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Abstract
Wind energy has been explored as a viable alternative to fossil fuels in many small island developing states such as those in 
the Caribbean for a long time. Central to evaluating the feasibility of any wind energy project is choosing the most appropriate 
wind speed model. This is a function of the metric used to assess the goodness of fit of the statistical models tested. This paper 
compares a number of common metrics then proposes an alternative to the application-blind statistical tools commonly used.
Wind speeds at two locations are considered: Crown Point, Tobago; and Piarco, Trinidad. Hourly wind speeds over a 15-year 
period have been analyzed for both sites. The available data is modelled using the Birnbaum–Saunders, Exponential, Gamma, 
Generalized Extreme Value, Generalized Pareto, Nakagami, Normal, Rayleigh and Weibull probability distributions. The dis-
tributions were compared graphically and their parameters were estimated using maximum likelihood estimation. Goodness 
of fit was assessed using the normalised mean square error testing, Chi-squared testing, Kolmogorov–Smirnov, R-squared, 
Akaike information criteria and Bayesian information criteria tests and the distributions ranked. The distribution ranking 
varied widely depending on the test used highlighting the need for a more contextualized goodness of fit metric. With this in 
mind, the concept of application-specific information criteria (ASIC) for testing goodness of fit is introduced. This allows 
distributions to be ranked by secondary features which are a function of both the primary data and the application space.

Keywords  Wind speed · Statistical analysis · Probability distributions · Goodness of fit · Application-specific information 
criteria (asic)

Abbreviations
R2	� Coefficient of determination
�2	� Chi-squared statistic
D∗	� Two-sample Kolmogorov–Smirnov statistic
ASIC	� Application-specific information criteria
AIC	� Akaike information criterion
BIC	� Bayesian information criterion
NMSE	� Normalised mean square error
PDF	� Probability density function
SIDS	� Small Island Developing States

Introduction

Electricity costs in most Caribbean Small Island Developing 
States (SIDS) are amongst the highest in the world [1] with 
majority of electrical energy being produced from imported 
fossil fuels [2]. As a result, wind energy is increasingly 
being explored as an alternative source of energy [3] with 
feasibility studies showing great potential for various islands 
[4–7]. Conversely, the Caribbean countries are amongst the 
most wind storm-prone regions in the world suffering from 
26 storm impacts in the last 4 years alone [8–10]. These 
storms have an acute impact on the economies of these small 
states [11]. Additionally, wind speeds can even impact upon 
the region’s flora and fauna [12].

Given the importance of wind to Caribbean SIDS, it is nec-
essary for the characteristics of the wind be studied closely. 
Energy studies, storm risk studies and aviation considerations, 
among others, require the wind to be modelled as accurately 
and comprehensively as possible. Many studies have aimed at 
characterizing or comparing wind speed distributions at differ-
ent locations [13–21]. Several emphasize seasonal variations 
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while diurnal variations have also been examined [5]. How-
ever, these have either been located outside the Caribbean or 
have been limited in their exploration of candidate distribu-
tions. Furthermore, there is no consensus on the goodness of 
fit criterion which is most suitable for evaluating the appro-
priateness of the distribution to a particular application [22].

The paper examines the applicability of probability distri-
butions commonly used to model wind speeds to data avail-
able from two locations in Trinidad and Tobago. The relative 
performance of these distributions is compared using goodness 
of fit tests. Additionally, the concept of application-specific 
information criteria (ASIC), is introduced as an improved 
method for distribution ranking in the case of wind energy 
studies. Section 2, “Description of Data,”describes the data 
used for this study, investigates the basic statistical properties 
and outlines the pre-processing required before utilisation of 
the data. Section 3, “Methodology” describes the candidate 
distributions, goodness-of-fit criteria used and the method 
for parameter estimation. Section 4, “Results and Discus-
sion” displays the fit of the candidate distributions to the data 
graphically. Several goodness-of-fit tests are used to rank the 
performance of the distributions. In addition, expected wind 
energy output from a turbine is estimated and compared to the 
energy output calculated using the actual wind data. Finally, 
concluding remarks are given in Sect. 5.

Description of data

General

The locations given in Fig. 1, provide a useful opportunity for 
comparison as they are both greeted by the same north-easterly 
trade wind system [23], but are located at sites with differing 
geography. Crown Point is on a sheltered coast while Piarco 
is located in-land in an open plain. Piarco also receives some 
degree of sheltering by mountains to the North.

