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Abstract Experimental studies confirm that the obtained

electrical power by a conventional photovoltaic PV system

is progressively degraded when the temperature of its cells

is increased. The water-cooled photovoltaic thermal PVT

system is therefore proposed to avoid the voltage drop at

high temperature. The use of single diode PV/PVT models

in simulation software becomes indispensable to analyze

its performances where several climatic conditions such as

environmental temperature and solar radiation variations

should be considered. An optimal set of PV/PVT model

parameters are determined through experimental data using

two evolutionary computation algorithms; genetic algo-

rithm and particle swarm optimization algorithm. Further-

more, the robustness of the given PV/PVT model should be

analyzed. The predicted electrical properties by the pro-

posed PVT model are compared with those given by the

conventional PV model at its operating cell conditions and

also at several rigid atmospheric conditions.

Keywords Photovoltaic system � Photovoltaic thermal

system � Modelization � Identification � Genetic algorithm �
Particle swarm optimization algorithm

Introduction

The main applications of solar energy can be classified into

two categories: thermal and photovoltaic systems. In the

nature, only 20% of solar radiations incident on a PV

module can increase the operating cell temperature, in

which its performances are deteriorated [1].

Consequently, the obtained energy conversion is

reduced with order of 0.4–0.5% when environmental

temperatures are progressively increased [1]. To avoid this

drawback, the overheating problem of the conventional PV

cells is solved using the proposed cooling system which

drops its cell temperatures to those neighboring the nomi-

nal temperature range.

The proposed solar system uses the water in the closed

circuit in which its cells are cooled down in high temper-

atures. The advantages of this system are better heat

absorption and lower production cost [2, 3]. Therefore, our

study focuses on the comparison between the obtained
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electrical powers by both conventional PV and proposed

PVT systems in different atmospheric conditions.

In the modeling step of actual PV/PVT systems, a good

choice of the efficient model ensuring more accuracy of the

actual system behavior is a key success factor for several

analysis studies [4], such as diagnosis, synthesis and

robustness of PV/PVT control law step against sensor

noises, model parameter uncertainties and PV output power

forecast [5]. Therefore, various electrical circuits’ oriented

PV models have been proposed in the literature providing

some optimal models where different intrinsic physical

phenomena occurred in the electricity generation process.

Among them, the equivalent circuit based upon a single

diode is the most commonly adopted model for PV cells,

accounting for the photon-generated current and the phy-

sics of the P–N junction of the PV cell.

In the design phase of single diode PV models, some

unknown parameters should be well optimized such as the

photo-generated current, the diode quality factor, the series

and parallel resistors and others. An optimal set of these

parameters is determined through solving an optimization

problem which is previously formulated by the designer. Its

fitness metric function (to be minimized) presents the mean

square error given through discrepancy value between

model prediction and actual measurement for each sam-

pling time.

In the recent years, many researchers have been inter-

ested in designing efficient single diode PV models using

some evolutionary computation algorithms such as GA or

PSO algorithm or others [6, 7]. Among them, Askarzadeh

et al. identified the PV model parameters using the Bird

Mating Optimizer BMO algorithm [8]. Fialho et al. deter-

mined these parameters through some analytical approa-

ches where the PV system was linked to the electric grid

[9]. Ogliari et al. estimated the model parameters by

adopting the particle filter in the conventional PV power

output forecast [10]. Soon and Low identified the single

diode KC65T PV model given by three unknown electrical

components, which were optimized by the PSO algorithm

based upon log barrier constraint [11]. These unknown

electrical components have been identified by Qin and

Kimball from field test data using PSO algorithm in which

both total solar irradiance and environmental temperature

variations are taken into account [12]. These parameters

have been identified from combining the GA by the Inte-

rior-Point Method IPM by Dizqah et al. [13]. Unfortu-

nately, all proposed models are imprecisely described; the

actual solar system behaviors when atmospheric conditions

are changed in a wide range, particularly at high environ-

mental temperature as well as the robustness of the

developed models have not been considered.

This paper investigates the analysis of the above men-

tioned problem in which two following main contributions

are proposed. The first one is to enhance the obtained

electrical properties of the conventional PV system,

regardless the effect of various atmospheric conditions.

