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Abstract
We present an analytic theory for Smith–Purcell device in which a cylindrical metal–dielectric grating was derived by an 
annular electron beam propagating along the grating axis. A dispersion relation is obtained for azimuthally symmetric modes. 
Also, the first-order and second-order growth rates of the modes which are in phase with the beam are compared. It is shown 
that the second-order growth rate gives a more accurate description of beam–wave interaction for beams with larger thick-
nesses, as well as grating slots, with smaller depths and greater lengths. The start current for BWO operation of the SP-FEL is 
presented too. The importance of the minimum value of start current is that above it, the SP-FEL will operate as an oscillator, 
even in the absence of external feedback. In this case, the group velocity of the synchronous evanescent wave is negative, 
while the electron beam travels in the forward direction. It is shown in this paper that the dielectric and grating parameters 
affect the value of start current. So, by changing these parameters, the minimum value for the start current can be obtained.

Keywords Smith–Purcell FEL · Beam–wave interaction · Cylindrical grating · Dielectric · Start current · Growth rate

Introduction

When an electron beam travels near a periodic metal sur-
face (grating), parallel to it and perpendicular to its rulings, 
spontaneous radiation is emitted. This radiation, known as 
Smith–Purcell radiation, was first observed by Smith and 
Purcell in 1953 [1]. The SP radiation is a tunable electro-
magnetic source, which is given as follows:

where β, θ, λ and n denote the relative velocity of the elec-
tron beam, the direction of the radiated wave with respect 
to this beam, the wavelength and the order of this radiation, 
respectively. The idea of developing a new kind of free-
electron laser based on SP radiation seemed practical, after 
observing THz superradiant at currents above 1 in Dart-
mouth experiment [2]. Since then, a lot of theoretical and 

experimental works have been done on the SP-FEL, as it is 
a compact size tunable THz source of radiation [2–6].

A device based on beam-grating can be operated as a 
laser if the SP radiation becomes coherent. SP-FEL has two 
operating modes. It works as a traveling wave amplifier if the 
electron beam and the synchronous evanescent wave both 
travel in the positive z-direction. The other operating mode 
is backward wave oscillator (BWO), where the group veloc-
ity is negative [7].

In consideration of the BWO type of SP-FEL, it was 
shown that if the beam current exceeds a certain thresh-
old, known as start current, the radiation amplitude grows 
exponentially [7–12]. In recent years, some efforts have 
been done to reduce this start current, which results in 
easier production of high-power compact THz sources [6, 
12–14]. In these researches, utilizing two identical rectan-
gular gratings [6], loading dielectric in a rectangular grating 
[12], adding Bragg reflector to a grating [13] and applying 
two-beam interaction [14] for reducing the start current of 
BWO SP-FEL were suggested. In the SP oscillator consid-
ered by Schachter and Ron, the proposed theory was based 
on the interaction of an electron beam with a wave traveling 
along the grating. They predicted a small signal gain of SP-
FEL to be proportional to a cubic root of the electron beam 
current. Their results agree with slow-wave devices such 
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as Cherenkov FEL [15]. Kim and Song solved the initial 
problem of the sheet beam, by using the interaction of the 
electrons with a traveling wave, and found that the gain is 
proportional to the square root of electron beam [16]. Later, 
Andrews and Brau explained the experiment of Urata, as 
bunching of the beam electrons due to the interaction of an 
evanescent wave with this sufficiently high current beam. 
Their calculations show that the gain of this radiation has 
cube root dependence on the beam current [17]. Besides, 
the growth rate of SP-FEL considered by Klochkov et al. 
[18] is proportional to the square root of the sheet electron 
beam current.

Bluem et al. [19] worked on a cylindrical grating exposed 
by an annular beam. They observed both superradiance and 
SP radiation. Also, Ashrafi et al. [20] proposed a waveguide 
loaded with dielectric. Then, they considered the effect of 
dielectric on the growth rate.

In the present work, the linear theory of an annular 
electron beam, propagating along a cylindrical grating, is 
analyzed. The structure is a mix of alternate dielectric and 
metal gratings. The threshold current for starting the BWO is 
given. For simplicity, we assume that the system is uniform 
in the direction parallel to the slots of the grating. The fun-
damental dynamical equations are presented in Sect 2. The 
results and discussion are given in Sect. 3. In the last part, 
the conclusion is considered.

Theory

A diagram of the proposed scheme is illustrated in Fig. 1. 
A cylindrical grating is made of alternative ideal metal and 
dielectric gratings, and its period, slot width, slot depth, inner 
radius and outer radius are denoted as 2d, l, ℎ, R1 and R2, 
respectively. An annular electron beam with inner radius a1 
and outer radius a2 in a uniform static axial magnetic field B0 
is drifting with velocity along the axis of the grating and very 
close to it. We assumed that this magnetic field is so strong to 
omit the transverse perturbations of the emitted beam. Also, 

for simplicity, the space charge effect is neglected, and the 
system is assumed to be uniform in the φ-direction.

