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Abstract
The interaction between three photons is studied in de Sitter ambient space formalism. As a special case, the half harmonic 
generator is considered, i.e., one photon decays to two same-energy photons. The scattering matrix elements are presented 
which define the indirect gravitational effect on quantum field theory. The null curvature limit of scattering matrix is obtained 
for comparing it with its Minkowskian counterpart. The Hamiltonian of this interaction, in Minkowski space–time, was 
presented by using the quantum vacuum fluctuation in the one-loop approximation.
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Introduction

Historically, the interaction of light with matter is one of the 
most important interactions in physics. This interaction plays 
an important role in technology, which can be explained 
completely in quantum field theory (QFT) model. In quan-
tum level, the interaction between photons, i.e., wave mix-
ing, has a special role in quantum optics such as fiber laser 
and squeezed light. The process of decaying one photon to 
two photons is named as second harmonic generator (SHG). 
The reverse of this process, i.e., merging two photons and 
exiting one photon, is also possible. These interactions are 
performed by using some crystals. In flat space, SHG is 
used for generating the coherent state [1–4]. In quantum 
optics, the Hamiltonian of SHG process can be written as 
H = ℏ𝜒(d† d� d�� + d d�† d��†) [3, 5]. The d and d† are anni-
hilation and creation operators, respectively, and � is inter-
action constant which is fixed phenomenologically [1–3, 6, 
7]. The � constant can be obtained from QFT point of view 
which is studied in [43] and recall in section “Scattering 
matrix in null curvature limit”.

In curved space–time, the interaction of fields is affected 
by background gravitational field. By computing the 

scattering matrix, this indirect gravitational effects can 
be seen. In previous papers, the interaction between vec-
tor and spinor fields and also the interaction between scalar 
and spinor fields are considered and the scattering matrix 
is calculated [8, 9]. By attention to that the experimental 
data it is clear that the our universe and early universe can 
be described by de Sitter (dS) space–time [10–15] so the 
construction of quantum field theory (QFT) in dS space-time 
is important for quantum gravity and unified theory. Some 
efforts have been made for constructing QFT in dS ambient 
space formalism in the last few years [16–26]. One of the 
advantages of ambient space formalism is the simplicity in 
calculations of probability amplitude because the action of 
dS group on ambient space coordinate is linear [22]. In this 
paper, the decaying of one photon to two same-energy pho-
tons in dS ambient space formalism is investigated and the 
scattering matrix of this interaction is obtained in the first 
approximation. Finally, its null curvature limit is discussed.

The organization of this article is as follows. The notation 
and terminology that have been used in this article are pre-
sented in “Notation” section. The S-matrix elements in the 
small-curvature approximation are investigated in dS ambi-
ent space formalism in “Scattering matrix in dS space–time” 
section. In “Scattering matrix in null curvature limit” sec-
tion, the decaying of one photon to two same-energy photons 
has been recalled in Minkowski space–time. In Section V, we 
calculate the null curvature limit of the S-matrix elements 
and compare it with Minkowskian counterpart. Finally, the 
conclusion has been presented in Section VI.
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Notation

The dS space–time can be considered as a four-dimensional 
hyperboloid embedded in five-dimensional Minkowski 
space–time:

The metric is:

where ��� =diag(1,−1,−1,−1,−1) , H is Hubble constant 
parameter, X� is dS intrinsic coordinate and x� is the five-
dimensional dS ambient space formalism.

The action of dS group, SO(1, 4), on the intrinsic coor-
dinate X� is complicated but the action of this group on 
the ambient space coordinate x� is linear. So the calcula-
tion in this formalism is simple and similar to Minkowski 
space–time [22]. In this formalism, the five matrices �� are 
needed which satisfy the following relations [16, 20, 22, 27]:

and they can be chosen as:

where �i (i = 1, 2, 3) are the Pauli matrices. The �� matrices 
in dS ambient space formalism are different from Minkowski 
�

′� matrices. The relation between them is [27]:

The dS-Dirac first-order field equation is [16, 22]:

where 𝜈 > 0 is related to dS mass parameter as 
m2

f ,�
= H2(�2 + 2 ± i�) and 𝜕⊤

𝛼
= 𝜕𝛼 + Hx𝛼x.𝜕 is the trans-

verse derivative. The charged spinor field operator, which 
satisfies the field equation (2.5), is [22, 27]:

w h e r e  Np  i s  n o r m a l i z a t i o n  c o n s t a n t  a n d 
𝜉𝛼 = (𝜉0, 𝜉, 𝜉4) ∈ C+ =

{
𝜉 ∈ ℝ

5| 𝜉 ⋅ 𝜉 = 0, 𝜉0 > 0
}
 is the 

transformed variable of x� in positive cone. The �� becomes 

MH =
{
x ∈ ℝ

5| x ⋅ x = ���x
�x� = −H−2

}
,

�, � = 0, 1, 2, 3, 4 .

(2.1)
ds2 = ���dx

�dx�|x2=−H−2 = gdS
��
dX�dX� ,

�, � = 0, 1, 2, 3,

(2.2)���� + ���� = 2��� , ��† = �0���0 ,

(2.3)

�0 =

(
I 0

0 − I

)
, �4 =

(
0 I

−I 0

)
, �1 =

(
0 i�1

i�1 0

)
,

�2 =

(
0 − i�2

−i�2 0

)
, �3 =

(
0 i�3

i�3 0

)
,

(2.4)�
�� = ���4.

(2.5)
(
 x  𝜕⊤ − 2 ± i𝜈

)
Ψ(x) = 0,  x = 𝛾𝛼x

𝛼 = 𝛾 ⋅ x ,

(2.6)
Ψ(x) = Np ∫ d𝜇(𝜉)

∑
𝜎=± 1

2

[
a(𝜉, 𝜎)(Hx.𝜉)−2−i𝜈U(x, 𝜉, 𝜎)

+ b†(𝜉, 𝜎)(Hx.𝜉)−1+i𝜈V(x, 𝜉, 𝜎)
]
,

the energy-momentum four-vector in null curvature limit. 
Also the 𝜉 is 𝜉𝛼 = (𝜉0,−𝜉, 𝜉4) and the d�(�) is the SO(4)-
invariant normalized volume. The explicit form of U and V 
is presented in [27]. a†(�, �) and b†(�, �) are creation opera-
tors which act on dS-invariant vacuum sate �Ω⟩ as: [22]:

The anti-commutation relations for creation and annihilation 
operators are:

Analytic field operator is defined in complex dS space–time 
as [22, 29]:

The adjoint spinor Ψ̄(x) in ambient space formalism which 
is defined as Ψ̄(x) = Ψ†(x)𝛾0𝛾4 satisfies this field equation 
[16, 20, 22, 27, 28]:

The analytic two-point function of spinor field is [22, 27]:

where c 1

2
,� is the normalization constant. This analytic two-

point function can be calculated in terms of generalized Leg-
endre function of first kind [16, 20, 27].

As it is discussed in V, the null curvature limit of the 
quantum field operator of spinor field Ψ(x) reduces to its 
Minkowski counterpart �(X) . In Minkowski space–time, the 
Dirac equation is (i ̸� − m)� = 0 . In this equation,  � = �

�� �� 
and � ′� matrices are 4 × 4 matrices which satisfy the follow-
ing conditions [30–33]:

where the ��� is Minkowski metric.
In the ambient space formalism, one can write the mass-

less vector field, similar to other massless quantum field, 
in terms of the massless conformally coupled scalar field. 
The field operator is obtained in terms of annihilation d and 
creation d† operators as [16, 34]:

a†(�, �)�Ω⟩ ≡ ���1
a
�,�

�
, b†(�, �)�Ω⟩ ≡ ���1

b
�,�

�
.

(2.7)

{
a(𝜉�, 𝜎�), a†(𝜉, 𝜎)

}
= 𝛿3(𝜉 − 𝜉�)𝛿𝜎𝜎� ,{

b(𝜉�, 𝜎�), b†(𝜉, 𝜎)
}
= 𝛿3(𝜉 − 𝜉�)𝛿𝜎𝜎� .