The second one is to decrease the obtained sensitivity of

model parameters against environmental temperature

variations. Therefore, the obtained electrical properties

become depending only on the total solar irradiance vari-

ations. As a result, the validity of the proposed model will

be extended in wide time range for different weathers such

as hot and hazy weathers. The latter presents an important

capital, especially, in synthesis control laws ensuring a

good tracking of maximum power point MPPT.

The current paper starts in ‘‘Tools used for optimiza-

tion’’ by introducing the mechanism of both GA and PSO

algorithm. In ‘‘Circuit model of PV/PVT cells’’, the design

problem of single diode PV/PVT models is formulated. Its

model parameters are then determined through experi-

mental data recorded at different operating points in the

‘‘Experimental tests and study cases’’. Robustness analysis

of obtained PV/PVT models is established where other

experimental data recorded at high temperatures and dif-

ferent total solar irradiances are taken into account. Finally,

the current paper is ended by a conclusion given in

‘‘Conclusion’’.

Tools used for optimization

GA optimization

The GA is a heuristic method that simulates the biological

evolution, browsing the parameter space. The design of set

model parameters are changed according to an evolution-

ary process based upon genetic rules where some chro-

mosomes may be modified (crossover, mutation,

selection…, etc.). In the optimization problem, each vari-

able defines a gene in chromosome. However, the set of

chromosomes evolves by different operations modeled on

genetic laws to an optimal chromosome [6]. The GA

algorithm procedure consists of the following steps:

Step 1: Generate randomly Np chromosomes on initial

population in the search space with

chromosome‘ ¼ X1; . . .;Xn½ �whereXmin\X1;...;n\Xmax and ‘
¼ 1; 2; . . .;Np:

Step 2: Calculate the fitness function for each chromosome.

Step 3: Apply the following operators:

a. Perform reproduction, i.e., select the best chromo-

somes with probabilities based upon its fitness function

values.

b. Perform crossover on chromosomes selected in the

above step by crossover probability.
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c. Perform mutation on chromosomes generated in the

above step by mutation probability.

Step 4: If the stopping condition is reached or the optimum

solution is obtained, the process can be stopped. Otherwise,

repeat Steps 2–4 until the stop condition is achieved.

Step 5: Get the optimal solution X� corresponding to the

best fitness function value X� ¼ minX j
i
ðJðX j

i Þ; 8i; jÞ:

PSO optimization

PSO is a meta-heuristic optimization method presented,

for the first time, by Kennedy and Eberhart [14]. Their

idea was inspired through the social behavior and the

ability of a bird flocking or a fish migration. The PSO

algorithm uses a swarm consisting of np 2 N articles, i.e.,

ðXiÞi¼1;2;...;np
; to search the sub-optimal solution X� 2

Nq�1 that minimizes the fitness function JðXÞ 2 R. The

position and velocity vectors of ith particle are, respec-

tively, given by Xi ¼ ðXi;1;Xi;2; . . .;Xi;qÞT and

Vi ¼ ðVi;1;Vi;2; . . .;Vi;qÞT . These vectors are evolved

through the following updated laws:

V‘þ1
i ¼ c0 � V‘

i þ c1 � r‘1;i � ðX
best;l
i � X‘

i Þ þ c2 � r‘2;i � ðXbest;‘
swarm � X‘

i Þ
X‘þ1
i ¼ X‘

i þ V‘þ1
i

;

(

ð1Þ

where ‘ ¼ 1; 2; . . .; ‘max and ‘max is the maximum number

of iterations that should previously chosen by the user

[8, 9]. c0; c1 and c2 are, respectively, the inertia factor, the

cognitive (individual) and the social (group) learning rates.

r‘1;i and r‘2;i are random numbers that are uniformly dis-

tributed in 0; 1½ �Xbest;‘
i and Xbest;‘

swarm are, respectively, the best

previously obtained position of the particle i and the best

obtained position in the entire swarm at the current itera-

tion ‘ where [15, 16]:

X
best;‘
i ¼ minX j

i
JðX j

i Þ; 0� j� ‘
� �

Xbest;‘
swarm ¼ minX‘

i
JðX‘

i Þ; 8i
� � :

(
ð2Þ

The PSO algorithm consists of the following step-pro-

cedures [16]:

Step 1: Initialize the np particles with randomly chosen

position, which should be previously constrained by X 2
ðXmin;XmaxÞ where Xmin �Xi �Xmax. Afterward, evaluate

the corresponding objective function at each position.

