Skip to main content
Log in

Synthesis of gasoline range fuels by the catalytic cracking of waste plastics using titanium dioxide and zeolite

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

The current study examined the carbon recycling application of waste materials. Thermal catalytic cracking reactions were carried out in a fixed bed to synthesize gasoline-range hydrocarbon fuels from used plastics. Titanium (IV) oxide (TiO2) and zeolite were tested as catalysts for pyrolysis using low-density polyethylene (LDPE), polyvinylchloride (PVC), and polystyrene (PS) reactants. In addition to the catalyzed pyrolysis reactions, we also investigated non-catalyzed thermal degradation of the plastic substrates for negative control. The liquid yield, reaction temperature profile, and physical appearance of the synthesized liquid products were determined. The pyrolysis reactions demonstrated that the optimum catalyst–polymer ratio is 40%. The distillate collection temperatures ranged between 82 and 198 °C (LDPE), 68–172 °C (PVC), and 40–168 °C (PS). Our experiments showed that LDPE, PVC, and PS can readily be pyrolyzed to produce 44% (LDPE), 13% (PVC), and 89% (PS) hydrocarbon liquid products using zeolite catalyst. Gas chromatography–mass spectrometry (GC–MS) was used to analyze the structure and chemical composition of the products. The main products were C5 (1,2-dimethylcyclopropane), C6 (2-methylpentane), C7 (1,3-dimethylcyclopentene, 1-heptene), and C8 (2-octene, 4-octene, octane, 3-ethylhexane), indicating gasoline-range hydrocarbon molecules. The highest liquid yield of 89.3% was obtained from zeolite catalyst over polystyrene in comparison to all plastics cracked while the lowest liquid yield of 3.9% was obtained from the cracking of PVC under no catalyst condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Tullo, A.H.: GLOBAL TOP 50. Chem Eng News 89, 12–15 (2011). https://doi.org/10.1021/cen-v089n030.p012

    Article  Google Scholar 

  2. Andrady, A.L., Neal, M.A.: Applications and societal benefits of plastics. Philos Trans R Soc B Biol Sci 364, 1977–1984 (2009)

    Article  Google Scholar 

  3. Geyer, R., Jambeck, J.R., Law, K.L.: Production, use, and fate of all plastics ever made. Sci Adv 3, e1700782 (2017). https://doi.org/10.1126/sciadv.1700782

    Article  Google Scholar 

  4. Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M.: Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364, 1985–1998 (2009). https://doi.org/10.1098/rstb.2008.0205

    Article  Google Scholar 

  5. Miskolczi, N., Nagy, R.: Hydrocarbons obtained by waste plastic pyrolysis: comparative analysis of decomposition described by different kinetic models. Fuel Process Technol 104, 96–104 (2012). https://doi.org/10.1016/j.fuproc.2012.04.031

    Article  Google Scholar 

  6. Miandad, R., Rehan, M., Barakat, M.A., Aburiazaiza, A.S., Khan, H., Ismail, I.M.I., Dhavamani, J., Gardy, J., Hassanpour, A., Nizami, A.-S.: Catalytic pyrolysis of plastic waste: moving toward pyrolysis based biorefineries. Front Energy Res (2019). https://doi.org/10.3389/fenrg.2019.00027

    Article  Google Scholar 

  7. Kumar, S., Singh, R.K.: Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz J Chem Eng 28, 659–667 (2011). https://doi.org/10.1590/S0104-66322011000400011

    Article  Google Scholar 

  8. Rehan, M., Miandad, R., Barakat, M.A., Ismail, I.M.I., Almeelbi, T., Gardy, J., Hassanpour, A., Khan, M.Z., Demirbas, A., Nizami, A.S.: Effect of zeolite catalysts on pyrolysis liquid oil. Int Biodeterior Biodegrad 119, 162–175 (2017). https://doi.org/10.1016/j.ibiod.2016.11.015

    Article  Google Scholar 

  9. Gackowski, M., Tarach, K., Kuterasiński, Ł., Podobiński, J., Jarczewski, S., Kuśtrowski, P., Datka, J.: Hierarchical zeolites Y obtained by desilication: porosity, acidity and catalytic properties. Microporous Mesoporous Mater 263, 282–288 (2018). https://doi.org/10.1016/j.micromeso.2017.11.051