The dataset consists of the mean hourly wind speeds at 
Crown Point, Tobago and Piarco, Trinidad (locations indicated 
in Table 1 for the years 2000–2015, provided by the meteoro-
logical offices at airports at both locations and does not include 
wind direction or peak gust speed. The speeds were recorded 
in knots, rounded to the nearest knot, and are given in intervals 
of 1 h for each hour of the 24-h day for every day of the month. 
It should be noted that there are data points missing from both 
datasets. For Piarco, Trinidad, approximately 19 days of data 
from October 21 to November 9, 2009 are missing. There are 

also missing data points for a number of hours on other days. 
The total number of measurements is 133,083 out of a maxi-
mum possible number of 133,656 (0.4% missing data). For 
Crown Point, the data for the months of July to September, 
2001, and August, 2011, are missing. Additionally, some days 
are missing data for an hour or a few hours. The total number 
of measurements is 123,429 out of a maximum possible num-
ber of 133,656 (7.7% missing data).

Basic statistics

Before any pre-processing, the data were described by 
the statistics given in Tables 2 and 3. Data pre-processing 
included data inspection for possibly erroneous values:

–	 As seen in Table 2, at Piarco, the maximum wind speed 
recorded is 196 knots at 9:00 a.m. on July 3, 2014. The 
maximum wind speed on that day otherwise was 16 
knots, and the average was 8 knots. A wind speed of 196 
knots (363 km/h) is the equivalent of a Category 5 hurri-
cane [25]. 196 knots surpasses the sustained wind speeds 
of the strongest hurricane on record, Hurricane Patricia 
in October 2015 [26]. Records from satellite-based mod-
els available online [27] confirm that the measurement is 
erroneous.

–	 Similarly, a speed of 94 knots was recorded as the 
maximum wind speed in 2009. This peak wind speed 
was recorded on June 12 at 11:00 a.m., followed by a 
measurement of 84 knots at 12:00 p.m.. The average 
wind speed on that day without these two measure-
ments was 5.9 knots. These two wind speeds are the 
equivalent of a Category 2 Hurricane according to the 

Table 1   Coordinates of wind measurement locations

Location Latitude Longitude Elevation (m)

Crown Point, Tobago 11.1497N 60.8322W 12
Piarco, Trinidad 10.5953N 61.3372W 15

Fig. 1   Map of Trinidad and Tobago illustrating measurement loca-
tions [24]
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Saffir–Simpson scale [25]. However, review of archived 
daily newspapers, for the next day make no mention of 
the event [28]. Again, no corroborating records were 
found to confirm these wind speeds [14] and as such, 
they were deemed erroneous.

–	 On February 16, 2015 a wind speed of 40 knots was 
noted at 9:00 a.m. This would be classified as tropi-

cal storm wind speeds according to the Saffir–Simpson 
scale. Online records corroborate the data for the rest 
of the day.

–	 At Crown Point, Tobago a maximum wind speed of 264 
knots is recorded on November 9, 2001 at 11:00 p.m. 
This wind speed exceeds the world record maximum 3 
second surface wind gust of 220 knots. As such, it can 

Table 2   Basic statistics of wind 
speeds at Piarco before pre-
processing

Year Number of readings Max knots Mean knots Std. dev. knots Kurtosis Skewness

2000 8779 21 5.454 4.841 − 0.954 0.396
2001 8760 20 5.654 4.874 − 1.080 0.301
2002 8758 21 5.634 4.721 − 0.923 0.326
2003 8760 21 5.356 4.653 − 0.923 0.374
2004 8774 20 4.483 4.467 − 0.928 0.512
2005 8759 26 4.226 4.600 − 0.646 0.680
2006 8758 22 4.842 4.834 − 0.881 0.534
2007 8757 20 4.794 4.867 − 0.973 0.531
2008 8782 23 4.478 4.882 − 0.793 0.656
2009 8300 94 4.974 5.128 16.473 1.486
2010 8682 23 5.047 5.290 − 0.891 0.591
2011 8760 23 5.063 5.021 − 0.749 0.555
2012 8783 23 5.075 5.032 − 0.839 0.547
2013 8755 22 5.786 5.418 − 0.878 0.482
2014 8756 196 5.863 5.775 132.684 4.358
2015 2160 40 6.261 5.779 − 0.765 0.365
Total 133,083
Average 5.187 5.012 8.558 0.793