Ψ(x) = lim
y→0

Ψ(z) = lim
y→0

Ψ(x + iy).

(2.8)Ψ̄(x)𝛾4
(
�̸⃖𝜕⊤ ̸x − 2 ∓ i𝜈

)
= 0 .

(2.9)
⟨Ω�Ψi(z1)Ψ̄j(z2)�Ω⟩ = i�ij(z1, z2)

=

c 1

2
,𝜈

2 ∫S3
d𝜇(𝜉)(z1.𝜉)

−2−i𝜈(z2.𝜉)
−2+i𝜈

�̸
𝜉𝛾4

�
ij
,

(2.10)�
���

�� + �
���

�� = 2��� , �
��† = �

�0�
���

�0,

(2.11)
A𝛼(x) = Nk ∫ d𝜇(𝜉)B

∑
n

[
d(𝜉, n)(Hx.𝜉)−2E2𝛼(x, 𝜉, n)

+ d†(𝜉, n)(Hx.𝜉)−1E1𝛼(x, 𝜉, n)
]
,
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where the Nk  is  the normalization constant , 
n = 0, 1, 2, 3 are the polarization states and the d�B(�) is 
d�(�)B = 2�2r3drd�(�) [16, 35]. Also E2� and E1� are polari-
zation vectors which are studied in [16, 34]. The commuta-
tion relation between creation and annihilation operators and 
their action on vacuum state �Ω⟩ are [34, 36, 37]:

The vector field operator can be written as two ”positive” 
and ”negative” parts as:

The null curvature limit of dS quantum operator of vector 
field in ambient space formalism is matched on Minkowski 
quantum vector field operator A�(X).

Scattering matrix in dS space–time

In ambient space formalism of dS space–time, the dS-Dirac 
field equation is invariant under U(1) global symmetry, but 
it is not invariant under the local U(1) symmetry. By chang-
ing the gauge covariant derivative D𝛼 = 𝜕⊤

𝛼
+ iqA𝛼 , with 

derivative 𝜕⊤
𝛼
, one can obtain dS-Dirac local gauge invari-

ant equation [38]. By applying this change in the free-field 
electromagnetic Lagrangian, the interaction Lagrangian can 
be obtained as [38]:

The q in the null curvature limit can be considered as the 
electric charge e. As it is seen, one can write:

In dS space–time, the time evolution operator, 
��, t⟩ = U(t, t0)��, t0⟩, is only defined in the static coordinate 
system:

�
d(𝜉�, n�), d†(𝜉, n)

�
= 𝛿s3(𝜉 − 𝜉�)𝛿nn� ,

d(𝜉, n)�Ω⟩ = 0 , d†(𝜉, n)�Ω⟩ = �1d
𝜉,n
⟩.

(2.12)A𝛼 = A
(+)

𝛼
+A

(−)

𝛼
;

⎧
⎪⎪⎨⎪⎪⎩

A
(+)

𝛼
(x) = Nk ∫ d𝜇(𝜉)B

�
n

d(𝜉, n)(Hx.𝜉)−2E2𝛼(x, 𝜉, n) ,

A
(−)

𝛼
(x) = Nk ∫ d𝜇(𝜉)B

�
n

d†(𝜉, n)(Hx.𝜉)−1E1𝛼(x, 𝜉, n) .

(3.1)
L0 = HΨ̄(x)𝛾4(−i ̸x ̸𝜕⊤ + 2i + 𝜈)Ψ(x),

Lint = qHΨ̄(x)𝛾4 x̸ A̸(x)Ψ(x).