Finally, set the iteration number ‘ ¼ 0 and determine the

initial solutions X
best;0
i and Xbest;0

swarm using Eq. (2). Go to the

next step.

Step 2: Check termination criterion. If it is satisfied, the

algorithm terminates with the solution. Otherwise, go to the

next step.

Step 3: Apply updates (1) and (2) to all particles and

evaluate the corresponding objective function at each

position again. Afterward, set the iteration number

‘ ‘þ 1 and determine X
best;‘
i and Xbest;‘

swarm. Go back to step

2. For simplicity, the termination criterion in step 2 is set as

a maximum number of iteration ‘max

Circuit model of PV/PVT cells

Mathematical model of PV/PVT modules

The following equivalent electrical circuit based on a sin-

gle diode is commonly used in modeling step of PV/PVT

cells:

According to Fig. 1, the electrical circuit model of PV/

PVT cells consists of a current source assembled in parallel

with a diode. A series resistor and a parallel resistor are

added to describe the dissipation phenomena inside PV/

PVT cells [17–19]. According to the equivalent circuit, the

following expressions are established [20–22]:

Ipv ¼ Iph � ID � Vpv þ Rs � Ipv
Rp

; ð3Þ

where Iph the photo-generated current, Ipv and Vpv are,

respectively, the output current and the output voltage

provided by the solar cell. ID the diode current given by:

ID ¼ I0 � �1þ e q�VpvþRs �Ipv
K�Ta½ �

� �
; ð4Þ

where Io is the reverse saturation current of the diode

defined by:

I0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta

Tn

� �3
n

s
� Isc

�1þ e q�VpvþRs �Ipv
K�Ta½ � � e

q�Vg
n� 1

Ta
� 1
Tnð Þ

	 

; ð5Þ

Where n denotes the diode ideality factor. Moreover, the

photo-generated current Iph is defined by:

Iph ¼
Ga

Gn

Isc þ KIðTa � TnÞ½ �; ð6Þ

where Ta is the absolute temperature, Tn is the nominal

temperature given at Standard Test Conditions (STC), i.e.,

Tn ¼ 25 �C, KI is the constant weighting the temperature

Fig. 1 Equivalent electrical circuit of PV/PVT cells
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discrepancy DT ¼ Ta � Tn; Ga is the total solar irradiance

and Gn is the nominal total solar irradiance given at STC,

i.e., Gn ¼ 1000W/m2. According to Eq. (6), the maximum

photocurrent Iphmax is determined when Ta and Ga reach its

nominal values, i.e., Ta ¼ Tn; and Ga ¼ Gn. It yields in fact

Iphmax ¼ Isc. Moreover, the short resistor current Isc is given

when the series resistance is low enough and the shunt

resistance is high enough. Therefore, Iph should be limited

by the upper bound Isc. Table 1 summarizes the meaning

and the corresponding value of diverse electrical

components.

Formulation of the optimization problem

The desired single diode PV/PVT models have four

unknown variables which are regrouped in the following

design vector:

X ¼ ðIph; n;Rs;RpÞT : ð7Þ

The optimal vector X� is determined from minimizing

the mean square error (MSE) criterion, in which the fitness

function for a sampled point k is given by:

JkðXÞ ¼ IpvmðkÞ � IpveðkÞ; ð8Þ

where IpvmðkÞ is the predicted load current determined from

Eqs. (3)–(5), IpveðkÞ is the sampled load current given

through actual PV and PVT systems at sampling time k.

Furthermore, the fitness function of one set of PV/PVT

parameters for N sampled points is given by:

minX JðXÞ ¼ minXmin\X\Xmax

1

N

XN

k¼1
IpvmðkÞ � IpveðkÞ
� �2
 �

:

ð9Þ
Experimental tests and study cases

The comparative study has been presented here for two

solar systems based upon ISOFOTON I-50 PV modules.

