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Abstract
Wind-based power is one of the renewable base power sources that are tipped to play a great role in decarbonising the globe. 
To achieve this potential, more wind farms are likely to be built. The capacity factor of a wind farm and hence its profitability 
is dependent on whether it is properly sized and sited. In fact, some wind power plants have failed wholly or underperformed, 
because the wind turbine plant installed did not match the wind site. In this paper, a new approximate capacity factor equation 
has been derived for matching wind turbines to potential site for optimum yield and profitability. The indexes of capacity 
factor and cost of electricity were used as metrics in the model. The proposed model was applied to the climatic conditions 
and wind turbine characteristics of Kappadagudda and Mailiao wind farms in India and Taiwan, respectively. The result 
obtained showed good agreement with measured data for the two wind farms. With respect to the Kappadagudda wind farm, 
the model computed CF of 38% is close to the Kappadagudda real wind farm annual CF of 36% representing an absolute 
error of 2% and a mean square error of 0.96%. In addition, it was found that the proposed model followed the same general 
trend with other six existing models compared.
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Introduction

Global demand for energy has been increasing astronomi-
cally over the past years [1, 2]. In a desperate bid to meet 
this rising energy demand as well as the target of producing 
a larger share of energy from renewables as required by the 
Kyoto protocol, the erection, capacity, and complexity of 
new wind farms has steadily increased in the recent past [2].

Global wind power capacity grew by 17% between 2014 
and 2015 to 432.4 GW [2]. It is even forecasted to attain 
2000 GW by 2030, and supply up to 17–19% of global elec-
tricity, and reduce CO2 emissions by more than 3 billion 
tons per year. By 2050, it is forecasted to supply 25–30% of 
global electricity supply [3].

At European level, the trend is the same [2]. Yearly instal-
lations of wind power in the EU have increased over the last 

14 years at a compound annual growth rate (CAGR) of 9% 
from 3.2 GW in 2000 to 12.8 GW in 2015 accounting for 
one-third of all new power installations since 2000 in the 
EU. In the UK, the wind capacity installation grew by 8% 
to 13.6 GW between 2014 and 2015 [1]. In the year 2030, 
40 GW wind turbine capacity penetration representing 12% 
of total EU installed capacity is forecasted for the UK [1]. 
To meet the forecasted higher penetration of wind power, 
more wind farm sites will have to be erected.

The capacity factor of a wind farm and hence its profit-
ability is dependent on whether it is properly sized and sited. 
Appropriate wind farm site planning and selection has main 
positive economic impacts for both wind farm investors and 
developers [4]. This is because the energy produced by a 
wind farm site depends upon many factors such as variation 
of the distribution of wind speed, wind turbine type, and 
characteristics speeds like the cut-in velocity (vin), cut-out 
velocity (vo), rated velocity (vr), hub height (Hh), and the 
generator design [5, 6].

So many different kinds of commercially available wind 
turbine plants (WTP) exist and the optimum selection of 
the appropriate wind turbine characteristics can improve 
the yield and profitability of a wind farm [7]. Moreover, as 
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reported by Li and Chen [6], operational experience with 
some existing wind farms revealed that the main reason why 
some wind power plants have failed wholly or underper-
formed is the fact that the WTP installed did not match the 
wind site.

Therefore, a thorough matching of wind turbine genera-
tors to sites is required including the impact of the available 
turbine size and hub heights to guarantee both technical 
feasibility and financial competitiveness in terms of higher 
output and lower costs of generated electricity [4, 6]. One 
of the ways of matching wind turbine to sites is through the 
determination of the CF, with wind turbines with higher CFs 
being preferred to ones with lower CFs.

