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Abstract In this paper we consider compactification
spaces of ideal extension for topological semigroups. As a
consequence, we characterize compactification spaces for
Brandt J-extension of topological semigroups.
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Introduction

Ideal extension for semigroups was studied by Clifford and
Preston in [2]. Afterward, ideal extension for topological
semigroup was considered by Chiristoph in [3]. He showed
that if S and T are two disjoint topological semigroups such
that T has a zero, then H=T"U (0 x S) is an ideal
extension of S by T where T* = {(t, f(¢)) : t € T\ {0}}.
Now, the natural question is: if H is an ideal extension of
topological semigroup S by T and H', §' and T' are com-
pactifications of H, S and T respectively, can H' be natu-
rally characterized by S and T'? In this paper we
investigate ideal extension for topological semigroups
using congruences of semigroups, then we apply this
method to characterize compactification spaces of this
structure.
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Preliminaries

Throughout, we use the notations introduced in [1]. For
terms which are not introduced here, the reader may refer
to [1, 2, 5, 6]. Let %(S) be the C"-algebra of all bounded
complex valued functions on S, § be a unital C*—subalge—
bra of Z(S), S” be the set of all multiplicative means on 7
and ¢ : S — S be the evaluation mapping. .Z is called m-
admissible if T,(#)C F for all pe€S”, where T,(-
NG = wlLy(H), se S, f € F. Now, S7 with the Gelfand
topology and multiplication wv(f) = u(7,(f)), w,v € 7 is
a compact Hausdorff right topological semigroup. Also if
(s, X) is a compactification of S, then " (C(X)) is an m-
admissible subalgebra of C(S). Conversely, if # is an m-
admissible subalgebra of C(S), then there exists a unique
(up to isomorphism) compactification (\, X) of S such that
V' (C(X)) = 7. The compactification corresponding to the
m-admissible subalgebra 7 is (¢,5”) and &*(C(S7)) =
& . A compactification with a given property 2 is called a
ZP-compactification. A universal Z-compactification of S is
a P-compactification of which every Z-compactification
of S is a factor. Universal Z-compactifications, if they
exist, are unique (up to isomorphism). We denote the
universal Z-compactification of S by S7.

Compactifications of ideal extensions of semigroup

In this paper S and 7" = T — {0} are semigroups with
identities 15,17 respectively.

By a partial homomorphism we mean a mapping A — A
of T"=T— {0} into S such that AB = AB, whenever
AB # 0 and 17 = 1g. It is known that a partial homo-
morphism A — A of the semigroup 7~ into S determines an
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extension Q of S by T as follows. For A, Be T and
s, te S,

AB if AB#0
(P1) AoB=< __ .
AB if AB=0
(P2) Aos = As, (P3) s50A = $A, (P4) sot = st.

and every extension can be so constructed [2, 4.19].

Let S and T be disjoint topological semigroups, with
T having a zero element 0. A topological semigroup Q is
called an ideal extension of S by T if Q contains S as an
ideal and the Rees factor semigroup % is topologically
isomorphic to 7. The existence of ideal extension of
topological semigroups was expressed in [3]. In the next
Theorem we introduce the ideal extension of topological
semigroups using congruences technique on semigroups
which is our main tool in the following.

Theorem 1 Let S and T be disjoint topological semi-
groups such that T has a zero and Q be ideal extension of

S by T. Then there exists a congruence p on Q such that
QT

p S

Proof We regard Q x Q with the product topology. Let t
be the equivalence relation generated by {(u,su’)|s €
S,u,u' € Q) and  p, = {(x,y) € Q x Q| (uxv,uyv) €
7, for all u,v € Q}. By Proposition 1.5.10 [5], p, is the
largest congruence on Q x Q contained in 7. We use the
techniques of Proposition 8.1.8 [5] to show that if u;p us,
then u; = u, or there exists s € S such that u; = su,. Since
Q is a topological semigroup, p, is closed congruence on

Q. Thus, pg is a topological semigroup with quotient
Q

topology. Let n: Q — p& be the natural quotient map. If
Q
v € ker(n) = [1], , then v =s.1 =1s. Hence, ker(n)=
Q
{uc Q| [u] =1} = S. This implies that > ~ ¢~ T.
Q

