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Abstract
Load forecasting is a nonlinear problem and complex task that plays a key role in power system planning, operation, and 
control. A recent study proposed a deep learning approach called historical data augmentation (HDA) to improve the accuracy 
of the load forecasting model by dividing the input data into several yearly sub-datasets. When the original data is associated 
with high time step changes from 1 year to another, the approach was not found as effective as it should be for long-term 
forecasting because the time-series information is disconnected by the approach between the end of 1-year sub-data and the 
beginning of the next-year sub-data. Alternatively, this paper proposes the use of 2-year sub-dataset in order to connect the 
two ends of the yearly subsets. A correlation analysis is conducted to show how the yearly datasets are correlated to each 
other. In addition, a Simulink-based program is introduced to simulate the problem which has an advantage of visualizing the 
algorithm. To increase the model generalization, several inputs are considered in the model including load demand profile, 
weather information, and some important categorical data such as week-day and weekend data that are embedded using one-
hot encoding technique. The deep learning methods used in this study are the long short-term memory (LSTM) and gated 
rest unit (GRU) neural networks which have been increasingly employed in the recent years for time series and sequence 
problems. To provide a theoretical background on these models, a new picturized detail is presented. The proposed method 
is applied to the Kurdistan regional load demands and compared with classical methods of data inputting demonstrating 
improvements in both the model accuracy and training time.
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Introduction

Load forecasting is a method to predict future load demands 
by analyzing historical data and finding dependency pat-
terns of its time-step observations. It has many applications 
in power system operation and planning including demand 
response, scheduling, unit commitment, energy trading, sys-
tem planning, and energy policy [1]. Accurate load forecast-
ing helps power companies and decision-makers to make a 
balance between supply and demand, prevent power inter-
ruptions due to load shedding, and avoid excess reserve of 

power generation. Load forecasting problem is a challenging 
task due to its complexity, uncertainty, and variety of factors 
affecting the prediction. It is considered as a type of time-
series problems that needs a special solution. Depending 
on its application, load forecasting can be classified into: 
very–short load forecasting (VSTLF), short–term load fore-
casting (STLF), medium–term load forecasting (MTLF), and 
long–term load forecasting (LTLF). VSTLF is used in the 
problems of demand response and real-time operation that 
require a time horizon of a few minutes to several hours 
ahead. Forecasting the load demand from one day to several 
days ahead is called STLF, whereas forecasting from 1 week 
to several weeks ahead is known as MTLF. These two types 
of forecasting cover the majority of load-forecasting studies 
in the literature and are mainly used in scheduling, unit com-
mitment, and energy marketing. Lastly, LTLF refers to the 
forecasting with a time frame of up to serval years ahead and 
it is useful for planning and energy-trading purposes. [1, 2].
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Several recent studies have comprehensively reviewed the 
state-of-the-art techniques used in load forecasting [3–12]. 
These techniques can be mainly classified into two groups: 
statistical and machine learning. Statistical methods are clas-
sical models that map the input data to the output. Autore-
gressive integrated moving average (ARIMA), linear regres-
sion, and exponential smoothing are examples of this kind 
of load forecasting. Statistical techniques are relatively fast, 
easy to set up, and computationally inexpensive. However, 
they suffer from uncertainty and low accuracy with high 
nonlinear systems. On the other hand, techniques based on 
machine learning such as artificial neural networks, deep 
learning, and recurrent neural networks have more complex 
setup and expensive training-time but they are relatively 
more accurate and perform better. Among the second-type 
approaches, the long short-term memory (LSTM) and its 
newer version named gated recurrent unit (GRU) are very 
popular techniques and widely used in the recent studies 
[13, 14]. In [14], a deep neural network and historical data 
augmentation (DNN–HDA) is proposed for data with a high 
correlation which shows a great improvement in the accu-
racy. The method is based on dividing the input data into 
multiple sequences, each sequence represents a dataset for 
1 year. However, when data is divided into multiple parts, 
information about the connection between the end of one 
part and the beginning of the next part is missing. For some 
data and load forecasting problems, this could be unprob-
lematic as shown in the paper. However, when the nature of 
data changes and includes high uncertainty and fluctuations 
in the time step information, this approach was found strug-
gling to predict future load demand, especially for long-term 
forecasting.