So many CF methods have been cited in the literature 
for matching wind turbines to a potential wind farm site 
[7–10]. Manufacturer’s power curve can be used in combina-
tion with the site average velocity and the Weibull, Rayleigh, 
or Gamer probability density function (pdf) [8, 11]. Under 
this method, the theoretical power curve of the chosen wind 
turbine is used to calculate the energy output. However, 
the use of manufacturer’s power curve can mis-capture the 
wind power potential at a site to a very large margin. This 
is because wind speed is region specific, and the manufac-
turer’s power curve is obtained through field measurements 
of wind speed and power usually averaged and normalized 
to a reference air density using normalized procedures [12]. 
Their use, therefore, will not represent a true potential of the 
wind power available in a site.

Another way to match wind turbines to a site is through 
approximate power curve method; whereby generic power 
curves are generated by means of fitting techniques like least 
squares or cubic spline interpolation [12]. In addition, wind 
turbines are matched to potential sites through modeling of 
the wind park efficiency [13], but the shortcoming of the 
model developed through this method is that it depends on 
some technical parameters which will be difficult to obtain 
from the manufacturers. Hu and Chen [14] applied the 
Simpsons 3/8 rule to a Weibull probability density function 
(pdf) to derive a six-parameter approximate cubic power 
curve. Although very good result was achieved, the result-
ing power curve equations are quite complex and require a 
lot of input data.

Other standard CF methods and models have also been 
developed in the literature for matching wind turbine to sites. 
These models include: linear, quadratic, and cubic models 
[12]. To match wind turbines accurately to a site, a model 
capturing all the wind regime of the site is paramount.

In this paper, a new approximate equation has been 
derived for matching wind turbines to site through estimat-
ing the CF. The effectiveness and applicability of the pro-
posed model is first validated against a 1 year measured real 
wind farm power output of two different wind farms, and tur-
bine parameters, namely Kappadagudda wind power station 

in India obtained from Jangamshetti and Rau [5] and Mailiao 
wind power station in Yunlin County, Taiwan. Then, a model 
comparison is done to show the relative performance of the 
model against other existing models. Using six commercial 
wind turbine makes of different manufacturers and 1 year 
wind speed characteristics data of Humber region in UK as 
a case study, the performance index of CF and cost of elec-
tricity per kWh (COE), is applied to select the most suitable 
and cost-effective WTP for the site.

Wind speed distribution and analysis

Figure 1 shows the 1 year hourly wind speed time-series 
used in the study. It is a 2005, 1 year hourly (10-min aver-
aged) time-series wind speed data for Humber region UK 
obtained from Met office, UK. The average wind speed of 
the site is 4.21 m/s and standard deviation of 2.32 at 10 m 
height. A maximum wind speed of 6.54 m/s occurred in 
January, while a minimum wind speed of 3.19 occurred in 
March. The most probable wind speed and wind speed car-
rying maximum energy for the site are 4.14 and 5.56 m/s, 
respectively. Figure 2 shows the variation of wind speed 
and wind power density with height for the site. As can be 
observed, judging from the International Electro-technical 
Commission (IEC) standard classification for wind sites 
[15], the site is of low wind class and requires a class III 
wind turbine of large rotors and a min of 80 m mast to cap-
ture as much energy as possible from the lower wind speeds.

There are so many statistical models using pdf for 
describing the wind speed variation. However, commonly 
used pdf models in wind power studies are the Weibull, Ray-
leigh, and Gamma distributions [16]. The Weibull pdf is 
reported to best describe the wind speed variation [5, 7, 17]. 
In the work presented here, the Weibull pdf is used, since 
the Raleigh distribution is a subset of it. The Weibull pdf is 
represented by Eq. (1). It is a special case of Pearson type 
III or generalized two-parameter Gamma distribution [5]:

Fig. 1   One year hourly wind speed time-series of Humber region, UK
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where f (v, k, c) is the probability of wind speed (v) at turbine 
hub height, c is a scale parameter which has the dimension 
of velocity, and k is a shape or location factor [18]. When 
the rate k = 2, the Weibull distribution results to the Rayleigh 
distributions with single parameter c.