Table 3   Basic statistics of wind 
speeds at Crown Point before 
pre-processing

Year Number of readings Max knots Mean knots Std. dev. knots Kurtosis Skewness

2000 8762 30 6.744 5.189 − 0.915 0.205
2001 6519 264 8.393 6.732 393.540 11.340
2002 8036 39 7.616 5.043 − 0.728 0.122
2003 8722 26 8.319 4.966 − 0.848 − 0.099
2004 8770 45 6.949 4.685 − 0.200 0.279
2005 8735 214 6.906 5.296 275.285 7.409
2006 8598 70 7.519 4.996 1.835 0.170
2007 8752 22 7.713 5.387 − 1.151 − 0.111
2008 7063 30 7.103 5.463 − 1.089 0.089
2009 3655 22 6.633 4.910 − 1.126 0.061
2010 8654 22 6.896 5.502 − 1.231 0.090
2011 8725 28 6.909 5.412 − 0.973 0.158
2012 8772 38 6.774 5.757 − 0.855 0.318
2013 8749 28 7.445 5.870 − 0.996 0.201
2014 8757 28 7.890 5.929 − 0.990 0.163
2015 2160 23 6.886 5.963 − 1.104 0.279
Total 123,429
Average 7.293 5.444 41.153 1.292
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safely be concluded that this is an erroneous record. 
Online records corroborate the data for the rest of the 
day.

–	 Similar methods to those utilised above were used to 
identify 214 knots recorded on November 20, 2005 at 
2:00 p.m., 187 knots on April 20, 2001, 96 knots July 17, 
2005, 70 knots at 9:00 p.m. on June 20, 2006, 62 knots on 

March 20, 2001, 45 knots January 3, 2004 and 39 knots 
on January 2, 2002 at 11:00 a.m.

All noted erroneous measurements were replaced with null 
values. Tables 4 and 5 reflects the wind statistics after 
pre-processing.

Table 4   Basic statistics of wind 
speeds at Piarco after pre-
processing

Year Number of readings Max knots Mean knots Std. dev. knots Kurtosis Skewness

2000 8779 21 5.454 4.841 − 0.954 0.396
2001 8760 20 5.654 4.874 − 1.080 0.301
2002 8758 21 5.634 4.721 − 0.923 0.326
2003 8760 21 5.356 4.653 − 0.923 0.374
2004 8774 20 4.483 4.467 − 0.928 0.512
2005 8759 26 4.226 4.600 − 0.646 0.680
2006 8758 22 4.842 4.834 − 0.881 0.534
2007 8757 20 4.794 4.867 − 0.973 0.531
2008 8782 23 4.478 4.882 − 0.793 0.656
2009 8298 31 4.954 4.959 − 1.023 0.471
2010 8682 23 5.047 5.290 − 0.891 0.591
2011 8760 23 5.063 5.021 − 0.749 0.555
2012 8783 23 5.075 5.032 − 0.839 0.547
2013 8755 22 5.786 5.418 − 0.878 0.482
2014 8755 21 5.842 5.406 − 1.170 0.356
2015 2159 22 6.245 5.735 − 1.246 0.288
Total 133,079
Average 5.183 4.975 − 0.931 0.475

Table 5   Basic Statistics of 
Wind Speeds at Crown Point 
after pre-processing

Year Number of readings Max Mean Std. dev. Kurtosis Skewness

2000 8762 30 6.744 5.189 − 0.915 0.205
2001 6516 25 8.318 5.475 − 0.998 0.046
2002 8035 22 7.612 5.031 − 0.895 0.094
2003 8722 26 8.319 4.966 − 0.848 − 0.099
2004 8769 30 6.945 4.667 − 0.660 0.223
2005 8733 26 6.872 4.715 − 0.892 0.049
2006 8597 36 7.512 4.951 − 0.937 − 0.055
2007 8752 22 7.713 5.387 − 1.151 − 0.111
2008 7063 30 7.103 5.463 − 1.089 0.089
2009 3655 22 6.633 4.910 − 1.126 0.061
2010 8654 22 6.896 5.502 − 1.231 0.090
2011 8725 28 6.909 5.412 − 0.973 0.158
2012 8772 38 6.774 5.757 − 0.855 0.318
2013 8749 28 7.445 5.870 − 0.996 0.201
2014 8757 28 7.890 5.929 − 0.990 0.163
2015 2160 23 6.886 5.963 − 1.104 0.279
Total 123,421
Average 7.286 5.324 − 0.979 0.107
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Methodology