In [15], a sequence-to-sequence recurrent neural network 
approach is proposed to capture time dependencies of input 
data. References [16–19], proposed multi-channels and fea-
tures to extract useful information from the historical data. 
Most recent studies in [13, 20–45] use LSTM as a main 
deep neural network or in a hybrid model to develop a bet-
ter STLF load forecasting network. Some of these studies 
[33] added the impact of COVID-19 on load forecasting 
using lockdown information as another sequence input. Oth-
ers [40] use bidirectional LSTM as a learning component. 
Concerning the previous studies applied to the test data of 
Kurdistan regional load demand, several studies [46, 47] are 
present. The methods used in these papers are either statisti-
cal approaches or simple models of neural networks.

It should be noted that all the denoting studies use mainly 
MATLAB to implement the proposed models. We know that 
Simulink is a visualized version of MATLAB and is bidirec-
tionally connected to MATLAB. It has several advantages 
over MATLAB. For instance, you can see how the algorithm 
works through looking into the block diagram shown as a 
flow chart for the problem. You can easily set up a new 

built-in or customizable component and add it to the model. 
The blocks and the signals can hold values in the form of 
scalars or vectors. In addition, we can replace the for-loop 
required to update the network at each time step in MAT-
LAB with a vectorized model without the need of for-loops.

This study proposes a reform in the forecasting input data 
to obtain a better performance and solve certain complex 
problems that the 1-year data-augmentation approach fails 
to predict accurately. Not only a one-day or week-day ahead 
forecasting is addressed, but a 365-day ahead prediction is 
introduced. Five scenarios are used for comparison including 
classical single-variable input one-day ahead, single-variable 
input 365-day ahead, single-variable multi-sequence inputs 
365-day ahead, classical multi-variable input 365-day ahead, 
and multi-variable multi-sequence per variable inputs 365-
day ahead. This paper also fills the gap in the current pro-
grams used for load forecasting by introducing the Simulink 
model of prediction.

The rest of the paper is organized as follows. In the next 
section, a theoretical background is presented on the long 
short-term memory and gated reset unit neural networks. In 
Sect. 3, the dataset under study is analyzed using a correla-
tion function of input time-series observations. The forecast-
ing methodology used in this study is described in Sect. 4, 
whereas the Simulink program developed for this work is 
introduced in Sect. 5. The results are discussed in Sect. 6. 
Finally, the conclusion is presented in Sect. 7.

Theoretical background on LSTM and GRU​

Conventional neural networks such as multilayer perceptron 
(MLP) can be applied to sequence-based and time-series 
problems but in practice, it has multiple major limitations. 
Its stateless structure, messy scaling, fixed-sized inputs and 
outputs, and unawareness of time-related structure are some 
of these limitations [48]. A better alternative neural network 
for these types of problems is the recurrent neural network 
(RNN). RNN is a feedforward multineural network with 
additional feedback cycles from previous time steps used 
to store temporal information as internal states. A recurrent 
network adds a memory state to learn the sequence order of 
input data and extracts the dependencies among the input 
observations. However, almost all RNNs are nowadays 
replaced with the long-short-term memory (LSTM) or gated 
reset unit (GRU) to solve major shortcomings in the RNNs: 
vanishing and exploding gradients. When the RNN weights 
are updated, it quickly results in either too small changes 
in the weights (vanishing gradient) or too large changes 
(exploding). The result is a short-term memory which is 
extremely hard for the RNN to learn and determine the 
dependencies among observations from earlier time steps 
to the later ones.
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LSTM

The LSTM model is developed to overcome the drawback of 
the RNNs by adding a memory or cell state to the network. 
The cell state is responsible for adding or removing past 
information based on its relevance and importance to make 
the prediction. The structure of LSTM is more complex than 
the RNN. It has S cell-blocks connected in series, where S is 
the total time-steps or length of input data. Figure 1 shows 
the architecture of an LSTM with C features and D hidden 
units, the former is equivalent to the number of neurons in 
the classical neural network. Each LSTM cell consists of 
three adjusting-gate blocks to regulate its state. The gates 
are simple neural networks composed of weights, biases, 
and activation functions. The LSTM gates can be described 
as follows:

1.	 Forget gate: This gate determines what information 
from the cell state ct−1 (the top horizontal line in Fig. 2 
colored in orange) should be thrown away using infor-
mation from the previous hidden state ht−1 and the cur-
rent input xt . The current cell input xt is multiplied by 
the weight matrix Wf  whereas the previous hidden-state 
ht−1 is multiplied by the recurrent weight matrix Rf  . The 
resulting output of these products are added to a bias 
vector bf  . Finally, a sigmoid function �g is activated to 
get the output vector ft that has values varying between 
0 and 1. The value “0” means no information from the 
previous time-step of cell state is allowed to flow (not 
important information), whereas the value “1” means all 
previous information of the memory is allowed to flow 
(extremely important). If the information is partially 
relevant, the function outputs a value between “0” and 

Fig. 1   An LSTM layer with 
multi-inputs and multi-outputs 
(created for this study)

Fig. 2   Internal structure of an 
LSTM cell (created for this 
study)
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“1”. Mathematically, this description can be written as 
follows:

where �g denotes the gate’s activation function, and all 
the other parameters and variables are defined above. If 
the input variable xt is a vector of sequences with C fea-
tures, and each cell has D hidden units, then the weights 
Wf  and Rf  are matrices with the dimensions of DxC and 
DxD , respectively, whereas the bias bf  is a vector with D 
elements. As a result, the output of the gate ft is a vector 
with D elements.

2.	 Update gate: This gate is used to update the cell state 
or memory that was regulated by the forget gate in the 
previous step. It is composed of two parts of neural net-
works: input gate it and candidate cell gt , and are fed 
with the same inputs used for the forget-gate ( ht−1 and 
xt ). However, the weights, biases, and activation func-
tions of it and gt branches are different. For the input-
gate branch– it , we have the input variables xt and ht−1 
weighted by the matrices Wi and Ri , respectively and 
biased with bi , and finally activated using a sigmoid 
function �g.

	   The same is repeated for the candidate-state branch– 
gt using the denoting letter i instead of g , and replacing 
the sigmoid function �g with a tan hyperbolic (tanh or �s ) 
to squishes the data between − 1 and 1. The input branch 
is used to control the output of the squished data–the 
candidate state. Finally, the outputs of these two neural 
networks ft and gt are multiplied to produce the output 
of the update gate.

	   Mathematically, the two networks can be written as 
follows:

where �s denotes the state activation function.
3.	 Output gate: This gate is used to compute the current 

hidden state ht . We pass a copy of the combined input ( xt 
and ht−1 ) to a sigmoid function �g after multiplied with 
the respective weights Wo and Ro , and added to the bias 
bo . The resulting output ot is multiplied with the current 
cell state ct after squished to the range [-1, 1] using the 
tanh function �s . Mathematically, the output gate can be 
described as follows:

	   The equations of the new cell-state ct and hidden-state 
ht are:

(1)ft = �g

(

Wf xt + Rf ht−1 + bf
)

(2)it = �g

(

Wixt + Riht−1 + bi
)

(3)gt = �s

(

Wgxt + Rght−1 + bg
)

(4)ot = �g

(

Woxt + Roht−1 + bo
)

where the operator . ∗ refers to the Hadamard multipli-
cation (element-wise or pointwise operation). Since we 
use MATLAB to train our network, the same variable 
and parameter names used by the software are employed 
here in this study.

	   To summarize, the forget gate determines what infor-
mation from the old memory is relevant to keep and 
forget the irrelevant ones. The input gate is used to 
update the relevant memory and generate the current 
memory used in the next block. The output gate is used 
to compute the output of the current block and the next 
hidden-state. We should note that all the gates have the 
same inputs consisting of three copies of the previous 
hidden state and the current input combined (the bottom 
line in Fig. 2). The top of Fig. 2 is the LSTM memory or 
cell state that is used by the network to learn about the 
sequence order of input data.