The parameters of the Weibull pdf are obtained from 
the mean and standard deviation of the wind speed at 
the site of study using the standard deviation or moment 
method (MM). Other methods like the maximum-likelihood 
method (MLM), the modified maximum-likelihood method 
(MMLM), the energy pattern factor method (EPFM), and 
the graphical method can be used also [5, 19–21]. Using 
the standard deviation method, c and k are determined from 
gamma function ( �  ) expressions of Eqs. (2) and (3) itera-
tively [7]:

where the average wind speed, v̄ , is given as follows:

A satisfactory empirical method (EM) for estimating k is 
derived by Justus as follows [5, 7, 20]:
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Figure 3 shows the monthly probability density function 
of wind speeds at 10 m height for one full year obtained 
using the EM computed statistical parameters. All the curves 
can be seen to have a similar tendency of wind speed. Hence, 
with respect to the computed statistical parameters for this 
location, wind speed is most uniform in June, while it is least 
uniform in Jan.

The wind speed at anemometer height h is extrapolated 
to the turbine hub height (H) using the relation:

where � is the power law index assumed as 1/7 [17, 22, 23]. 
Applying Eqs. (6) to (2) gives an expression for calculating 
c at any hub height (H):

� varies with local terrain conditions and is determined 
empirically [7]. Typical values of α for different terrain types 
can be found in Ref. [7].

The power of a wind turbine plant

A basic wind electrical system is shown in Fig. 4. The elec-
trical output (PWTe) of the wind turbine plant (WTP) is a 
function of area swept by the rotor blades (A), the wind 
velocity of the wind farm location, the WTP output power 
PWT, the generator input power Pt, performance coefficient 
Cp of the turbine, the transmission efficiency (ɳm), and the 
generator efficiency (ɳg), as shown in Eq. (8) [5–7, 24].

The electrical power output is expressed as follows:

where � is density of air.
Given that WTP do operate at wind regimes between 

the cut-in speed ( vin ), the rated speed ( vr ), and cut-out 
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Fig. 2   Variation of wind speed and wind power density with hub 
height

Fig. 3   One year Weibull monthly pdf of wind speeds at 10 m height 
for the case study site
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speed ( vo ), [25], a modified version of Eq. (8) is gener-
ally used to estimate the average power as in Eq. (9). Pf is 
the wind turbine output characteristic as a percentage of 
rated power in the region between the cut-in wind speed 
and rated speed:

Existing CF models for matching wind 
turbines to site

Wind turbines are matched to a site by selecting from a range 
of potential wind turbines, the one with the highest wind 
power potential at a low cost for the site. One of the ways 
of measuring the wind power potential is by calculating the 
capacity factor (CF) of a selected wind turbine for the site, 
using the site climatic conditions.

The CF of a wind site is the fraction of rated output that 
is being outputted by the wind farm in the site. It is defined 
as the ratio of the average power output over a given period 
of time to the rated power output or the maximum possible 
amount of power it can produce over the same interval. The 
average power generated by a wind turbine can be estimated 
by integrating the power curve multiplied by the appropriate 
pdf. Thus, CF is a dimensionless quantity given generally 
by Eq. (10) [7]. For a given site wind regime, a WTP with 
higher CF is best suited to the site and will produce higher 
energy output:

The common models for estimating the CF are the lin-
ear power curve, quadratic power curve, exponential power 
curve, approximate cubic power curve, and the cubic power 
curve model [12].

(9)PWTe(v) = Pr ×
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)
.

Linear model

A linear power curve assumes that wind power output is 
linearly proportional to wind speed from cut-into rated 
wind speed, as shown in Eq. (11) [7, 26, 27]. This model is 
reported to overestimate the wind power potential at a site 
[7, 27, 28]:

Quadratic model

Quadratic model as represented by Eq. (12) is an improved 
version of the linear model. It is originally proposed by Jus-
tus et al. [20] and cited in [7, 12, 26]:

where

The model is complex, but has an advantage of requiring 
few parameters of the wind turbine and site to model. As 
reported in [28], the model predicts negative power output 
in parts of the partial power range if the cut-in wind speed 
is less than 26% of the rated wind speed.