Distribution fitting

Typically, wind data is modelled as a Weibull distribu-
tion, especially when the aim is to characterise the annual 
resource [5, 15, 29–32], however, a number of other can-
didate distributions have been catalogued [33]. For other 
applications such as statistical analysis of extreme wind 
speeds, the Weibull (or reverse Weibull) has also been rec-
ommended [34] while other distributions such as the gen-
eralised extreme value distribution [17] and the generalised 
pareto [19] have been explored. Agustin [20] encouraged 
using mixed distributions while confirming the applicability 
of Weibull. Sarkar et al. [35] identified the weakness of the 
Weibull distribution as its failure to describe the upper tail. 
The Rayleigh distribution has also been used as a probability 
model for wind speed [31], although some applications have 
found Weibull to be more accurate [32, 36]. Recent studies 
found autoregressive models [37] and maximum entropy 
distributions [38] to be better suited to wind speed applica-
tions than Weibull or Rayleigh. Alavi et al.  [39] found that 
the Nakagami distribution performed well when compared 
to other distributions frequently used to model wind speed. 
Additionally, the Normal and Exponential Distributions 
were identified as potential candidates via visual inspec-
tion of the histogram shape. The Birnbaum–Saunders and 
Gamma distributions performed well when goodness of fit 
was assessed using the Akaike information criterion (AIC) 
and the Bayesian information criterion (BIC) criteria, and 
were thus included in the comparative analysis (Figs. 2, 3).

Review of probability distribution functions

The equations defining the probability density functions 
(PDFs) for various candidate distributions of interest are given 
below. While by no means exhaustive, the distributions repre-
sent those commonly used in the literature.

Birnbaum–Saunders

where � is the location parameter, 𝛾 > 0 is the shape param-
eter, 𝛽 > 0 is the scale parameter and Φ(t) =

1√
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e

t2

2  [40].

Exponential
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Fig. 2   Histogram of wind speeds at Piarco

Fig. 3   Histogram of wind speeds at Crown Point
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where � ∈ � is the location parameter, 𝜎 > 0 is the scale 
parameter and � ∈ � is the shape parameter [44].

Generalized Pareto

where � ∈ � is the location parameter, 𝜎 > 0 is the scale 
parameter and � ∈ � is the shape parameter [45].

Nakagami

where � is the shape parameter and � is the spread param-
eter, for x > 0 [46].

Normal

where � is the mean and � is the standard deviation [45].

Rayleigh

where � is the scale parameter [47].

Weibull

where k > 0 is the shape parameter and 𝜆 > 0 is the scale 
parameter [48].

Parameter estimation

Several techniques exist for parameter estimation (e.g., [22]). 
In this work, the parameters for these various distributions 
were estimated using the maximum likelihood method, 
which selects as its estimate the parameter value that maxi-
mizes the probability of the observed data [49]. This method 
is popularly used since the resulting estimators are gener-
ally asymptotically unbiased and consistent. They also offer 
the advantage of simplicity in implementation. While this 
method can be limited through the need to determine closed-
form estimator solutions, for the distributions of interest in 
this work, these can be readily obtained [22].
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Goodness of fit

After plotting the distributions using the estimated parameters, 
the goodness of fit of the distributions to the data profile were 
assessed using the following metrics:

–	 Normalised mean square error (NMSE).
–	 Chi-squared statistic.
–	 Two sample.
–	 Kolmogorov–Smirnov.
–	 Coefficient of determination ( R2).
–	 Akaike information criterion (AIC).
–	 Bayseian information criterion (BIC).

Fig. 4   Wind distribution at Crown Point

Fig. 5   Wind distribution at Piarco
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The normalised mean square error (NMSE)

The NMSE was calculated using the previous method with the 
following equation:

Where yn are the modelled values and fn are the reference 
data.

The returned value varies between −∞ (bad fit) to 1 (perfect 
fit) [50, 51].