Let S and T be disjoint topological semigroups such that
T has a zero and Q be an ideal extension of S by T. Let
(J, X) be a topological semigroup compactification of Q
and 7, be the equivalence relation generated by
{(x,¥(s)y) | x,y € X,s € S} and p, be the closure of the
largest congruence on X x X contained in 7,. We fixed
these notations for the rest of this paper. O

Theorem 2 Let S, T be disjoint topological semigroups such
that T has a zero and Q be an ideal extension of S by T. Let

(U1, X) be a topological semigroup compactification of Q. Then
pl is a topological semigroup compactification of 2~ T.
X
Proof Let a1p,05, then Y(a1)p, (02). Thus y preserves
congruence. This implies that there exists a continuous homo-
X

morphism ‘/;:%_)K such that 7 oy =y o7, where 7 :

o
% @ Springer

Q— % X — é Since py is closed and X is a compact

Hausdorff topological semigroup, pi is a compact Hausdorff

topological semigroup. We have &(%) =jorn (Q) =
Q

Fop (@) 2 #((Q)) = #(X) = £. Also /() = flon(Q)
— 70P(Q) C A(AX)) = A(R(X)) = (pi) Therefore, X is

X

a topological semigroup compactification of pg ~T. O
Q

Theorem 3 Let S and T be disjoint topological semi-
groups such that T has a zero and Q be an ideal extension of

S by T. Let (e7,T”) and (¢q,Q”) be the universal P-

compactifications of T and Q respectively. Then T” ~ pg— if
o?

1. 2 is invariant under homomorphism,

2. universal ~P-compactification is a topological

semigroup.

Proof By Theorem 2, <§Q,f—ﬂ> is a compactification of
07

%z T. By universal property of Z-compactification

(e7,T7) of T [1, 1.4.10], there exists a continuous homo-

morphism ¢, : 77 — % such that ¢, oer = ¢,. Also
o7

Q~
=

continuous homomorphism ¢, : Q” — T7 such that ¢, o

homomorphism 5 = ez om: Q — T — T” provides a
eq = 1. Let 6'1pM 63 (61,0, € Q7). Choose nets {uy}, {vy)
in Q such that lim, &, (uy) = 61, lim, ¢, (v,) = G2. We have
61 = §6,, where § = ¢,(s) for some s € S. Thus,

?2(61) = @2(562) = @2 (2a(s) limea(vs))
= lior(n Pr080(sv,) = liin 17(svy)
= limn(s)n(vy) = lim @060 (vs)
= ¢,(62)

Then, ¢, preserves congruence. Thus there exists a

. . 7 y

continuous homomorphism ¢j5 : pg— —T7
o?

such that

P 7
¢p30m , = ¢,, where 7w, Q7 — pQ— We show that
o?

prop3 =idgr . If 7, (1) GPQ_,,,’ then we can find a net
P2 o?

{04} in Q such that lim, ¢,(0,) = t. we have
P1003(m, (1) = @00,(1) = lior(n ?1005(¢4(04))
= lim @,0n(0,) = lim @,0¢eron(a,)
o o
= lim¢&,om(o,) = limm_, (&,(04))
o

o
= nﬂw (]1;1] 89(0-06)) = nﬂw (t)
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= idy». Therefore, T7 ~ Q. O
P
Corollary 1 Let Q be an ideal extension of topological
semigroup S by topological semigroup T. Let
(&5, 8%), (8q, Q™) [resp. (&,S*), (eq, Q)] be the
strongly almost periodic compactifications [resp. almost
periodic compactifications | of S and Q, respectively. Then
T5%P ~

Similarly, @;0¢,

QP ap ~, Q¥ ¢ —
== [resp. T ~ where S = resp. where
— [resp o Py [1EP

S=p

)

Example 1 Let S=.#°(G,P,1,J) be the Rees matrix
semigroup where G is a topological group, I and J are
arbitrary nonempty sets and P = (p;;) is a J x [ matrix
with entries in G® = GU{0}. In [7], it is shown that there is
a continuous partial homomorphism 0 : S — G; then there

exists an extension Q of G by S and 2~ % ~ § where

Py = {(u,v) € Ax Q| u= gvforsomeg € G}. Also,

S~ 2% apd §op ~ 2T O
Peap Pasap

Theorem 4 Let S and T be disjoint topological semi-
groups such that T has a zero and Q be ideal extension of
S by T. Let (i, Xs) and (Y7, X7) be topological semigroup
compactifications of S and T, respectively, such that Xg N
X7 = 0. Then the following assertion holds.