Another version of the quadratic model exists that never 
predicts negative output power as wind machine design param-
eters are varied. This model proposed by [28] is reported to 
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Fig. 4   Typical diagram of a 
wind electrical system
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be more accurate than the simple linear model. The model is 
generally represented as follows:

where k is selected to be the shape parameter of the Weibull 
distribution describing the winds.

Thapar et al. [27] reported that the model lacks accuracy 
as it does not accurately represent the shape of actual power 
curve of the wind turbine in the range of cut-into rated speed. 
In another study, model Eq. (13) is applied to capacity factor 
Eq. (10) and integrated by change of variable technique to 
arrive at exponential model given as follows [29]:

The exponential model uses generic wind turbine charac-
teristics such as the vin, vr, and vo, to show their effects on the 
average power production of a turbine [29]. For known values 
of the Weibull parameters c and k in a given wind regime, vin, 
vr, and vo can be selected to optimize the average power, and 
thereby maximize the total energy production [29].

For applications not concerned with Weibull wind models, 
k is set equal to 2 and model Eq. (15) results [28]. This model 
has been widely used by many authors [7, 27, 28] and seems 
to follow the power curve more closely than the linear curve as 
reported by [7, 28]. With the model, it is possible to compute 
the average output power of a wind through an exact analytical 
integration [28]:

Cubic model

So many versions of the cubic model exist in the literature. 
In one model, the cut-in velocity is subtracted from the wind 
speed and rated speed of the turbine and the ratio raised to the 
third power. This model is given by the following formula [6, 
7, 30]:

In another model as used in [7], the Pf is estimated by rais-
ing to the third power, the ratio between the wind speed and 
rated speed of the turbine as in Eq. (17):
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Chauhan and Saini [25] used another version of the cubic 
model in their analysis as shown below:

The proposed model

A typical wind turbine power curve is shown in Fig. 5. As 
can be seen in the figure, a wind turbine does not produce 
its rated power (Pr) at all wind speeds. Between the cut-in 
(vin) and rated speeds (vr), it produces a given fraction of its 
rated power denoted by Pf.

At this region between vin and vr, Pf can be approxi-
mated with a linear curve (a + bV), quadratic curve 
(av2 + bv + c), power curve (abv), polynomial curve (avn +, 
bvn−1 + cvn−2 +…..e), or even logistic function.

Let a polynomial of Eq. (19) represents the ascending 
part of the power curve between the cut-in speed (vin) and 
rated speed (vr):

Assuming that the coefficients c and d are negligible in 
the above equation, we arrive at an approximate polynomial 
given by Eq. (20) for the ascending segment of the power 
curve of the wind turbine:

At the rated velocity vr, the rated power can be expressed 
as follows:

Similarly, the power corresponding to the cut-in speed 
can be expressed as follows:

Letting � = Pin∕Pr
 and solving the four equations leads 

to the proposed model as follows:

where � , the fraction of the rated power of the wind turbine 
that is being generated at the cut-in wind velocity and is 
estimated with Eq. (24), which represents the line of best fit 
of the scatter plot of the ratio Pin

Pr

 % of 190 commercially 
available WTG power curves of different capacities and 
manufacturers at various cut-in wind speeds in the range of 
0–5 m/s:
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The results of CF obtained using the proposed model 
(CFm) are compared against a 1 year real wind farm meas-
ured CF (CFWF) by means of Absolute Forecast Error (AFE), 
Mean Square Error (MSE), Mean Percentage Error (MPE), 
and Root Mean Square Error (RMSE).

The AFE is the positive difference between the wind farm 
CF and the model computed CF gives as follows:

MPE gives the average relative error between the models. 
For this, the relative differences between the model results 
and the wind farm are added and divided by the number of 
observations; thus:

where n is the number of observations.

Wind site matching: performance indicators

CF factor is one of the metrics often used to match wind 
turbines to site, since it indicates the fraction of the 
installed capacity of a WTP that can be generated in a 

AFE = ||CFWF − CFm
||.