The Chi‑squared statistic

For testing the goodness of fit, the Chi-squared was used. The 
Chi-square statistic ( �2 ) is calculated as follows:

where Oi are the observed counts and Ei are the expected 
counts [49]. Oi was the estimated sample datasets calculated 
using the estimated pdf of each distribution. Ei was derived 
via the frequency histogram based on the measured data. N 
was determined by the number of bins used in the frequency 
histogram. A smaller Chi-squared statistic indicates a bet-
ter fit.

 The two‑sample Kolmogorov–Smirnov test

The two-sample Kolmogorov–Smirnov test statistic was cal-
culated as follows:

(11)NMSE = 1 −

n∑
i=1

(
yi − fi

yi − f̂i

)2

(12)�2 =

N∑
i=1

(
Oi − Ei

)2
Ei

,

(13)D∗ = max
x

(|F1(x) − F2(x)|)

Fig. 6   Wind distribution at Crown Point (Bin Size 3)

Fig. 7   Wind distribution at Piarco (Bin Size 3)

Table 6   Distribution ranking for 
Crown Point data (Bin Size 1)

Rank NMSE X2 KS R
2 and R2 Adj LogL, AIC and BIC

1 Nakagami Normal Normal Nakagami Birn-Saun
2 Weibull Gen. ext val Gen. ext val Gamma Nakagami
3 Gamma Rayleigh Rayleigh Weibull Gamma
4 Exponential Gen. Pareto Gen. Pareto Gen. Pareto Weibull
5 Gen. Pareto Exponential Exponential Exponential Gen. Pareto
6 Rayleigh Nakagami Nakagami Birn-Saun Exponential
7 Normal Gamma Weibull Gen. ext val Gen. ext val
8 Gen. ext val Weibull Birn-Saun Normal Normal
9 Birn-Saun Birn-Saun Gamma Rayleigh Rayleigh
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where F1(x) is the proportion of x1 values less than or equal 
to x, and F2(x) is the proportion of x2 values less than or 
equal to x. The smaller the test statistic the better the fit [52].

 Co‑efficient of determination, R2

The R2 statistic was calculated as follows:

where,

(14)R2 = 1 −
SSres

SStot
,

(15)SSres =
∑
i

(
yi − fi

)2
,

and,

where yi represents the dataset and fi represents the mod-
elled values. R2 varies between − Inf (bad fit) to 1 (perfect 
fit) [53].

 Akaike information criterion

The AIC statistic was calculated as follows:

(16)SSres =
∑
i

(
yi − ȳ

)2
,

(17)aic = −2logL(�) + 2k,

Table 7   Distribution ranking for 
Piarco data (Bin Size 1)

Rank NMSE X2 KS R
2 and R2 Adj LogL, AIC and BIC

1 Birn-Saun Normal Normal Birn-Saun Gen. ext val
2 Weibull Gen. Pareto Gen. Pareto Weibull Birn-Saun
3 Gamma Exponential Rayleigh Gamma Nakagami
4 Nakagami Nakagami Exponential Nakagami Gamma
5 Exponential Gamma Nakagami Gen. ext val Weibull
6 Gen. Pareto Rayleigh Weibull Exponential Exponential
7 Rayleigh Birn-Saun Gen. ext val Gen. Pareto Gen. Pareto
8 Gen. ext val Weibull Birn-Saun Normal Normal
9 Normal Gen. ext val Gamma Rayleigh Rayleigh

Table 8   Distribution ranking for 
Crown Point data (Bin Size 3)

Rank NMSE X2 KS R
2 and R2 2 Adj LogL, AIC and BIC

1 Gen. Pareto Normal Normal Gen. Pareto Birn-Saun
2 Exponential Gen. ext val Gen. ext val Exponential Nakagami
3 Gen. ext val Rayleigh Rayleigh Gen. ext val Gamma
4 Normal Gen. Pareto Gen. Pareto Nakagami Weibull
5 Nakagami Exponential Exponential Normal Gen. Pareto
6 Rayleigh Nakagami Nakagami Gamma Exponential
7 Gamma Gamma Birn-Saun Weibull Gen. ext val
8 Weibull Weibull Weibull Rayleigh Normal
9 Birn-Saun Birn-Saun Gamma Birn-Saun Rayleigh

Table 9   Distribution ranking for 
Piarco data (Bin Size 3)