GRU​

GRU model (Fig. 3) is a simplified and newer version of 
LSTM. It is composed of two gates and one candidate-state 
network, namely: reset gate rt , update gate zt , and candidate 
state h̃t . The update gate used by the GRU is equivalent to 
the forget and input gates in the LSTM model combined as 
a single network. It is used to determine what information to 
remove or add. The reset gate is used to determine how much 
information from the previous state to forget. In contrast to 
the LSTM, there is no cell state in the GRU network. In other 
words, the cell state can be seen as the previous hidden state 
ht−1 . The network parameters of the GRU are less than those 
in LSTM and hence the network requires less training time to 
learn about dependencies among the time-step observations 
or sequence data. Mathematically, the following equations are 
used for the reset and update gates, candidate state, and the 
hidden state, respectively:

(5)ct = ft. ∗ ct−1 + it. ∗ gt

(6)ht = os. ∗ �s

(

ct
)

(7)rt = �g

(

Wrxt + br + Rrht−1
)

(8)zt = �g

(

Wzxt + bz + Rzht−1
)

(9)h̃t = 𝜎s

(

Wh̃xt + bh̃ + rtRh̃ht−1
)

(10)ht =
(

1 − zt
)

. ∗ h̃t + zt. ∗ ht−1
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Dataset correlation: a research motivation

In this study, a historical dataset is collected for Kurd-
istan regional power system containing load profiles for 
each governorate for the range of years 2015–2020 [49, 
50]. The map of this region is shown in Fig. 4. The data 
is divided into two subsets: training and test subsets. The 
first five years of the data are used for training the network, 
whereas the last year of the data is used for testing the 
trained network. We call these two datasets XTrain and 

XTest , respectively, which represent the predictors or inde-
pendent variables for the respective training and test data-
sets. The predictors are moved by one-time step to gener-
ate the response or dependent variables for the respective 
training and test datasets YTrain and YTest.

In order to see how the dataset for one year is correlated 
to another yearly dataset of the same time-series sequence, 
a correlation analysis is conducted on the sample data. 
Figure 5 shows the correlation among pairs of time-series 
variables that express the daily load demand of Kurdistan 
region–Erbil governorate for 6 years. The diagonal plots 
in Fig. 5 display the histograms of data, whereas the off-
diagonal figures exhibit the scatter plots of pair variables. 
The correlation coefficients for each pair of variables are 
highlighted on the graph and listed in Table 1. It can be 
observed from these plots and the table that the input loads 
used in this study are highly correlated. The minimum and 
maximum correlation coefficients are 0.777 and 0.9167, 
respectively, and the average of these off-diagonal val-
ues is 0.8991. The implicit relationships motivate us to 
investigate the use of this nature in the historical data to 
improve the load forecasting. As mentioned earlier, one 
recent study [14] observed this correlation using another 
dataset and introduces the concept of historical data aug-
mentation (HDA). However, for high uncertainty data with 
fast changes in the time step information, the use of 1-year 
data for training a long-term dataset is a challenging prob-
lem; the data corresponding to the end of one year has no 
connection with the beginning of the next year dataset. In 
fact, if the starting day of a historical data marks the first 
day of a year which is common, then the data starts in the 
middle of a winter season which has a similar load-profile 

Fig. 3   Internal structure of 
a GRU cell (created for this 
study)

Fig. 4   Map of Kurdistan region of Iraq
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shape with respect to the loads obtained for the end of the 
previous year. Therefore, in the results section, a simple 
modification of this method is proposed to remove this 
shortcoming and accelerate the process.

Forecast methodology

To predict the future values of load demands, we can imple-
ment one time-step ahead forecasting (OTSAF) or multi-
ple time-steps ahead forecasting (MTSAF). For their future 
prediction, both approaches use an initial value computed 
from the last time-step of the historical load demands. How-
ever, the difference between OTSAF and MTSAF is in the 
way the network is updated for the next predictions. OTSAF 
updates the network using the current value of the test data, 
whereas MTSAF updates the network from the current pre-
dicted value. In other words, in MTSAF, the test dataset is 
not used anymore for future time-step prediction except for 
the first one. For the rest of remaining predictions, we loop 
over the predicted values once at a time until the end of the 

Fig. 5   Correlation analysis of the input data

Table 1   Numerical values for the correlation analysis

1 0.8828 0.8374 0.8793 0.7777 0.8257

0.8828 1 0.8935 0.8708 0.8352 0.8341
0.8374 0.8935 1 0.86 0.8953 0.9167
0.8793 0.8708 0.86 1 0.8118 0.8899
0.7777 0.8352 0.8953 0.8118 1 0.8613
0.8257 0.8341 0.9167 0.8899 0.8613 1
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time-step sequence. It should be noted that for the OTSAF, 
the network state needs to be reset to prevent the influence 
of past predictions on new data forecasting.