(25)MPE =
100

n

n∑
i=1

AFE

CFWF

(26)MSE =
100

n

n∑
i=1

(AFE)2

(27)RMSE =
√
MSE,

given site. However, from investment perspective, inves-
tors are not just keen on the output but also the costs 
involved. Approximately 75–80% of the total investment 
cost (TIC) for a WTP are related to capital costs—that is 
the costs of the turbine, planning and project costs, civil 
works, electrical equipment, and grid connection [31, 32]. 
As a result, the cost of capital (discount or interest rate) 
is a significant influence on wind electricity cost. This 
cost varies among countries and regions and should be 
factored in. Therefore, there is the need to factor in cost 
in the technique used to match wind turbines to a pot-
tential wind farm site. To select the most suitable WTP 
characteristic for the site, turbine hub height (H) of 80 m 
and 2 MW rated is assumed as the base case and WTP of 
various capacity and model are matched to the site using 
two index of measurement; CF and COE in $/kWh.

The COE is calculated with Eq. (28) [33]:

where TICMW−H is the TIC corrected for the variation of cost 
with height and capacity [7]. TIC at a given MW capacity 
at 80 m height is calculated with Eq. (29). At other heights, 
TIC is calculated with Eq. (30) [7]:

Here, � is used to account for the effect of economies of 
scale on the TIC.
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80
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.

Fig. 5   Typical wind turbine 
power curve
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Other assumptions are;

•	 TIC per kW of 1340–2330 $/kW, with an average of 
1835 $/kW. These costs are based on data from IRENA 
and stated in 2013 prices [32];

•	 O&M costs are assumed to be 5% over the lifetime of the 
turbine [33–35];

•	 The lifetime of the turbine is set at 20 years as is the usual 
practice [32];

•	 The discount rate is assumed 5.5% per annum.
•	 Taxes, depreciation, and risk premiums are not taken 

into account and all calculations are based on fixed 2013 
prices.

•	 Base-case turbine of 2 MW with 80 m hub height is 
adopted.

•	 TIC of WTP cost is linearly inversely proportional to 
capacity because of economies of scale effect [7].

•	 TIC is linearly proportional to tower height [7].

Model validation and comparison

The model was validated against a representative real wind 
farm output data of a wind farm in India as documented in 
[5]. The technical characteristics of the wind turbine for the 
site and its specification are shown in Table 1.

The annual capacity factor reported for the wind farm is 
36%, while the model calculated annual capacity factor is 
38% representing an MPE of about 5.5%. Figure 6 shows 
the comparison between estimated and measured monthly 
CF. Error analysis between the model and wind farm results 
showed the model recorded MSE, RMSE, and MPE of 0.96, 
9.8, and 8%, respectively.

As can be seen, the model results are almost the same 
with that of the wind farm, with an overestimation MAE 
margin of not more than 10% except for the months of May 
and Oct where the error margin is more than 10%. The case 
for November is acceptable, since it was reported that there 
is a load shedding at the wind farm by the month of Nov [5]. 
In most of the months, the estimated CF is more than the 
measured value. This is to be expected, because as rightly 
pointed out by the authors [31], a model should estimate 
more energy than is obtainable in a wind farm, because in 
real life, power output or capacity factor will be impacted by 
so many factors, including array losses, or park effects that 
results as a result of wind turbines shadowing one another 
in a wind farm, leaving less energy in the wind downstream 
of each wind turbine [31]. Depending on the rotor of the tur-
bines, these losses represent about 5–10% of the theoretical 
output described by the power curves [31]. In addition, since 
average and not real time-series wind speed of the wind farm 
location is used, lulls in wind speed and unavailability due 
to downtime like the one reported to have happened in Nov 
in the wind farm may occur that the model could not cap-
ture. Other losses that occur that the model cannot account 
for include rotor blade soiling losses, losses due to wind 
direction hysteresis, and grid losses typically in the range 
of 1–3%, that occur as a result of electrical (heat) losses in 
transformers and cabling within the collection grid inside 
the wind farm [31]. As reported by [31], wind farm develop-
ers assume energy losses in the rage of 10–15% below the 
theoretical power curves of wind turbines.