Rank NMSE X2 KS R
2 and R2 Adj LogL, AIC and BIC

1 Exponential Normal Rayleigh Exponential Gen. ext val
2 Gen. Pareto Gen. Pareto Normal Gen. Pareto Birn-Saun
3 Weibull Exponential Gen. Pareto Nakagami Nakagami
4 Gamma Nakagami Weibull Gamma Gamma
5 Nakagami Gamma Gen. ext val Weibull Weibull
6 Birn-Saun Rayleigh Exponential Birn-Saun Exponential
7 Rayleigh Birn-Saun Nakagami Normal Gen. Pareto
8 Normal Weibull Birn-Saun Rayleigh Normal
9 Gen. ext val Gen. ext val Gamma Gen. ext val Rayleigh
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where logL(�) denotes the value of the maximized loglikeli-
hood objective function for a model with k parameters. A 
smaller AIC statistic value indicates a better fit [54].

Bayesian information criterion

The BIC statistic was calculated as follows:

where logL(�) denotes the value of the maximized loglikeli-
hood objective function for a model with k parameters fit to 
N data points. A smaller BIC statistic value indicates a better 
fit [54] (Figs. 4, 5, 6, 7).

(18)bic = −2logL(�) + klog(N),

Fig. 8   Crown Point—NMSE

Fig. 9   Crown Point—Chi 
Squared
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Fig. 10   Crown Point—KS

Fig. 11   Crown Point—R Squared
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Fig. 12   Crown Point—Log Likelihood, AIC and BIC

Fig. 13   Piarco—NMSE
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Fig. 14   Piarco—Chi Squared

Fig. 15   Piarco—ranked by KS
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Results and discussion

The estimated parameters for each distribution are shown 
in the Appendix. The performance of these distributions 
were compared using the goodness of fit metrics described 
in Sect. 3.4 (Tables 6, 7, 8, 9).

As evident, rankings varied depending on the goodness 
of fit metric used. Although in some other studies goodness 
of fit metrics corroborated each other [32, 38, 39], similar 
variability was observed in [55].

Figures 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 show the 
details for each goodness of fit metric. This is particularly 
evident in Figs.  8 and 9 which show rankings by NMSE 
and Chi-squared metrics, where the Birnbaum–Sanders 
distribution was particularly ill fitted as compared to Figs.  
11 and 12 in which it is comparable when evaluated using 
the R2 , and AIC and BIC criteria, respectively.

The variability in rankings raises the question of suita-
bility of any given metric to the application. Consequently, 
some method of determining which goodness-of-fit crite-
rion is best suited to the application has to be found or a 
new application-specific information criterion (ASIC) has 
to be formulated.

Application‑specific information criterion

Wind models are used to calculate the expected energy gen-
erated by wind turbines. In this case, expected energy output 
over a particular time would be an important consideration 
in design and investment decisions. The ability of the distri-
bution to accurately estimate this value is crucial.

Consider a wind turbine modeled as a 3MW unit using a 
piecewise linear model with a cut-in speed (cis) of 3.5 ms−1 , 
rated speed (rs) of 14 ms−1 and cut-out speed ( cos ) of 25 
ms−1 as shown in Fig. 18.

The expected energy output of the turbine over a given 
period of time is calculated according to Eq. 19.

where P(v) is the turbine power vs speed characteristic 
(Fig. 18) and f(v) is the distribution function used to model 
the data.

For this work, the proposed ASIC is defined as a normal-
ized weighted error function (in this case normalized error 
in expected energy is used), with the weightings defined by 
the turbine characteristic.

(19)E = hrs × ∫
cos

cis

P(v) × f (v) dv

Fig. 16   Piarco—Chi Squared
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(20)

ASIC =
hrs ×

[∫ cos

cis
P(v) × f̂ (v) dv − ∫ cos

cis
P(v) × f (v) dv

]

hrs × ∫ cos

cis
P(v) × f (v) dv

,

=
∫ cos

cis
P(v) ×

(
f̂ (v) − f (v)

)

∫ cos

cis
P(v) × f (v) dv

dv

where f̂ (v) is the estimated distribution function.
Using this approach, sections of the distribution which 

contribute more to the application are more heavily weighted 
than those that do not. In this case, the fit of the distributions 
below wind speeds of 3.5 ms−1 or above 25 ms−1 are not as 
important since the wind turbine does not output any power 
for those conditions. Using the chosen ASIC, the fit of the 

Fig. 17   Piarco—Log-Likelihood, AIC and BIC

Fig. 18   Wind turbine power 
characteristic
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data over the range of power producing speeds of the tur-
bine is assessed. This marks a departure from the philosophy 
behind other goodness-of-fit tests which equally weight all 
sections of a distribution or weight them based on prob-
ability and do not consider any external information in the 
determination of goodness of fit.