In this study, several scenarios for the forecasting are 
considered including single-sequence and multi-sequence 
input–output forecasting. For the single sequence predic-
tion, the input is the historical load demands. For the multi-
sequence, the inputs consist of load demands, weather data, 
week-day and holiday information. In addition to the clas-
sical method of data inputting with a full sequence of time 
steps, a modification on the input data is proposed by divid-
ing the data into several subsets by considering a two-year 
period per each subset instead of only one-year dataset. The 
results are presented and compared in the following sections.

Simulink models

This section presents the Simulink models developed for 
load forecasting and applied to both the OTSAF and MTSAF 
methods. Figures 6a, b show the block diagrams of each of 
these models. Since in the OTSAF, a variable from the test 
dataset is required for each time step to predict the next load 
demand, the network will have a vector of test inputs (or 
matrix in the case of multiple sequences), and there is no 
feedback loop from the output of the prediction block to its 
input. However, as it can be observed in Fig. 6b, the current 
output is fed to the input of the prediction block to be used 
for forecasting the next time step of load demand. By doing 
this loop, we are actually replacing the for-loop command 

required by MATLAB to achieve this task pragmatically. It 
is more useful to see visually how the algorithm works by 
showing the main steps in blocks connected to each other. 
From the figure, we can see three main steps in the pro-
gram: standardization, prediction, and un-standardization. 
For the MTSAF, in addition to these three steps, we have 
an updating loop signal. To avoid an algebraic loop in the 
model, a memory block is added between the two ends of the 
prediction block. For multiple-sequence problems, we can 
keep all output sequences unchanged and plot the results, or 
we can evaluate a statistical value for these outputs such as 
their average, minimum, or maximum. A clock and switch 
blocks are added to switch the input from a first-time-step 
value obtained from the test data to the next values obtained 
from the prediction.

Results

This study includes several different models with separate 
network training settings. The models are decided empiri-
cally starting from a single LSTM model with default values. 
The number of recurrent neural networks is increased gradu-
ally until a satisfying result is obtained. Most of the models 
need at least three blocks of LSTM, GRU, or a combination 
of them with a fully connected layer to get an acceptable 
accuracy. The gradient threshold is set to 1.0 to avoid any 
exploding in the network update. The initial value of the 
learning rate is chosen to be in the range 0.001–0.01 to bal-
ance between training time and model accuracy. Reducing 

Fig. 6   a Simulink program for the OTSAF model developed for this study. b Simulink program for the MTSAF model developed for this study
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this value increases the training time but might reduce the 
error. The maximum number of epochs is not fixed here and 
it varies from a network to network according to the com-
plexity of the model and pattern of the input data.

OTSAF approach

We first start with the results obtained from the classical 
OTSAF model where the input data are given as a single set 
of time-series load demands without dividing it into subsets 
of data, and without considering other input variables such 
as weather or calendrical data. Figure 7a shows the training 
data in blue for the years from 2015 to 2019, followed by 
the 2020 test-data, and finally, the forecasting values are 
plotted over the test data for comparison. The x− axis is the 
day index starting from day-one which marks 01-Jan-2015 
and ending on 31-Dec-2020, whereas the y− axis is the load 
demands in MW. The network which is selected empirically 
is a deep neural network with three LSTM layers and 128 
hidden units per each which is a default setting. Figure 7b 
shows the observed and predicted results for the last year of 
the dataset –that is, 2020– showing the difference errors in 
MW. The root means square error (RMSE) for this scenario 
is computed to be 83.0345 MW and the relative percentage 
error is 83.0345/2696 or 3.08%. Note that both the MAT-
LAB and Simulink programs give the same results. For a 
network with OTSAF, a maximum number of 100 epochs 
(Fig. 7c) was found to be sufficient to reach the above accu-
racy. The algorithm required around four minutes to train the 
network on a regular computer.