The first one is the conventional PV cell operating without

cooling. However, the second one is the proposed PVT cell

that previously reinforced against high temperatures by

means of the closed water circuit. These solar systems are

positioned on the building roof of the applied research unit

in renewable energy located in the south of Algeria.

In this study, both PV and PVT panels are inclined by an

angle equals to the latitude of the area and each one has

two sensors. The first sensor is a K-type thermocouple

which measures the absolute temperature using the

Campbell CS215 instrument. The second one is installed to

measure the total solar irradiance using the Kipp and Zonen

CMP21 pyranometer.

All recorded experimental data are carried out by the

Agilent 34970 A. The experimental systems are shown in

Fig. 2.

The typical electrical characteristics provided by both

solar systems are summarized in Table 2:

Note that, in severe weather conditions, absolute temper-

atures and total solar irradiances change, respectively, within

31:5 �C� Ta � 44:5 �C and 600W/m2 �Ga � 1050W/m2.

The overheating problem of PVT cells is solved using the

proposed cooling system which drops the PVT cell tempera-

tures until those neighboring the nominal temperature range,

i.e., 22:3 �C� Ta � 26:9 �C. Consequently, the electrical

properties providedby thePVTsystemdependonly onagiven

total solar irradiance range. On the other side, the total solar

Table 1 Values used in equivalent electrical circuit

Parameter Quantity identification (unity) Value

Isc Short resistor current (A) 2.99

q Elementary charge (c) 1.60 9 10-19

K Boltzmann’s constant (J/K) 1.38 9 10-23

Voc Open-circuit voltage (V) 20.80

Vg Energy gap (eV) 1.20

Fig. 2 Experimental prototype

of PV and PVT systems
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irradiance range has been divided on two sub-ranges

650W/m2 �Ga � 750W/m2 and

800W/m2 �Ga � 1050W/m2 in which the same obtained

electrical properties by the actual PVT system may be con-

served. For that reason, two experimental measurementswere

performed in the modeling phase the actual PVT behavior.

These perfect modeling requirements occur in the month of

April, especially, from starting times 10h00 and 14h00. For

both actual PV and PVT systems, experimental data were

recorded every 30 s, in a clear day during the month of April

2015 from 10h00 to 12h30, yielding to 300 sampled mea-

surements. In the sameway, a second set of 300 other sampled

measurements were recorded from 14h00 to 16h30. There-

fore, a total set of N ¼ 600 sampled measurements were

recorded. During the first N ¼ 300 measurements, the mean

absolute temperatures and the mean total solar irradiances

varied around Ta ¼ 22:3 �C and Ga ¼ 700:6544W/m2,

respectively. On the other hand, during the second N ¼ 300

measurements the mean absolute temperatures and the mean

total solar irradiances varied around Ta ¼ 26:9 �C and

Ga ¼ 900:3362W/m2, respectively. The recorded experi-

mental data are then stored in an on-board SD card for an off-

linePV andPVTmodel parameters extraction. Its optimal sets

are given by the GA and PSO algorithm using the following

lower and upper boundary constraints:

0

1

0

0

2
664

3
775

|ffl{zffl}
Xmin

�

Iph
n

Rs

Rp

2
664

3
775�

Isc
2

inf

inf

2
664

3
775

|fflfflffl{zfflfflffl}
Xmax

: ð10Þ

Tables 3 and 4 summarize the tuning parameters of the

GA and PSO algorithm, which are given according to some

guidelines proposed in [23–25]:

Note that the GA and PSO algorithm are executed 20

times. After that, the best obtained fitness value is con-

sidered to design the single diode PV and PVT models.

Design of PV and PVT models

Design of first PV and PVT models

Note that one of most important factors that validate the GA

and PSO algorithm is the best value of the fitness function

which should be lower asmuch as possible. Therefore, Fig. 3

shows the obtained fitness plots provided through GA and

PSO algorithm during the extraction process of the first PV/

PVT model parameters where the best minimization of the

cost function is presented by the dashed blue line.