Hint = −Lint = −qHΨ̄(x)𝛾4 x̸ A̸(x)Ψ(x) .

w h e r e  −∞ < t
s
< ∞ , 0 ≤ r < H

−1 , 0 ≤
𝜃 ≤ 𝜋 , 0 ≤ 𝜙 < 2𝜋  . This coordinate system does not cover 
all dS hyperboloids. The time evolution operator for a quan-
tum dS black hole was considered in this coordinate system 
[39]. But generally, in curved space–time, it is very com-
plicated or impossible to calculate the S-matrix elements 
in dS space due to the event horizon [39–41]. In this work, 
because of the occurrence of interaction in atomic dimen-

sion, we can ignore the direct effect of curvature in this 
dimension but the indirect effect of curvature exists. In this 
approximation, the time evolution operator can be expanded 
in terms of Minkowskian counterpart:

The UM , in the null curvature limit, is exactly the Minkowski 
time evolution operator but the term f (t, t0) is due to the 
direct effect of curvature. Given that the interaction is in 
atomic level, one can ignore the f (t, t0) . Although it is very 
difficult to calculate the scattering matrix in curved space, in 
atomic interaction approximation, the S matrix can be pre-
sented in the following approximate equation to calculate the 
indirect effect of curvature corrections from the Minkowski 
counterpart [8, 9]:

Therefore, by inserting (3.1) in (3.2) for � = 3 and by writing 
the matrices in terms of their components, the S(3) is:

x� ≡ �√
H−2 − r2 sinhHts ,

√
H−2 − r2 coshHts ,

r cos � , r sin � cos� , r sin � sin�),

U(t, t0) = UM(t, t0) + Hf (t, t0) + ... .

(3.2)

S ≃

∞∑
�=0

S
(�)
,

S
(�) =

(−i)�

�! ∫ d
4
x1 ⋯∫ d

4
x� T

[
Hint(x1) ⋯ Hint(x�)

]
.

(3.3)

S
(3) =

i

6ℏ3 ∫ ∫ ∫ d𝜇(x1)d𝜇(x2)d𝜇(x3)T
[
H(x1)H(x2)H(x3)

]

= −
iq3

6ℏ3 ∫ ∫ ∫ d𝜇(x1)d𝜇(x2)d𝜇(x3) T
[
Ψ̄i(x1)

(
𝛾4 H x̸1

)
il
A̸lj(x1)Ψj(x1)

× Ψ̄i� (x2)
(
𝛾4 H x̸2

)
i�l�

A̸l�j� (x2)Ψ
�
j
(x2) Ψ̄i�� (x3)

(
𝛾4 H x̸3

)
i��l��

A̸l��j�� (x3)Ψj�� (x3)
]
.



386 Journal of Theoretical and Applied Physics (2019) 13:383–389

1 3

By using Wick theorem, one can write the time-order prod-
uct in terms of normal-order product. The time-order prod-
uct becomes to 76 normal-order products, but only two 
terms describe interactions � → � � + � �� and � � + � �� → � . 
Therefore, by noticing (2.9), the S(3)

(�→� �+� �� , � �+� ��→�)
 is:

Two terms of (3.4) describe the diagrams with counterclock-
wise and anticlockwise spinor loops shown in Fig. 1.

The second term in (3.4) by exchanging x1 and x2 becomes 
the first term, so one can consider one of them. Therefore,

By separating the A̸ to positive and negative parts (2.12), 
one can obtain the N

[
 Alj(x1)  Al�j� (x2)  Al��j�� (x3)

]
 as:

Here, two first terms are unphysical and three terms in the 
second line represent the interaction � � + � �� ⟶ � and also 
three terms in the third line represent the interaction 
� ⟶ � � + � �� . Given that the three terms in the second line 
are equivalent, the contribution of them in calculations is the 
same. Thus, by using (2.12), the S(3)

�⟶� �+� ��
 is obtained as:

(3.4)

S
(3)

(𝛾→𝛾 �+𝛾 �� , 𝛾 �+𝛾 ��→𝛾)

= −
q3

6ℏ3 ∫ ∫ ∫ d𝜇(x1)d𝜇(x2)d𝜇(x3)N
[
A̸lj(x1) A̸l� j� (x2) A̸l�� j�� (x3)

]

×
{(

𝛾4H x̸1
)
il
�ji� (x1, x2)

(
𝛾4H x̸2

)
i� l�
�j� i�� (x2, x3)

(
𝛾4H x̸3

)
i�� l��

�j�� i(x3, x1)

+
(
𝛾4H x̸1

)
il
�ji�� (x1, x3)