MTSAF approach

Next, we implement the MTSAF approach on the same data 
and design a network to learn from the five-year training 
data and predict load demands for the next year. The network 
architecture is selected experimentally and it consists of two 
layers of LSTM on the top connected to two layers of GRU 
on the bottom. The number of hidden units for these layers 
are chosen empirically to be 128, 64, 32, and 16, respec-
tively. A maximum number of 1500-epochs is chosen to train 
the network with a learning rate of 0.01 reduced to acceler-
ate the training process. The results shown in Fig. 8a–c show 
that the network learned from training the data and predicted 
the next-year forecasting given only a single-day initial value 
and loop over until the end of the year. Compared to the 
case of OTSAF, the relative RMSE error is 215.4212/2696 
or 7.99% which is higher than the previous case. This is 
expected as we know that OTSAF is a one-day ahead fore-
casting whereas MTSAF here is a 365-day ahead forecast-
ing. It is worth pointing out that this method of updating 
network parameters requires a relatively long training time. 
Compared to OTSAF, MTSAF consumes around eight times 

more time to train the network, though the learning rate has 
been already reduced.

Single‑variable data‑reshaping approach

The next scenario is for the case when the input data is 
divided into multiple subsets, each subset is for two con-
secutive-year periods (or one year repeated twice) so that 
it relates to the two ends of the year. As a result, we have 
a model with five-sequence inputs and five-sequence out-
puts. An LSTM-GRU hybrid network is chosen for this sce-
nario in which its number of layers and hidden units are 
selected empirically as in the previous cases. The errors for 
the five sequences are evaluated to be 434.2163, 287.8786, 
174.3753, 186.2802, and 243.1786 MW, respectively, and 
their corresponding relative errors are 16.11%, 10.68%, 
6.47%, 6.91%, and 9.02%. We see that the third subset has 
the lowest error (6.47%) which is smaller than the error in 
the previous single-sequence case (7.99%). Not only the 
error is lower but also the training time is much less than 
in the previous case. The results are plotted and shown in 
Fig. 9a–c. It is worth mentioning that the previous forecast-
ing method used for the data augmentation failed here to 
learn from the data and predict the next 365-day demands 
using the exact training settings and network structure 
above. The gap of information between the starting and end-
ing points of the yearly dataset had a significant impact on 
model accuracy.

Multi‑variable data‑reshaping approach

Single sequence per variable

So far, the input variable used for prediction is the load 
demands. The network can be trained using multi-variable 
inputs including weather data, weekday, and weekend infor-
mation. The necessary data for the average daily temperature 
for the region is collected and preprocessed. The one-hot 
encoding technique is used for the calendrical variables so 
that it does not give more weights to week-day variables. 
However, the weekend days have different one-hot values 
owing to the reduction in power consumption during these 
days. The network is trained with the above four input-
variables which are augmented into 11 input sequences: 
one sequence for each of demands and temperature vari-
ables, seven sequences for the weekday variable, and two 
sequences for the weekend days. The corresponding errors 
for the output variables are 206.5580, 3.6647, 0.5346, 
0.5345, 0.5347, 0.5350, 0.5347, 0.5356, 0.5349, 0.5355, 
and 0.5321, respectively. The relative percentage error for 
the load demand is calculated to be 7.66%, and the results 
are plotted and displayed in Fig. 10a–c.
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Fig. 7   a Load forecasting–
OTSAF Model, b Model output 
errors–OTSAF, c Training and 
loss function errors–OTSAF 
Model
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Fig. 8   a Load forecasting–
MTSAF Model, b Model output 
errors–MTSAF, c Training and 
loss function errors–MTSAF 
Model
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Fig. 9   a Load forecasting– 
single-variable multi-sequence, 
b Model output errors– single-
variable multi-sequence, c 
Training and loss errors– single-
variable multi-sequence
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Multi‑sequence per variable

We can also forecast future load demands using multi-input 
data augmentation by dividing the demand sequence into 

several training yearly subsets. The same input variables 
used in the previous scenario are employed for this case 
study. The input variables are load demand, averaged-daily 
temperature, weekday information, and weekend days data. 

