = max{supM7 supM} <r

nez n nezZ n

Since f and g are nonnegative Caratheodory functions,
we know that there exists a nonnegative sequence ¢, (n)
with 327 ¢, (n) < + oo such that

og(mx(n),y(n)):f(n .0, én))gd),(n), nez,
0< g(n.x(n). () = g(P%Qyé—)) <4 (), nez.

The method used in Step 1 implies that there exist
constants M > 0 such that |[A;| <M for all (x,y) € Q.
Then

Ti(ey)(m)] _ 1 1
P, P-S" a,
X nij; o, Sixm(bl (Af + jzojf(t,x(t),y(t))>
n—1 to0
et 1<Af+tz;f “’“”’“’”)
1 1
< R
Py - PR

Sl 1(M+ > ¢>,<r>>

n=—0oo 37—00 1=—

n—1 1

1
2 5w <M+Z¢ )

Sl_; <M+Z¢> )

n=-—00 %y t=—00

Similarly, one has that

LEICEN ]G] I S <M+ f ¢ (0)-
Qn 1— JrXO:O Y I==00

n=—oo

It follows that TQ is bounded.

Step 3: For each bounded subset QQ C P, prove that
TQ is relatively compact. We need to prove that both
{Ti(x,)(n) : (x,y) € Q} and {Ta(x,y)(n) : (x,y) € Q}
are uniformly equi-convergent as n — £oo. We
have
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T St S g 67 4+ S 050).500)|

P, =
) i |

n=-o00

DI G ‘<Af+ﬁf<r,x(t>,y<t>)>

e Z Z Tt ‘(Af + iﬂm(r)m(r»)‘

< >
1<M++Z%¢,(z)>

1
> Z &n :Z}w oo n=l 1

1
=lp z*stx Z Z

n—1 1

1
- n;m @(

1-P,
BRI En*—oo Inp="oc 5= x

1
<M+ Z o) )Zom )

n—1

a0

1=—00

(M + Z (1
— 0 uniformly as n — oo.

Furthermore, we have

T (x}a)i’)(”) ¢! (Af)

) S eI
Z o, n=—00 5—700

n=—0oo

+00
% <Af " Zf(z,xm,y(r)))

IN

t=s

n—1

+Iin;¢1(( ( +thx(r t) (A,)
oo n—1 ]<M+Z¢'(t)>13i

>
17 z xnn:*m

LIRS T A+ N (lx<l (1)) — o' (4)]
r, > ¢~ (p(s))

ns=—o0

s:—oc

n—1 1
Z’:’x 9 p(s)
Py

1 Z :Z

. Z o, =
AN ]

(g (). 3(0)
" P_Zm 500 T,

+¢7'(4y) -1

3 1
B <M+ Z d’r(’)) i

Since |A| <M, |Ar+ 3, f(1,x(1),y(t)| <M and
¢~ is uniformly continuous on [—M,M], then for any
€ > 0 there exists ¢ > 0 such that uy,u, € [-M,M] and
luy — uy| <o imply that [¢~" (1) — ¢~ ' (up)| <e. Since

Ay S F0).5(0) = A £ 3 4,(1) 0

uniformly as s — 400,

then there exists S > 0 such that

‘A_f + +Zoff(t,x(t),y(t)) —Af‘ <o,s> 8, (x,y) € Q.

So
1 = 1
o A+ fx(0),3(0) | — ¢ (A)| <€ s > S,
1=s

(x,y) € Q.
It follows that

1 Zl o~ ( Af+z,*’:f<t x(0),5(1)) = ¢~ (4)]

Py =, ¢ (p(s))

s ' |6~ (A7 + S (0, x(0), (1)) — 7' (7))
SP,,Lsmb ) +Z 5 05)
< 1 { 24 (M) ZS: 1 }
R = s+1¢ L7 (p(s))
<e M — 0 uniformly as n — +oo.
Hence

Ti(x,y)(n)

2 — ¢! (Af)‘ — 0 uniformly as n — oo.
One knows that T(Q) is relatively compact. Similarly
we can prove that 7,(Q) is relatively compact. Hence
T(Q) is relatively compact.