Dispersion relation

The dispersion relation of the modes of this system is the 
result of considering Maxwell’s equations with the conti-
nuity equation and the relativistic momentum equation for 
electron beam:

In the following, we expand all quantities in terms of 
an unperturbed part plus a small perturbation: n = n0 + δn, 
v = v

0
+�v , J = J0 + �J , E = �E and B = B0ẑ+ 𝜹B , where 

n and v are the electron density and velocity, respectively. 
Unperturbed beam density, n0, is uniform and time inde-
pendent, �E and �B are the electric and magnetic fields, 
J = −env is the density of current, � = (1 − v2∕c2)−1∕2 is 
the relativistic factor, and c is the velocity of light in free 
space. The perturbed density of current is given as follows:

which by the help of the continuity and momentum equa-
tions is defined as follows:
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Fig. 1  The diagram of the grat-
ing filled with dielectric. An 
annular electron beam drifting 
along the axial direction with 
an external magnetic field B

0
 is 

plotted
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We suppose that the TM mode propagates in this device. 
And by applying Floquet’s theorem, the radiation fields take 
the general form

where f n , kn = k0 + 2n�∕d and ω represent the Fourier coef-
ficient, wave number in the axial direction and frequency of 
the nth mode, respectively.

First of all, the fields in regions of this configuration should 
be defined. We begin with the wave equation in the vacuum 
which is defined as follows:

Region 1

This region a2  < r  is the vacuum above the electron beam. So 
the fields here can be expressed as follows:

where �n =
√

k2n −
�2

c2
 and K is the modified Bessel function 

of the second kind.

Region 3

This region R 2 < r <  a1 is the gap between the electron beam 
and grating. The fields here are written as follows:

Region 2

The fields in region 2, a1 < r < a 2, where the electron beam 
exists, can be derived from this wave equation:
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where �� = 1 −
�2
p

�3(�−knv0)
2 is the relative dielectric constant 

of the electron beam [21].
The solutions of this equation are evanescent waves and 

have the following forms:

where �2n =
√

(k2
n
−

�2

c2
)��  . I and K are the modified Bessel 

functions of the first and second kind, respectively.

Region 4

The wave equation in the groove, 0 < z < l, is expressed as 
follows:

The solutions of this equation are the cavity modes of the 
groove and can be expressed as follows:

where kz =
m�

l+d
 and 𝛼m =

√
𝜔2

c2
− k2

z
> 0 . Also, J and N are 

the Bessel functions of the first and second kind, 
respectively.

Region 5

This region, l < z < d, is the dielectric part of the grating with 
relative permittivity . The fields here are expressed as follows:
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where

Region 6

The waves in this region, d < z < 2d, are as follows: 

As we assumed k0 d< 2π, it is enough to keep just the lowest 
harmonic (m = 0) in the slots. The continuity of displacement 
vector at  r = R2,  z = l and  z = d  results in:

where

After applying the continuity conditions in the border of 
regions 1_2, 2_3 and 3_4,5,6, the dispersion relation will be 
as follows:

where

(18)

B�(r, z) =

∞∑
m=0

Em

i��r

c2��
m

[
−J1

(
��
m
r
)
+

J0(�
�
m
R1)

N0

(
��
m
R1

)N1

(
��
m
r
)]

× cos
(

m�

l + d
z
)
.

(19)𝛼�
m
=

√
𝜀r
𝜔2

c2
− k2

z
> 0

(20)

Ez(r, z) =

∞∑
m=0

E��
m

[
J0(�mr) −

J0(�mR1)

N0(�mR1)
N0(�mr)

]
× cos

(
m�

l + d
z
)
,

(21)

B�(r, z) =

∞∑
m=0

E
��
m

i��
r

c2�
m

[
−J1(�mr) +

J0(�mR1)

N0(�mR1)
N1(�mr)

]

× cos

(
m�

l + d
z

)
.

(22)em = �r
H��

H�

Em,

(23)em = E��
m
,

(24)H� =

[
J0(�0R2) −

J0(�0R1)

N0(�0R1)
N0(�0R2)

]
,

(25)H�� =

[
J0(�

�
0
R2) −

J0(�
�
0
R1)

N0(�
�
0
R1)

N0(�
�
0
R2)

]
.