As a further validation of the model and to demonstrate 
its applicability to a different site and many years of meas-
ured wind farm data, the wind turbine parameters and three 
different years of measured climatic conditions of Mailiao 
power station in Taiwan are applied to the model to com-
pute the CF of the wind farm for the years 2002, 2003, and 

Table 1   Kappandagudda wind power station parameters [5]

Wind turbine
 Manufacturer Vestas
 Capacity 225 kW

Wind farm
 Capacity 2.00 MW
 No of turbines 9.00

Characteristic speed of turbine
 Cut-in speed (vin) 3.50 m/s
 Rated speed (vr) 13.50 m/s
 Cut-out speed (vo) 25.00 m/s
 Hub height 30.00 m

Site wind speed
 Yearly average 7.0929 m/s
 Maximum wind speed 15.0 m/s
 Standard deviation 3.62
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Fig. 6   Comparison between CF estimated by model against actual 
wind farm measured CF
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2005, respectively. The wind farm which is located in Yulin 
County in Taiwan started operation at about December 2002 
as reported by Chang and Tu [36] and has four Vestas V47-
660 kW turbines. The total capacity of the wind farm is 
2.64 MW. The V47 turbines in the site have a hub height 
of 45 m. The cut in, rated, and cut-out speeds are 4, 15, 
and 25 m/s, respectively. Figure 7 shows the measured wind 
speed at the site for the years 2002, 2003, and 2005.

The comparison of the wind farm measured CF with that 
calculated using the proposed model is shown in Fig. 8

It can be observed that the model predicted the CF of the 
wind farm to a good degree with an MPE of 12.14, 14.12, 
and 11.46% for years 2002, 2003, and 2005, respectively. 
In addition, the maximum and minimum MPE recorded by 
the model are 20.53 and 1.76 for year 2002, 25.9 and 0.43 
for year 2003, and 22.32 and 4.20 for year 2005. There is a 
higher MPE error in the application of the model to the Tai-
wan wind farm when compared to the Kappadagudda wind 
power station. This is expected, because, for V47-660 kW 
Vestas wind turbine used for the Taiwan site, the best ane-
mometer location for the best and accurate wind speed cap-
ture is in 2.5 rotor diameter upstream from the wind turbine. 
However, in the Mailiao wind farm, the anemometer of the 
Vestas V47-660 kW turbine was mounted on the nacelle 
cover of the turbine where it is 7 m behind the blade hub 
[36]. Hence, the measured wind speed for the site is unavoid-
ably affected by the turbine wake leading to a velocity deficit 
error. The poor location of the anemometer, therefore, could 
have been responsible for the high MPE error recorded for 
the Mailiao wind farm site.

The performance of the proposed model relative to other 
existing models for estimating the CF is shown in Fig. 9 for 

the different wind regimes of the Kappadagudda wind farm 
from Jan to Dec.

Clearly enough, the proposed model followed the same 
general trend with the wind farm and existing models. It 
recorded the same yearly CF estimation AFE of 2% with 
model Eqs. (13, 14) and outperformed model Eqs. (11, 
12 and 17, 18). Model equation (15) was adjudged by the 
authors of [34] as the best of all the existing models in 
terms of capturing the power output of a wind farm accu-
rately. Comparison of the proposed model with the model 
shows that the proposed results followed closely model 
equation (15). Table 2 shows the absolute error between 
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Fig. 7   Measured monthly wind speed distribution of Mailiao wind 
farm site in Taiwan for years 2002, 2003, and 2005
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the wind farm output and the forecasts by the various 
models.

Case study of Humber region

The technical parameters of the selected WTP used in the 
case study are shown in Table 3, while Table 4 depicts the 
monthly variation of Weibull wind distribution parameters 
for the site, computed using the different wind parameter 
estimation methods. For a more detailed analysis of the vari-
ous methods, see the work of authors [21].