From Steps 1, 2 and 3, we know that T is completely
continuous. The proof is ended. O

For positive constants a, b, c,d and integers kj, k, with
ki1 <kp, denote

1— +00 .
o minls 0-T ) o
1- anfoc n + anfoc on Zg—fx, ¢ (p 3430

(i
bPy, 1 b0y, 1
W = max{ ¢ — LY
{ (leqloc m) fik. le (Zs —00 T ) Zr k) 2,}

- a(l =372 o) °
Em%¢ﬁzﬁu% PR B ) 2T
l// (l _Z:—*Oﬂ ))n) ﬁ
= e T e T X e i) 3+ 3P

Theorem 1 Suppose that (b)—(e) hold. Choose kj,k, € N
with k; <k,. Let u be defined by (2.10). Furthermore,
suppose that there exist 0<a<b< ﬁ < c such that

(1= ) B\
n—1 ’
=0 Tn T Z:j(—oc Vn 23*_3“ v (fi s)) 3+3f

%
% @ Springer
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(Al):

(A2):

(A3):

f(n, P, Q) < 2 for all neZuvel0c;
g(n, Py, Quv) < 2 forall n € Z,u,v € [0,c];
f(n, Py, Quv) > o for all n € [ky, ko], u,v € [b,%]
g(n, Pyu, Quv) > ot for all n € [ky, ks, u Ve[b,%},
f(n, Pau, Quv) < S for all neZuvel0a;
g(n, Py, Qyv) < S for all n € Z,u,v € [0, .

Then BVP (1.3) has at least three positive solutions
X1,X2,Xx3 such that

x1(n)

sup
nezZ

min
nelk k) Py

either sup

either

<a, Sup)’l(”)
n neZ n

xs(n) ys(n) (2.20)

> a or sup
neZ n neZ n

X
min _3(n)
nE[kl ,kz] n

>a

min M <b.
nE[kl ,kz] n

)

<b or

Proof LetE, P and T be defined above. We complete the
proof using Lemma 1. Define the functional on ¢ : P — R

by

o(x,y) = min{ min

x(n) 7nen[}j7r]1(2]yé_nn)}7 (x,y) € P.

l’lE[k] ,kz] Pn

It is easy to see that ¢ is a nonnegative continuous convex

functional on the
O<a<b<d<ec.

Then

Now we prove all assumptions in

cone P. Choose d=2

Lemma 1 are satisfied.

(1):

Q):

Prove that ¢(x,y) <||(x,y)|| for all (x,y) € P.. It is
easy to see that ¢(x,y)<||(x,y)|| for all
(x,y) € P,.

Prove that T(P.) C P.. For
[Ge, I < ¢, then

(x,y) € P., we have

max{supx(n) , supy(n)} <c.

nez n nez Qn

Then

o< o0 ez

Py ’ On —

From (Al), we get

F(n,x(n), () =f<n,an(n) , Qny(’”) <2 ez

P, On 201°
g(n,x(n),y(n)) = g(n,Pn ng) ,Qny((;)> < 2% neZ.
So

@ Springer

3):

ey _ 11
Py Py1— I:ix o
+o00 n—1 +oo
< 5o 5 gt (e Sresnon)

n—1

+PL Z d) l(;( )) 1<Af+if(t7x(t)7y(t))>

ns=—c0

1
S F” 1- n=—00 %n n;m " s;o 1
1+6 R 1 _
2—‘[‘ 1
( 20 >+ n,_Z;cwl(p(s))"’
1+ f Q2,>
1 +00 n—1 1
i "2 ¢-1<p<s>>]

Similarly we get

TZ(x>y)(n):L 1
O, Onl— ,,jc,oc Yn
n—1 +00
3 8 g (e Esta0)

1 n-1 1 | 400
+@\Z ml/f <3g+;g(t7X(f)7y(t))> <c

§=—00

Hence T(x,y) € P.. Then T(P,) C P..