(26)R(�, kn, �
� ) = 1,

Here, we have:

In the absence of beam  (a1 = a2), the above dispersion 
relation becomes:
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Growth rate and start current

So far, the dispersion relation of the modes in this configura-
tion has been derived. In the synchronized point, where the 
electron beam can interact with one of the system modes 
(ωr, kr), the growth of this mode can occur. To facilitate 
the calculations of the growth rate, Taylor expansion of the 
dispersion relation, Eq. (26), can be used, keeping the terms 
up to the second-order and near the solution below:

So, Eq. (26) will become:

Here, we have:

In Eq. (38), it is enough to keep only the zeroth-order 
space harmonic (n = 0). That is reasonable, because the elec-
tron beam can be synchronized only with this harmonic [22]. 
So, we expand 

(
�� − 1

)
 about (�r, kr) to take the following 

form:

Substituting this back in Eq. (38), a sixth-order equa-
tion is derived. This equation can be numerically solved to 
obtain δω. Im(δω) and Re(δω) would be the growth rate 
and frequency shifting of the unstable mode, respectively. 
Besides, the maximum growth occurs if we assume δk = 0 
and only δω is complex.

To estimate the start current, we take into account just 
the first-order terms in the dispersion relation in Eq. (38) 
as follows:
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 can be related to each other, if we dif-

ferentiate the dispersion curve of Eq. (37):
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 and we consider vg < 0 for the oscillator oper-

ating. After substituting Eqs. (40) and (42) back in Eq. (41), 
the dispersion Eq. (41) will be simplified as follows:

where

For convenience, we rewrite Eq. (43) in dimensionless 
form [7] as:

where

The dispersion relation (43) is a cubic equation whose 
roots correspond to three modes. In this step, we represent the 
electric field of the beam as a sum of the fields of these three 
modes. Then, the boundary conditions must be applied to these 
modes to obtain the threshold current. From Eq. (12), the field 
of the th mode is represented as follows:
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The first and second boundary conditions applied on this 
field arise from the fact that the density and velocity of the 
beam are not disturbed at the left end of the grating, where the 
beam enters. So, the polarization of the beam and the convec-
tive derivative of this polarization are zero:

Here, the polarization is written with the aid of Eq. (40). 
The third boundary condition is that the input field at the right 
end of the grating of length Z is zero:

It should be noted that the oscillator mode of SP-FEL is 
possible only if all the three modes have the same frequency 
shift  δωj = δω. So, the boundary conditions can be written in 
the dimensionless form as follows:

Here,
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For nontrivial solution to exist, the coefficients should have 
zero determinant; therefore,

Equations (45) and (56) are solved numerically, and it has 
been shown that if the minimum value of ξ(ξ0) is 1.97, Im(τ) 
will become nonnegative [23]. It is clear from Eq. (47) that 
once Im(τ) > 0, the imaginary part of δω becomes greater than 
zero, and the growth of the unstable mode starts.

Finally, the threshold condition for a growing oscillation 
can be written as follows:

The start current can be derived by rewriting Eq. (57) as 
follows:

Results and discussion

To study the dispersion characteristics of the grating, the 
dispersion curves in the absence of beam are considered by 
solving Eq. (36) numerically. The parameters of our configu-
ration are listed in Table 1. The dependence of the propagat-
ing modes on the structure parameters is shown in Fig. 2. In 
Fig. 2a, the effect of �r on the dispersion curves is depicted. 
It is clear that as the dielectric relative permittivity is 
increased, the curves become more like a flat shape and the 
intersection point of the beam and these modes decreases. 

The dispersion curves for various slots  depths are 
depicted in Fig. 2b. As the slot depth increases, the dis-
persion curves become lowered, and the frequencies of the 
beam–wave interaction go down. On the other hand, decreas-
ing the width of the dielectric has the same effect on the 

(56)det

⎡
⎢⎢⎣

1∕�2
1

1∕�2
2

1∕�2
3

1∕�1 1∕�2 1∕�3
exp(−i�1�) exp(−i�2�) exp(−i�3�)

⎤
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= 0.

(57)𝜉 − 𝜉0 > 0.

(58)
||||||

e
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I

A

R
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𝜀𝛱

𝛾3R
(1)
𝜔

1

v3
0
vg

||||||
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− 𝜉0 > 0.

Table 1  Parameters of the system

Grating length Z = 6400 �m

Grating period 2d = 320 �m

Groove width l = 80 �m

Inner radius of groove R1 = 240 �m

Groove depth h = 100 �m

Inner radius of e-beam a1 = 340 �m

Outer radius of e-beam a2 = 400 �m

Electron relative velocity � = .45

Relative dielectric permittivity �r = 3.0

Normalized beam plasma frequency �pd∕c = 1
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dispersion curves, as it is clear in Fig. 2c. From this fig-
ure, we understand that lower frequencies of the interaction 
points are the result of decreasing the width of the dielectric.