According to Fig. 3, it is easy to observe that the GA

converges within 50 generations whereas the PSO algo-

rithm converges within 160 generations yielding also the

best MSE minimization. The obtained first PV and PVT

model parameters are summarized in Table 5 in which the

best parameters are mentioned in bold:

To confirm these results, Fig. 4 compares the actual cur-

rent–voltage characteristics provided by the proposed PVT

system with those determined through its corresponding first

PVT models. In addition, Fig. 5 compares the above men-

tioned characteristics given through the conventional actual

PV system and its corresponding first PV models.

According to Figs. 4 and 5, the current–voltage char-

acteristics, provided by actual PV and PVT systems, mat-

ched as close as possible with those given by the first PV

and PVT models where the best results are ensured by the

PSO algorithm. Now, the obtained actual and predicted

power–voltage characteristics are compared in Fig. 6:

According to Fig. 6, it is easy to observe that the obtained

actual power–voltage characteristics are closely matching

those determined through the corresponding models. This

Table 2 Typical electrical characteristics of PV/PVT modules

Characteristic Value

Maximum power Pmax 39.10 W

Maximum voltage Vmax 14.90 V

Maximum current Imax 2.620 A

Number of cells 36

Table 3 PSO parameters

Parameter Value

Number of executions of PSO algorithm 20

Swarm size np 100

Maximum iteration number lmax 200

Inertia factor c0 0.90

Cognitive learning rate c1 0.25

Social learning rate c2 1.25

Table 4 GA parameters

Parameter Value

Number of executions of GA 20

Population size 100

Generation number 200

Reproduction

Elite count 2

Crossover 0.8

Mutation function Constrain dependent

Crossover function Scattered

Migration

Direction forward

Fraction 0.2
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figure confirms also that the obtained power energy is

enhanced by the actual PVT system with a maximal value of

PPVT ¼ 26:19Watts given at the voltage V ¼ 14:66Volts.

This maximal power is better than the one provided by the

conventional PV system inwhich its maximal power reaches

PPV ¼ 25:9Watts at the voltage V ¼ 14:50Volts. Note that,

this comparison does not reduce the GA efficiency, as it will

be shown in the next section.

Design of second PV and PVT models

In this section, the same tuning parameters summarized in

Tables 3 and 4 are used. Therefore, Fig. 7 shows the

obtained fitness plots provided through GA and PSO

algorithm during the extraction process of the second PV

and PVT model parameters where the best minimization of

the cost function is presented by the dashed blue line.

According to Fig. 7, it is easy to observe that the best

fitness values obtained by GA and PSO algorithm are,

respectively, provided within 50 and 175 generations, in

which the best results are ensured by the GA. Note, the

obtained second PV and PVT model parameters are

Fig. 3 Obtained fitness curves through GA and PSO algorithm for the first PV/PVT models

Table 5 Identification results of first PV and PVT models

Model parameters Jmin

Iph n Rs Rp

PVT GA 2.0993 1.0000 0.1817 2.8967 5.95 9 10-4

PSO 2.1626 1.0018 0.1936 2.1599 5.67 9 10-4

PV GA 1.9728 1.5734 0.0343 4.7437 5.08 9 10-4

PSO 2.0180 1.0000 0.1167 3.7548 4.94 9 10-4

Fig. 4 Obtained current–voltage characteristics by the actual PVT

system and its corresponding first PVT model
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summarized in Table 6 in which the best parameters are

mentioned in bold.

According to Table 6, it is easy to observe that the best

minimization of the MSE criterion is performed by using

the GA.

To confirm these results, Fig. 8 compares the actual

current–voltage characteristics provided by the proposed

PVT system with those determined through its corre-

sponding second PVT models. In addition, Fig. 9 compares

the above mentioned characteristics given through the

conventional actual PV system and its corresponding sec-

ond PV models.

According to Figs. 8 and 9, the obtained current–voltage

characteristics by the second PV and PVT models are

matched as close as possible with those given through the

actual PV and PVT systems where the GA gives the best

models.

For this reason, only the second PV and PVT models

based upon the GA are used to compare its power–voltage

characteristics with those determined through the actual PV

and PVT systems.

According to Fig. 10, it is clear to observe that the

obtained power energy by the actual PVT system has the

peak value PPVT ¼ 30:48Watts V ¼ 13:6Volts, which is

better than the one provided by the actual PV system in

which PPV ¼ 29:75Watts at V ¼ 13:30Volts.