{(x,y) € P(@; b, d)[o(x,y) > b} # 0 and
@(T(x,y)) >b for (x,y) € P(¢;b,d). Since
b >b, one sees that {(x,y) € P(p;b,d)
lp(x,y) > b} # 0. For (x,y) € P(¢;b,d), we have

x(n) y(n)} b
max< su —=, su <d=-,
{ P, s O "
and
min{ min x(n)v min y(n)}Zb.
nefkik] Py nefkik) Oy
Then
x(n) y(n) _b
b< < - ki, ks].
_anQn_v 6[132]

It follows from (A2) that

x(n)

Fln.x(n), () :f(n 0, (”’) > W e bk,

P, "0 20
el 50) = (1P, 500 0,50 > e bl
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Hence
min ) Tixy) (k)
nelk ko) P, - Py,

1

=TT . ZZ

n—fcx, %n n=— af—ao
(Af + Zf (¢, x(t )
+L 5 qb A+ Zf (t, (1)
Py, £~ x(1),y

sz §=—00 ¢ (p(S
1 "‘

1=s

1k1 +00
¢1 > fltx )

¢>1§f )

Pk7 s=—00 ¢ @ ki
] ky— ka W
sz §S=—00 ¢ (p ¢ (zk: 2_)

Similarly, we have

LEym LR 1
nelky k| Qn ~ ka s;o l//_] (Q(s))

x (ig<r,x<r>,y<t>>>

1k 1 (=W
2 0 2" (sz'> =

=—00 t=k

!

Hence ¢(T(x,y)) > b for (x,y) € P(p;b,d).
4):  ||T(x,y)||<a for ||(x,y)|| <a. For ||(x,y)|| <a, we
have

max{supnez xf()n) , Zygl)} <a.
n ne n

Then

x(n) y(n)
< < < < .
0< P <a, 0< 0, <a,ne”z

From (A3), we get

F(n,x(n), () :f<n,Pn)%’:)7 0,20

LQ —_
=
IA
S
m
N

So
T(XY)( n_ 1 -
"1 Z:wmannz "Z¢ (P ¢

><<f+thx )

B <’+Zf” )

< L ! +ZOC o E ! (j)’l
B P”17 % o1, 1= "s:—oc ¢7l(p(s))

X (1 -(&)—() i E2‘>
1 n—1 1 4 1+5 +oo i
B2 <TZOOE2 >
1 400 n—1 1 .
H 1- E::Oiﬁo %n nZ o SZ (p—l@(s)):| d)

=—00 =—00

1406 X i
X (T,me 1) <a.

Similarly, we get

T2(x7y)( ) 1 1 X
Qn Q 1 - Z+ —0o0 yn

Z /nz,,, (q 3 (Bg+f;g<z,x<r>,y<r>>>

-1 <Bg + +Z:.Og(l‘7 x(t),y(t))) <a

+L n—1 1 w
On = (q(s))

P(@;b,c)  with

P(p;b,c)  with

o(x,y)<b and

Hence ||T(x, y)|| <a.
o(T(x,y)) >b for (x,y)¢€
IT(x,9)|| >d.  For (x,y)€
||T(x,y)|| >d, we have

[|Ge, )| <. Then
min{ min x(n)7 min M}<b,
nelkik] Py nefkik) Oy

max{ x(n) supy(n)}gq

nez P nezZ Qn
and
T T
max {Sup 1(x7y)(n), sup 2(x, y)(n)} o d
neZ Pn neZ Qn

@ Springer
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So
: Lox(n) y(n)}
T(x, =ming min —-, min —=
o(T(x3)) {ne[k,.kz] P, " nelkik) Oy
T T
> ,umax{sup 1) () , sup z(x,y)(n)} > ud = b.
nez Pn nez Qn

Then T has at least three fixed points (xy,y;), (x2,y2) and
(x3,y3) such that ||(x1,y1)||<a, Y(x2,y2) >b and

[[(x3,y3)[| > a with ¥(x3,y3) <b. Then (x1,y1), (x2,2)
and (x3,y3) satisfy (2.20). The proof is completed. O

An example

In this section, we present an example to illustrate effi-
ciency of Theorem 1.