(a) Ideal extension Xq of Xg by Xr exist.

(b) Topological center A(Q) is an ideal extension of
A(S) by A(T).

(©) (Yq,Xa) is a topological semigroup compactification
of Qwhere i | =Y, ¥ | = Vs

Proof (a) First, we note that if 0 be zero element of T,
then 7 (0) is zero element of X7. It is enough to show that
there is a continuous partial homomorphism 0:X: =
Xr — {0} — Xs. Let x; € X5 then there exists net {u, } in
T such that Y, () — xr. Now {50 0(u,)} is a net in Xy
and by compactness of Xg, there exists x; € Xg such that
g0 0(uy) — xs. Let 0 1 X; — X5 by 0(xr) = xs. Obvi-
ously, 0 is well defined. Suppose xr,yr € Xr and
{1}, {vy) are nets in T such that lim, (Y o 0(u,)) = 0(x7)

and lim, (g 0 0(v,)) = 0(yr). We have

0(er)0(yr) = Tim (s (0(u))Wr5(0(v2))

= liarcn Us(0(uyvy))
= é(xT)’T)
Clearly, 0 is continuous. Thus by Theorem 1, ideal
extension Xq of Xg by X7 exist.
(b) Obviously, A(T) N A(S) = (). Define 0 : A(T)" =

A(T) — {0} — A(S) by 0'(4) = 2o (t € T). Now 0’ is a

continuous partial homomorphism then there exists an
ideal extension w of A(S) by A(T). Let 1, € A(Q). Then,
if €S so0 4, €A(S) and if 0 € T so A, € A(T). Thus
A(Q) C w. Obviously, @ C A(Q). Then A(Q) =

(c) By (a) ideal extension Xq of Xg by X7 exist. Suppose
x € Xg = Xs UX5, then there exists {u,} € Q=SUT"

such that ¥ (u,) — x. Thus y_(Q) = Xq. Also,
Vo (S) = ¥, |5(S) = s(S) € A(Xs)
Vo (T) = Vo[ (T) = ¥7(T) € AX7)

Now by (b), ¥/,(Q) C A(Xa).

The following theorem shows that topological semi-
group compactifications of S and T can be constructed by
topological semigroup compactification of their ideal
extension. |

Theorem 5 Let S and T be disjoint topological semi-
groups such that T has a zero and Q be an ideal extension
of S by T. Suppose (Yq,Xq) is a topological semigroup
compactification of Q. Then there are topological semi-
groups compactifications (Us, Xs), (U, X7) of S and T,
respectively, such that Xq is an ideal extension of Xs by Xr.

Proof Set g =g |s: S — Xq and Yg(S) = Xs. It is
clear that Xy C X is a compact topological subsemigroup
of Xq and ¥/(S) C A(Xs). Thus (s, Xs) is a topological
semigroup compactification of S . Now we show that for
every x,x € Xq, (xXs)(x¥'Xs) C x"Xs for some x" € Xq.
Let g € (xX5)(xX'X5) then there exist nets {uy}, {vy} in Q
and uy,vy in Xg such that g = limy, Y (s )11 Yo (vy)vy. Also
there exist nets {s,}, {#,} in S such that lim, ¥¢(s,) —
uy, lim, Yg(t,) — vi. Then,

8= h}(n Yo (ua)Ps(s:)a(va)s(ts)

= liartn Vo (UySyvaty)

On the other hand, £ $ == T so for every a,b € Q, there exists
¢ € Q such that aS.bS = ¢S. Thus for every o, there exists
{wy} €Q and ¢, € § such that u,s,v,t, = Wy gy The
compactness of Xq and X allows us to assume g = x'’ ¢’
. . . X, .