Fig. 5 Obtained current–voltage characteristics by the actual PV

system and its corresponding first PV model

Fig. 6 Obtained power–voltage characteristics by the actual PV and

PVT systems and its corresponding first PV and PVT models based

upon PSO algorithm

Fig. 7 Obtained fitness curves through GA and PSO algorithm for the second PV/PVT models
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Validation of the obtained PV and PVT models

In this section, both first PV and PVT models based upon

PSO algorithm and both second PV and PVT models based

upon GA are validated in severe atmospheric conditions,

which are recorded in July 2015.

Table 7 summarizes the given absolute temperatures

and the total solar irradiances at different times.

According to Table 7 the five power–voltage curves

obtained by actual PV and PVT systems are compared with

those provided by its corresponding models. The proposed

comparisons are established according to the given total

solar irradiance range. Figures 11 and 12 compare the

given power–voltage characteristics provided by actual PV

and PVT systems and both first and second PV and PVT

models.

According to Figs. 11 and 12 the maximal powers

provided by the actual PV and PVT systems can be

arranged as the following histogrammes:

Table 8 compares the given maximal powers in different

weather conditions.

According to Figs. 13 and 14, it is obvious to confirm

the following three main results:

• In high temperatures, the proposed PVT models ensure

better robustness properties than those provided by the

conventional PV models.

• The proposed PVT models have the ability to well

model the actual PVT measurement regardless the

severe atmospheric conditions.

• The proposed cooling system ensures the best electrical

powers which become stationary in two different

irradiation ranges and independently of temperature

variations.

Conclusion

In this paper, the water-cooled PVT system is well modeled

by two single diode PVT models according to the two total

solar irradiance ranges and the absorbed temperature

Table 6 Identification results of second PV/PVT models

Parameters Jmin

Iph n Rs Rp

PVT GA 2.9822 1.4644 0.3237 2.1342 7.40 9 10-4

PSO 2.9900 1.0000 1.2007 7.1147 31.70 9 10-4

PV GA 2.8508 1.3110 0.4191 3.2142 8.54 9 10-4

PSO 2.9900 1.0000 1.0825 5.5967 22.30 9 10-4

Fig. 8 Obtained current–voltage characteristics by the actual PVT

system and its corresponding second PVT model

Fig. 9 Obtained current–voltage characteristics by the actual PV

system and its corresponding second PV model

Fig. 10 Obtained power–voltage characteristics by the actual PV and

PVT systems and its corresponding second PV and PVT models based

upon GA
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system. The optimal set of the PVT model parameters are

identified through experimental data using both evolu-

tionary optimization algorithms such as GA and PSO. The

given current–voltage and power–voltage curves by the

actual PV and PVT systems are compared to those given by

the proposed PV and PVT models in nominal atmospheric

conditions. The robustness of the best PV and PVT models

are verified in severe atmospheric conditions in which the

PVT model becomes more advantageous than the con-

ventional PV one from an energetic point of view. So, the

Table 7 Absolute temperatures

and total solar irradiances used

for PV and PVT models

validation

Time 08H30 09H00 11H00 13H30 15H30

GaðW/m2Þ 672.6580 686.1710 883.4676 1047.9080 936.4730

Tað�CÞ 34.09 36.01 37.88 40.92 39.09

Fig. 11 Comparison between the actual power–voltage characteristics and those given by the first PV and PVT models using the PSO algorithm

Fig. 12 Comparison between the actual power–voltage characteristics and those given by the second PV and PVT models using the GA
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proposed PVT model becomes interesting for practical

uses.

Acknowledgements The authors would like to thank the anonymous

reviewers for their valuable suggestions that enhance the technical

and scientific quality of this paper.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Skoplaki, E., Palyvos, J.: On the temperature dependence of

photovoltaic module electrical performance: a review of effi-

ciency/power correlations. Sol. Energy 83(5), 614–624 (2009)

2. Alfegi, E.M.A., Sopian, K., Othman, M.Y.H.: Yatim BB (2006)

Transient mathematical model of both side single pass photo-

voltaic thermal air collector. mh 0054, 1 (1000)

3. Mazón-Hernández, R., Garcı́a-Cascales, J.R., Vera-Garcı́a, F.,
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