Example 1 Consider the following boundary value
problem of the bilateral difference system:

Alp(n)Ax(n)] +f(n,x(n), y(n)) =0, n€Z
Alg(n)Ay(n)] + g(n, x(n),y(n)) =0, neZ
nEI}lOOx(n) =0,
nEI}lOOy(n) =0, (3.1)
nETmp(n)M(n) =0,
Jim g(n)Ay(n) =0,

where p(n) = g(n) =27", f,g: Z x [0,400)* — [0, +00)

are defined by

flnyu,v) =271M[f (27"
g(n,u,v) =271"[g (2 "u

) +(27)]
)+ &(27)]

with

1
—u, u€[0,96],

24
235595 —4
— — ~—|n] T (y—
=fo(u)=2 4+ 120 -9 (u—96), u € [96,140],

235595, u € [140,3688200],
235595 x e4~3688200 1 > 3688200,

fi(u)

1
S U € [0,96],

235595 — 4
gl(u) = gz(u) —2-InJ 4+ m (I/t - 96)7 uec [967 14-0]7

235595, u € [140,3688200],
235595 x e"~3688200 4 > 3688200.

Then (3.1) has at least three positive solutions (xi,y;),
(x2,y2) and (x3,y3) satisfying

@ Springer

supxl(:)<96 sup 2() <96,

nez 2 nezZ
y2(n)
n n

nel10,12)

min 200 < 140,

ne(10,12] 2"

either sup x(n) > 96 or sup
nezZ nezZ

. . x3(n
either min 3(1)
nell0,12] 2"

> 140,

<n)>96

<140 or min M

< 140.
nell0,12] 2"

(3.2)
Proof Corresponding to BVP (1.3), p(n) = g(n) = 27",
o =p=y,=0=0fori=1,2,--- n, ¢(x) =¢(x)=x
with ¢~ (x) = ' (x) = x, and

+00 ﬁn B 1 ) B
> pe s =0< T with f=1>0,

n=—00

+00 5’1 B 1
2w " vt

One sees that (b), (c), (d) and (e) hold.
By direct computation, we know that

with 6 =1>0.

n—1
Py=Qp=1+ ) 2°=2"

S§=—00

Choose the constant k; = 10,k, = 12, a = 96,b = 140,
¢ = 3688200. It is easy to see that

7minii%%i% =2
! Py P ¢ (plki = )P Ox Qv (alki — 1), ’
, (D D7 J
Q_mm{tb( N “ F ) 1 )3;35’
an,,c“n“"znxx ”Zr —00
¢~ (p(s))
|-y
v C( +3,: ac:ln)l . 3f3[3 = 614700;
1= p+ Yn =YY
Tt 2 e T S
bPy, 1 b0y, 1 15
W = ma 13 LY 10 x 27
de{ (Z]:ll’)cd) ‘ﬂ ) Z{ 2 7” (Zf"xw ) Zf ko 7} X
+o0 S
E = min{ ¢ - (172 “)7 ° 5
(D DHINETED DAV TD S ,;rs)) 3430
o e T L =16

343
1— Yo + Vu _ 1
X ;x’ zxv "(a()

n=—o0c

So

f(napnua QnV) =27l [fl (u) +f2(v)}7
g(n, Py, Qv) = 27"(g1 (u) + g2(v)]-

It is easy to check that
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AD:  f(n,Pu,Quv) <330 for all neZuyv
€ [0,3688200];  g(n, Pyu, Q) < 32330 for all
n € Zu,v € [0,3688200];

(A2): f(n,Pau, Q) > 22> for all  ne[l0,12],
u, v € [140,573440]; f(n, Pyu, Q,v) > 322° for all
n € [10,12], u, v € [140, 573440];

(A3): f(n,Pyu,Quv) < £ for all neZu,vel0,96]

f(n, Py, Qpv) < % foralln € Z,u,v € [0,96].

Then by Theorem 1, BVP (3.1) has at least three positive
solutions (x1,y;), (x2,y2) and (x3,y;) satisfying (3.2). The
proof is completed. O
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