As can be seen from Table 4, the values of the parameters 
computed by all the methods are close with a small varia-
tion. k and c values lie between minimum and maximum 
values of 1.09–4.17 and 3.59–7.43, respectively. k represents 
deviation of the wind speed from the average speed; in par-
ticular, the higher the value of k, the lower the deviation.

Using the annual values of the Weibull parameters, 
estimated using the empirical method (EM), the two per-
formance indicators (CF and COE) are calculated for the 
selected commercial wind turbine generators at their des-
ignated operational heights (see Table 3). From the point 
of view of capacity factor and cost of generated electricity, 
WT6 is the first ranked turbine with highest capacity factor 
of 0.21 and lowest cost of energy of 0.08 $/kWh at a height 
of 105 m. The calculated COE lies in range of the weighted 
average COE in UK which ranges from 0.06 to USD 0.09 $/
kWh [32]. WT11 ranked second with a CF of 0.19 and COE 
of 0.085 $/kWh at a height of 100 m. Figure 10 summarizes 
the results. WT2 of capacity 850 kW performed poorly in 
the site, because it has a high cut-in velocity of 4 m/s and a 
hub height of 65 m and the site being a low wind site means 
most of the energy was not captured by the turbine.

Table 2   Absolute forecast error (AFE) between the Kappadagudda wind farm output and the forecasts by the proposed model and other existing 
models

Months AFE (%)

Models Equation (11) Equation (12) Equation (13) Equation (15) Equation (17) Equation (18)

Jan. 4 19 2 9 2 4 2
Feb. 2 7 0 5 4 1 0
March 1 9 3 2 2 2 3
April 10 21 8 13 14 9 8
May 18 29 17 22 19 17 16
June 9 21 9 14 5 8 7
July 5 15 4 9 4 4 4
Aug. 9 21 8 13 6 8 7
Sept. 3 17 2 8 5 2 1
Oct. 17 7 19 14 14 18 19
Nov. 18 35 17 24 13 17 16
Dec. 1 15 1 6 0 0 1
Year average 2 10 3 2 2 3 5

Table 3   Technical 
characteristics of the selected 
WTP [7, 10]

S/n Turbine description P
r
 (kW) v

in
 (m/s) v

r
 (m/s) v

o
 (m/s) Hub height (m)

WT1 Norwin 47/500 500 4 13 25 65
WT2 Vestas V52 850 4 16 25 65
WT3 Alico 100 1000 3.5 12 15 65
WT4 GE 1.5 Xle 1500 3.5 12.5 20 80
WT5 Nordex S77 1500 3 13 25 90
WT6 Vestas V90-1.8 1800 3.5 12 25 105
WT7 Enercom E-82 2000 2 13 25 105
WT8 Vestas V90-2.0 2000 2.5 13 25 105
WT9 Enercom E-70 2300 2 16 25 105
WT10 Nordex, N90 2300 3 13 25 100
WT11 GE 1.5 Xl 2500 3.5 12.5 22 100
WT12 Nordex, N90/2500 2500 3 15 25 90
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WT11 outperformed WT12, even though they are of 
the same capacity and WT12 has lower cut-in speed and 
higher cut-out speed, because WT11 has a bigger diameter 
and operated at a higher height which made it possible for 
it to convert more of the wind spectra of the site to power. 
In general, for a given height and capacity, the smaller the 
ratio of the area of the blades to the rated capacity of the 
wind turbine, the better its energy capture for the same wind 
characteristics.

The CF of all the WTPs increased with height, while 
the COE decreased with height. This is because at higher 
heights, the wind speed is higher and this means that more 
wind energy will be converted to power leading to a reduc-
tion in the COE.