    Article  Google Scholar 

  10. Boronat, M., Corma, A.: What is measured when measuring acidity in zeolites with probe molecules? ACS Catal 9, 1539–1548 (2019). https://doi.org/10.1021/acscatal.8b04317

    Article  Google Scholar 

  11. Busca, G.: Acidity and basicity of zeolites: a fundamental approach. Microporous Mesoporous Mater 254, 3–16 (2017). https://doi.org/10.1016/j.micromeso.2017.04.007

    Article  Google Scholar 

  12. Vas, J.P., Ramya, M., Dsilva, A.L., Serrao, E., Demash, F., Dsa, J.D.: Production of high grade liquid fuel for CI engine by thermo-catalytic cracking of waste plastic. Energy Power 7, 81–87 (2017). https://doi.org/10.5923/j.ep.20170703.05

    Article  Google Scholar 

  13. Almustapha, M.N., Andrésen, J.M.: Recovery of valuable chemicals from high density polyethylene (HDPE) Polymer: a catalytic approach for plastic waste recycling. Int J Environ Sci Dev 3, 263–267 (2012). https://doi.org/10.7763/ijesd.2012.v3.228

    Article  Google Scholar 

  14. Li, K., Lei, J., Yuan, G., Weerachanchai, P., Wang, J.-Y., Zhao, J., Yang, Y.: Fe-, Ti-, Zr- and Al-pillared clays for efficient catalytic pyrolysis of mixed plastics. Chem Eng J 317, 800–809 (2017). https://doi.org/10.1016/j.cej.2017.02.113

    Article  Google Scholar 

  15. McNamara, N.D., Kim, J., Hicks, J.C.: Controlling the pyrolysis conditions of microporous/mesoporous MIL-125 to synthesize porous, carbon-supported Ti catalysts with targeted Ti phases for the oxidation of dibenzothiophene. Energy Fuels 30, 594–602 (2016). https://doi.org/10.1021/acs.energyfuels.5b01946

    Article  Google Scholar 

  16. Survey G (2016) Mineral commodity summaries 2016. Government Printing Office

  17. Bagheri, S., Muhd Julkapli, N., Bee Abd Hamid, S.: Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J 2014, 21 (2014). https://doi.org/10.1155/2014/727496

    Article  Google Scholar 

  18. Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K.: A review on pyrolysis of plastic wastes. Energy Convers Manag 115, 308–326 (2016). https://doi.org/10.1016/j.enconman.2016.02.037

    Article  Google Scholar 

  19. Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M.: Conversion of low density polyethylene (LDPE) over ZSM-5 zeolite to liquid fuel. Fuel 192, 71–82 (2017). https://doi.org/10.1016/j.fuel.2016.12.008

    Article  Google Scholar 

  20. Yu, J., Sun, L., Ma, C., Qiao, Y., Yao, H.: Thermal degradation of PVC: a review. Waste Manag 48, 300–314 (2016). https://doi.org/10.1016/j.wasman.2015.11.041

    Article  Google Scholar 

  21. Ji, M., Chen, L., Que, J., Zheng, L., Chen, Z., Wu, Z.: Effects of transition metal oxides on pyrolysis properties of PVC. Process Saf Environ Prot 140, 211–220 (2020). https://doi.org/10.1016/j.psep.2020.04.010

    Article  Google Scholar 

  22. Honus, S., Kumagai, S., Molnár, V., Fedorko, G., Yoshioka, T.: Pyrolysis gases produced from individual and mixed PE, PP, PS, PVC, and PET—Part II: fuel characteristics. Fuel 221, 361–373 (2018). https://doi.org/10.1016/j.fuel.2018.02.075

    Article  Google Scholar 

  23. Yao, Z., Ma, X.: A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis. Energy 141, 1156–1165 (2017). https://doi.org/10.1016/j.energy.2017.10.008