Fig. 10   a Load forecast-
ing– multi-variables single-
sequence per variable, b Model 
output errors– multi-variables 
single-sequence per variable, c 
Training and loss function error, 
multi-variables single-sequence 
per variable
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The total input sequences are 20 sequences, five per each 
input variable representing the 5-year training sets. The 
network is trained and simulated with the test data. The 
sequence errors are computed to be 429.2631, 288.5629, 
174.6432, 191.2456, 239.1730, 0.0872, 2.4136, 3.1355, 

3.4470, 3.4504, 0.0141, 0.5271, 0.7512, 0.7502, 0.7543, 
3.7824, 4.3455, 5.1981, 3.7032, and 3.8014, respectively. 
The load demand error for the sequences is 174.64/2696 or 
6.48% which is lower than the corresponding one with clas-
sical inputting described in the previous model. The results 

Fig. 11   a Load forecasting, 
multi-variables multi-sequence 
per variable, b Model errors– 
multi-variables multi-sequence 
per variable, c Training and loss 
function errors– multi-variables 
multi-sequence per variable
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Fig. 12   a Load forecasting, 
smoothed weekly data, b 
Forecasted errors– smoothed 
weekly data, c Training and 
loss function errors– smoothed 
weekly data
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of training the network and model analysis for this scenario 
are plotted and shown in Fig. 11a–c.

Load forecasting with different sampling‑rates

All the networks designed so far are for input data with a 
sampling rate of one prediction per day. It will be useful to 
investigate the problem with the same input data but con-
sidering different sampling rates, such as one prediction per 
week. For comparison reasons, the data is smoothed using 
Gaussian function in MATLAB. The OTSAF example ana-
lyzed previously is repeated here with the new sampling 
rate and smoothed data. The network is a deep learning with 
the same structure as the one used for the OTSAF, and the 
results are shown in Fig. 12a–c. The relative error is com-
puted to be 0.3485%, which is quite small and sufficient for 
an accurate load forecasting. The same procedure can be 
repeated for the other models in this study. It should be noted 
that in Fig. 12, we see the load demand is increasing from 
one year to another by an average scale value computed for 
the length of data to be 12.35%.

Speed and error analysis

In this section, the different models we discussed so far are 
compared with respect to their errors and training times. 
The OTSAF model requires less time for training the net-
work compared to the same network using the MTSAF 
approach owing to its forecasting time window. The ratio 
factor is 270/2053 which is around 13%. Error ratio is also 
different for these methods with a percentage of 3.08% for 
OTSAF and 7.99% for MTSAF. However, when the data 
is smoothed and the sampling ratio is changed from one-
day to one-week per prediction, additional improvements 
in training time and model error of OTSAF are obtained 
which are found to be 93 s (it was 270 s) and 0.3485% (it 
was 3.08%). However, for the rest of the models, the data 
is decided to remain unchanged to reflect the original data 
received from the source. Next, we compare the classical 
method of data inputting as one sequence and the proposed 
data augmentation technique. The main difference is in the 
training time where the proposed model requires only 26% 
(551/2053) of the training time of the classical model. The 
error is also improved by 23.5% (7.99/6.47). Another signifi-
cant improvement in the model is that the previous model in 
the literature with the one-year data division fails to accu-
rately predict the 365-day ahead demand this dataset. For 
the multi-variable models, the proposed data augmentation 
improves the accuracy with 18% less error (7.66/6.48) and 
accelerates the learning process 236% times faster than the 
classical inputting with one sequence per variable.

Conclusion

This paper presented an improved historical data-augmen-
tation approach proposed to enhance the load forecasting 
performance, accuracy, and training-time speed. Deep learn-
ing networks are used using LSTM and GRU techniques, 
which are the state-of-the-art approaches for time series 
and sequence-based problems. Multiple input sequences are 
employed to increase the generality of the model including 
load demands, temperature data, and important calendri-
cal data such as weekday and weekend information. While 
the literature uses mainly MATLAB coding for forecasting 
load demands, this study introduces MATLAB and Simulink 
programs to present the algorithm in a visualized way. The 
test data employed in this paper is the load profile for the 
Kurdistan regional power system. The relationship between 
observations in the input data is conducted using correlation 
analysis which showed a high correlation value among the 
time-series observations. While the previous data augmen-
tation approach was unsuccessful to train the network for 
several cases, the proposed method demonstrates its abil-
ity to forecast the future next 365-day load demands in a 
comparatively short training time and with better accuracy.
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