Comparisons between the first-order and second-order 
growth rates, for the case  δk  = 0, are done by solving 
Eqs. (43) and (38), respectively. The results are depicted 
in Fig. 3 for different parameters of the system. Both the 
growth rate curves have similar behavior in each figure. 

Figure 3a shows that the dielectric in this configuration 
decreases the amount of the growth rate. However, the dis-
crepancy between the first-order and second-order growth 
rate is not too much, and the first-order growth rate can 
describe the interaction accurately. Figure 3b shows that 
the smaller the slot width is, the higher the growth rate will 
be. This is reasonable because by increasing the width, the 
resonance frequency increases too. So, the growth of such 
a high frequency is more difficult. Besides, as the width of 
slots extends, the discrepancy between the first-order and 
second-order growth rates gets larger. So, in this condition, 
the second-order growth rate is more precise to describe 
the interaction. The dependence of the growth rate on the 
height of slots is plotted in Fig. 3c. It is clear from the curves 
that slots with greater heights—in which the resonance fre-
quency is smaller—enhance the growth rate. Moreover, the 
two growth rate curves approach each other gradually, as the 
height rises. So, using the first-order growth rate is accept-
able just for higher depths. As it is indicated in Fig. 3d, the 
growth rate depends on the relative velocity of the beam. 
For small values of β, where the resonance frequency 
is very low, the growth rate is insignificant. Increasing β 
enhances the growth rate. So, the maximum growth rate 
happens when  β = 0.2. However, when the relative beam 
velocity increases, as the resonance frequency rises too, the 
growth rate reduces. Also, the two curves of growth rates 
almost match each other. The effect of beam thickness on 
the growth rate is shown in Fig. 3e. At lower thicknesses, 
the growth rate is small, as the interaction of the beam with 
the resonant mode is not very much. However, increasing the 
beam thickness results in more interactions and the growth 
rate enhances until it reaches the saturation value. As we 
can see, the discrepancy between the two curves cannot 
be ignored when the beam thickness is not small. So, the 
second-order growth rate gives more accurate description 
of this system. In the next step, the condition for starting the 
SP oscillation is considered by solving Eq. (58). The effect 
of the relative dielectric permittivity on the start current is 
shown in Fig. 4a. Increasing �r leads to higher values for the 
threshold current. However, it falls for �r larger than about 
9. In Fig. 4b, c, it is depicted that the threshold current for 
this oscillation is depended on the length of the grating. As 
the number of the grating periods increases, the electron 
beam can be modulated in longer distances. So, the thresh-
old current for bunching the beam decreases significantly. 
The dependence of the start current on the slot depth and 
width is clear in Fig. 4b, c, respectively. As it is clear, the 
shorter the slot parameters are, the smaller the start current 
will become.  

Fig. 2  Dispersion curves of cylindrical grating in the absence of 
beam related to the a relative dielectric permittivity �

r
 , b height of 

the grating, c slot lengths. The beam line with β = .45 is plotted for 
reference too. The other parameters are listed in Table 1
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Conclusion

In this paper, we have presented a theory of Smith–Pur-
cell radiation from a metallic–dielectric cylindrical grat-
ing. In this configuration, the effect of grating parameters 
on the dispersion curves, growth rate and start current 

is considered. Loading dielectric and making slots with 
smaller lengths and higher depths lead to flatter dis-
persion curves and reduce the operating frequency of 
beam–wave interaction. Consideration of the first-order 
and second-order growth rates at resonance points reveals 
that increasing the depth and decreasing the length of the 

Fig. 3  The dependence of first-order and second-order growth rates on the: a relative dielectric permittivity �
r
 , b length of the slots, c depth of 

the slots, d relative velocity of the electron beam, e thickness of the electron beam. The other parameters of the grating are listed in Table 1
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slots, decreasing �r and also expanding the beam thickness 
give rise to higher values of normalized growth rate. Also, 
increasing the relative velocity of the beam enhances the 
growth first, and then, it starts to fall depending on the 
frequency at the operating point. Comparison between 
two growth curves reveals that the second-order growth 

rate is more accurate especially when larger values for 
the slot length and beam thickness, as well as smaller ones 
for the slot depth, are taken. In addition, the start current 
required for BWO operation of SP-FEL is derived by using 
the boundary conditions and the dispersion relation. It is 
shown that increasing the relative dielectric permittivity 
increases the start current at first. However, the start cur-
rent falls when �r is larger than about 9. Moreover, increas-
ing the grating length, as well as decreasing the slot length 
and depth, reduces the threshold current. These results can 
be employed to optimize the FELs based on Smith–Purcell 
radiation.
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