The actual energy output for Piarco was calculated as 
approximately 112 GWh, while the value for Crown Point 
was 155 GWh. Tables 10 and 11 show the percentage differ-
ence in energy predicted by the models as compared to the 
energy derived directly from the wind data. As evident, the 
results did not match any ranking derived from the conven-
tional goodness-of-fit metrics.

Among the traditional goodness-of-fit tests, the Chi-
squared and Kolmogorov–Smirnov tests produced similar 
results to the ASIC in that they placed similar candidate 
distributions within the top four ranked distributions, albeit 
with a different order. This indicates that they may be better 
suited as goodness-of-fit tests for the purpose of wind energy 
studies than the other traditional goodness of fit metrics 

utilised in this paper. Given that the application space is 
known, however, using an ASIC would still be preferrable 
since rankings are made according to a parameter (energy in 
this case) which is meaningful to users of the data.

Finally, it is also noteworthy that the Weibull distribu-
tion, which is traditionally used in wind modelling in the 
Caribbean, performed poorly for both datasets using all the 
metrics investigated. This is likely due to the large amount 
of low to zero wind speed measurements. Castellanos [37] 
has also noted that the Weibull distribution performs poorly 
when the data contains a large proportion of low wind 
speeds (Figs. 19, 20; Table 12).

Conclusions

The Weibull distribution was found to perform relatively 
poorly as a wind probability model for both sites. The Ray-
leigh distribution performed consistently better than the 
Weibull but was still ill suited as a model for the data.

The inconsistency in results for the goodness of fit led to 
the conceptualization of application-specific information cri-
teria (ASIC) as a more meaningful approach for assessment 
of goodness of fit in cases where the secondary, application-
specific features must be calculated from the primary data.

For the application in question, the normalized error in 
expected energy is used as a goodness-of-fit metric to rank 
candidate distributions. The advantage of this technique 

Table 10   Expected energy at Crown Point by distribution

Distribution Expected energy/MWh %Difference 
from actual

Actual 155,270 0
Generalized extreme value 163,810 5.50
Generalized Pareto 142,140 − 8.46
Normal 139,560 − 10.12
Nakagami 139,560 − 14.59
Rayleigh 179,520 15.62
Gamma 81,110 − 47.76
Weibull 72,843 − 53.09
Birnbaum–Saunders 295,810 90.51
Exponential 4.0429E−08 − 100

Table 11   Expected energy predicted at Piarco by distribution

Distribution Expected energy/MWh %Difference 
from actual

Actual 111,560 0
Normal 113,930 2.12
Nakagami 121,920 9.28
Rayleigh 123,060 10.30
Generalized Pareto 97,240 − 12.84
Gamma 77,874 − 30.20
Generalized extreme Value 71,804 − 35.64
Weibull 71,187 − 36.19
Exponential 0.00012435 − 100.00
Birnbaum–Saunders 403,780 261.94

Table 12   Parameter Estimates for distributions

Location

Distribution Parameter Crown Point Piarco

Birnbaum–Saunders beta 0.1009 1.0274
gamma 9.636 2.6596

Exponential lambda 7.3244 5.1314
Gamma k 0.3606 0.4944

theta 20.314 10.4568
Generalized extreme value xi − 0.15 4.2971

sigma 4.9517 0.437
mu 5.0824 0.1016

Generalized Pareto xi − 0.2299 − 0.2013
Sigma 8.7412 6.2781
Theta 0.0001 0.0001

Nakagami Mu 0.1807 0.2244
omega 82.1115 51.0448

Normal sigma 7.3244 4.971
mu 5.3352 5.1314

Rayleigh sigma 6.4075 5.052
Weibull lamda 5.3442 3.9135

k 0.4825 0.6195
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is that the distributions can be examined in terms of over-
estimation or under-estimation of expected energy as well 
as the magnitude of deviation while using a metric that is 
meaningful in the context of the intended application space.

Open Access  This article is distributed under the terms of the Creative 
Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.  
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