At higher height also, the cost of the wind turbine 
increased due to the tower, but the increase in energy capture 
is more than the cost increase. Ordinarily, one expected the 
single capacity wind turbines of the order of 500–1500 kW 
would do well in the site. However, they generally did not do 

well, because the site is a low wind site and the hub heights 
they are available at could not let them capture more energy 
from the site. In addition, they costed higher, because the 
higher capacity WTPs enjoyed the benefits of economics of 
scale. Thus, WTP of capacity in the range of 1800–2.5 MW 
are the most suitable for the site, since they come in higher 
hub heights and bigger diameters that enable more conver-
sion of wind speed to energy at higher hub heights. They 
also enjoy economics of scale.

Conclusion

A new approximate WTP CF model for matching WTP to 
potential site has been presented in this paper. Comparison 
of the model with a real wind farm data of Kappadagudda 
power station in India shows that the model computed CF 
of 38% is close to the real wind farm annual CF of 36% 
representing an absolute error of 2. Error analysis between 
the model and wind farm monthly CF results showed the 
model recorded MSE, RMSE, and MAE of 0.96, 9.8, and 
8%, respectively. The proposed model followed the same 
general trend with other existing models compared. Out of 
six models compared, it recorded the same yearly CF estima-
tion absolute error of 2% with two-model and outperformed 
other four models.

Within the limits of the assumptions made and using 
capacity factor and COE as indexes of site matching, it is 
found that the suitable commercial WTP to be placed in the 
case study site investigated for any future wind farm project 
is WT6 with a hub height of 105 m. It yielded the highest 
CF and lowest COE values of 0.21 and 0.083 $/kWh, respec-
tively. The second and third ranked wind turbines are WT11 
and WT7 with CF and COE values of 0.19, 0.0854 $/kWh 
and 0.189, 0.088 $/kWh, respectively.

Table 4   Monthly variation 
of Weibull distributional 
parameters, calculated using 
four different methods for year 
2005

Months v̄ � EM MM MLM MMLM EPFM

k C k C k C k C k C

Jan 6.54 2.58 2.75 7.35 2.74 7.35 2.72 7.35 2.76 7.43 2.65 7.35
Feb 4.87 2.00 2.63 5.48 2.62 5.48 2.64 5.50 2.71 5.56 2.56 5.48
March 3.19 1.48 2.30 3.60 2.28 3.60 2.33 3.61 2.21 3.67 2.30 3.59
April 3.86 1.52 2.74 4.34 2.73 4.34 2.64 4.34 2.59 4.40 2.56 4.35
May 4.60 1.35 3.77 5.09 3.79 5.09 3.84 5.09 2.59 4.40 3.33 5.12
June 3.63 0.98 4.15 4.00 4.17 4.00 4.17 4.00 3.73 4.07 3.48 4.04
July 3.45 1.25 3.00 3.86 3.00 3.86 2.98 3.84 2.78 3.90 2.81 3.87
August 3.65 1.24 3.24 4.07 3.24 4.07 3.25 4.08 3.38 4.12 3.01 4.09
September 4.13 1.31 3.47 4.59 3.48 4.59 3.54 4.60 3.58 4.67 2.89 4.53
October 3.86 1.43 2.95 4.33 2.95 4.33 3.01 4.37 3.38 4.30 2.88 4.33
November 4.64 1.89 2.65 5.22 2.64 5.23 1.09 4.68 2.65 5.30 2.64 5.23
December 4.13 1.51 2.98 4.63 2.97 4.63 2.95 4.64 2.84 4.73 2.82 4.64
Annual average 4.21 2.32 3.18 4.77 3.18 4.77 3.10 4.80 3.02 4.79 2.92 4.79

Fig. 10   Performance indicators of analyzed potential commercial 
WTPs for the case study site
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Finally, it should be mentioned that the WTP TIC cost is 
roughly estimated, and the specific costs of the whole power 
conversion unit and constructions may vary depending on 
the country. These factors may have a significant effect on 
the COE results, so that the obtained indexes may not neces-
sarily reflect exactly practical performances. However, the 
methods described above can be useful in the preliminary 
planning of wind power project. However, for a final invest-
ment decision, apart from a more rigorous technical analysis, 
optimized economic analysis may still be useful as a guide 
for investors wishing to invest in the site.
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