This implies that X—‘: is
semigroup. Also, X—‘; is compact topological semigroup [1,
1.3.8]. Let Xr = 32,
X5 by Xr. Let t € T~ then 1 = n(c) for some ¢ € Q.
Define Y, : T — Xy by Y(r) =7 oyg(s) where 7':
Xo — ﬁ—‘; = X7. It remains to show that (\/7, X7) is a
topological semigroup compactification of 7. We have
Xo

:—:X
xg 7

for some x" € Xo,q" € Xs.

then Xgq is a topological extension of

Yr(T) =1 0 Yo(Q) 2 7' 0o (Q) = 7'(Xq)

and

o
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Yr(T) = 7' 0 Yo(Q) € 7' 0 A(Xa) = A(7'(Xa))

. A@—‘;) — AXy).

Compactification of Brant i-extensions

An important class of semigroups which has been consid-
ered from various points of view is completely O-simple
semigroup and Brandt A-extension [see 2, 4, 5, 6, 7, for
instance]. In this section we use topological extension
technique to characterize compactification spaces of Brandt
A-extension.

Let G° = G U {0} [resp. G] be a group with zero [resp.
group] and, E and F be arbitrary nonempty sets. Let P be a
E x F  matrix over G° [resp. G]. The set
S=GxExF U {0} [respp S=Gx Ex F] is a
semigroup under the composition

(i aj)o(l b k) _{(i,apﬂb,k) if pjl#o
) ) ) ) 0

otherwise

This semigroup is denoted by S = M(G, P, E, F) and is
called Rees E x F matrix semigroup over G° [resp. G]
with the sandwich matrix P.

In the special case, if P =1 is an identity matrix,
S = G° is semigroup with zero, and E = F = I, is a set of
cardinality A > 1. Define the semigroup operation on the
set B;L(S) = M(S, 1 I}L, Ik) by

o [ (iab,k) ifj=1
<l’“’1)o(1’b’k)_{o, it £

and (i,a,j)0=0.(G,a,j)=00=0 for all a,be
S,i,j,l,k € I,. The semigroup B,(S) is called Brandt /-
extension of S [4]. Now let i — u; and j — v; be mappings
of E and F to S such that u;.uy = 1g,Vk € A. Then mapping
0:B;(S)" =B;(S) —{0} = S by 0 (i,s,/)) =us u; is a
partial homomorphism.

Let S be a topological semigroup with zero and Brandt
A-extension of S, B,(S) be equipped with product topology
then B;(S) is a topological semigroup. Now 0 : B;(S)" =
B)(S)—{0} = S*=S—{0} by 0 (i,s,)) =us u; is a
continuous partial homomorphism. Then there exists an
ideal extension Q of $* by B,(S) and SQ ~ B,(S).

The following Corollaries are immediately results of
Theorems 3.4, 3.5, 3.6.

Corollary 2 Let S be a topological semigroup with zero
and Q be an ideal extension of S* =S — {0} by By(S). Let

o
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(Y, X) be a topological semigroup compactification of
topological semigroup Q. Then, pi is a topological semi-
X

group compactification of B;(S).
Corollary 3 Let S be a topological semigroup with zero
and Q be an ideal extension of S* =S — {0} by By(S).
Suppose (SBZ(S),B,Q(S)W) and (eq,Q”) are the universal P-
compactifications of B,(S) and Q, respectively. Then
Bi(8)” ~ £~ if

o

1. 2 is invariant under homomorphism,
2. universal P-compactification is a
semigroup.

topological

Corollary 4 Let S be a topological semigroup with zero
and Q be an ideal extension of S* =S — {0} by By(S). Let
(e8,(5), B2(S)'™) [resp. (ep,(s), B:(S)™)] and (eq, Q")
[resp. (eq, Q)] be the strongly almost periodic compac-
tifications [resp. almost periodic compactifications] of
By(S) and Q, respectively. Then B;(S)*" ~ pQ—' [resp.

qsap
B, (S)" ~ 2

28T =]
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