    Article  Google Scholar 

  24. Nisar, J., Ali, G., Shah, A., Iqbal, M., Khan, R.A., Sirajuddin, A.F., Ullah, R., Akhter, M.S.: Fuel production from waste polystyrene via pyrolysis: kinetics and products distribution. Waste Manag 88, 236–247 (2019). https://doi.org/10.1016/j.wasman.2019.03.035

    Article  Google Scholar 

  25. Lerici, L.C., Renzini, M.S., Pierella, L.B.: Chemical catalyzed recycling of polymers: catalytic conversion of PE, PP and PS into fuels and chemicals over H-Y. Proc Mater Sci 8, 297–303 (2015). https://doi.org/10.1016/j.mspro.2015.04.076

    Article  Google Scholar 

  26. Diebold, U.: Structure and properties of TiO2 surfaces: a brief review. Appl Phys A 76, 681–687 (2003). https://doi.org/10.1007/s00339-002-2004-5

    Article  Google Scholar 

  27. Jan, Y.-H., Lin, L.-Y., Karthik, M., Bai, H.: Titanium dioxide/zeolite catalytic adsorbent for the removal of NO and acetone vapors. J Air Waste Manag Assoc 59, 1186–1193 (2009). https://doi.org/10.3155/1047-3289.59.10.1186

    Article  Google Scholar 

  28. Al-Harbi, L.M., Kosa, S.A., Abd El Maksod, I.H., Hegazy, E.Z.: The photocatalytic activity of TiO2-Zeolite composite for degradation of dye using synthetic UV and Jeddah sunlight. J Nanomater 2015, 6 (2015). https://doi.org/10.1155/2015/565849

    Article  Google Scholar 

  29. Zhang, X., Lei, H., Yadavalli, G., Zhu, L., Wei, Y., Liu, Y.: Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5. Fuel 144, 33–42 (2015). https://doi.org/10.1016/j.fuel.2014.12.013

    Article  Google Scholar 

  30. Arabiourrutia, M., Elordi, G., Lopez, G., Borsella, E., Bilbao, J., Olazar, M.: Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. J Anal Appl Pyrolysis 94, 230–237 (2012). https://doi.org/10.1016/j.jaap.2011.12.012

    Article  Google Scholar 

  31. Aguado, R., Olazar, M., San José María, J., Gaisán, B., Bilbao, J.: Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor. Energy Fuels 16, 1429–1437 (2002). https://doi.org/10.1021/ef020043w

    Article  Google Scholar 

  32. Shah, J., Rasul Jan, M., Hussain, Z.: Catalytic pyrolysis of low-density polyethylene with lead sulfide into fuel oil. Polym Degrad Stab 87, 329–333 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.08.016

    Article  Google Scholar 

  33. Onwudili, J.A., Insura, N., Williams, P.T.: Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time. J Anal Appl Pyrolysis 86, 293–303 (2009). https://doi.org/10.1016/j.jaap.2009.07.008

    Article  Google Scholar 

  34. Fakinle, B.S., Adesanmi, A.J., Olalekan, A.P., Alagbe, A.A., Odekanle, E.L., Sonibare, J.A.: Changes in evaporative emissions from gasoline in the Nigeria market. Pet Sci Technol 35, 1040–1046 (2017). https://doi.org/10.1080/10916466.2017.1305405

    Article  Google Scholar 

  35. Santos, R.G., Loh, W., Bannwart, A.C., Trevisan, O.V.: An overview of heavy oil properties and its recovery and transportation methods. Braz J Chem Eng 31, 571–590 (2014). https://doi.org/10.1590/0104-6632.20140313s00001853

    Article  Google Scholar 

Download references

Funding

The current research was supported in part by Research Assistantship and Teaching Assistantship from the American University of Nigeria and Julia Foundation. The Research Fund was generously awarded from the Dean’s office of Arts and Sciences at the American University of Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Jin Jahng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwankwor, P.E., Onuigbo, I.O., Chukwuneke, C.E. et al. Synthesis of gasoline range fuels by the catalytic cracking of waste plastics using titanium dioxide and zeolite. Int J Energy Environ Eng 12, 77–86 (2021). https://doi.org/10.1007/s40095-020-00359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-020-00359-9

Keywords

Navigation