(
𝛾4H x̸3

)
i�� l��

�j�� i� (x3, x2)
(
𝛾4Hx̸2

)
i� l�
�j� i(x2, x1)

}
,

S
(3)

(𝛾→𝛾 �+𝛾 �� , 𝛾 �+𝛾 ��→𝛾)

= −
q3

3ℏ3 ∫ ∫ ∫ d𝜇(x1)d𝜇(x2)d𝜇(x3)N
[
A̸lj(x1) A̸l�j� (x2) A̸l��j�� (x3)

]

×
{(

𝛾4H x̸1
)
il
�ji� (x1, x2)

(
𝛾4H x̸2

)
i�l�
�j�i�� (x2, x3)

(
𝛾4H x̸3

)
i��l��

�j��i(x3, x1)
}
.

(3.5)

N
[
 Alj(x1)  Al�j� (x2)  Al��j�� (x3)

]

= A
(+)

lj
(x1)  A

(+)

l�j�
(x2)  A

(+)

l��j��
(x3)+  A

(−)

lj
(x1)  A

(−)

l�j�
(x2)  A

(−)

l��j��
(x3)

+  A
(+)

lj
(x1)  A

(+)

l�j�
(x2)  A

(−)

l��j��
(x3)

+  A
(+)

lj
(x1)  A

(+)

l��j��
(x3)  A

(−)

l�j�
(x2)+  A

(+)

l�j�
(x2)  A

(+)

l��j��
(x3)  A

(−)

lj
(x1)

+  A
(+)

lj
(x1)  A

(−)

l�j�
(x2)  A

(−)

l��j��
(x3)+  A

(+)

l�j�
(x2)  A

(−)

lj
(x1)  A

(−)

l��j��
(x3)

+  A
(+)

l��j��
(x3)  A

(−)

lj
(x1)  A

(−)

l�j�
(x2).

where

In (3.6), one can write the �(x, x�) as (2.9) or in terms of 
generalized Legendre function [22] and then calculate the 
(3.6) by numerical methods. These calculations may open 

the door to measuring the gravitational effects on quantum 
fields which can be measured in the laboratory scale of 
energy. We postpone this direct calculation to next works, 
and in this work, we calculate only the null curvature limit 
of (3.6) for comparing with Minkowski results.

Scattering matrix in null curvature limit

In flat space–time, the interaction Hamiltonian between 
the electromagnetic field and spinor field is Hint = e�̄� A̸𝜓 
[30–33, 42]. The S-matrix for � = 3 in Minkowski space is:

S
(3)

(�→� �+� ��)

= i∫ ∫ ∫ d�(�
k
)d�(�

k�
)d�(�

k��
)

∑
r

∑
r�

∑
r��

�dS
a
r(k)a†r

�

(k�)a†r
��

(k��) ,

(3.6)

𝜒dS =
iq3

ℏ3
NkNk�Nk��

∫ ∫ ∫ d𝜇(x1)d𝜇(x2)d𝜇(x3)
(
Hx1 ⋅ 𝜉k

)−2(
Hx2 ⋅ 𝜉k�

)−1(
Hx3 ⋅ 𝜉k��

)−1

× Tr
{
𝛾4 H x̸1 E̸2 �(x1, x2) 𝛾

4 H x̸2 E̸1 �(x2, x3) 𝛾
4 H x̸3 E̸1 �(x3, x1)

}
.

(4.1)
S
(3) =

i

3! ∫ d
4
X1 ∫ d

4
X2 ∫ d

4
X3 T

[
Hint(X1) Hint(X2) Hint(X3)

]

=
ie

3

6 ∫ d
4
x1 ∫ d

4
X2 ∫ d

4
X3 T

[
(�̄� A̸𝜓)

X1
(�̄� A̸𝜓)

X2
(�̄� A̸𝜓)

X3

]
.

Fig. 1  Interaction of three pho-
tons diagrams
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By using Wick theorem and definition of spinor two-point 
function [30], similar to that came in Section III, the S(3) for 
interaction of three photons is:

As it is seen, these two terms are the same and similar to 
the previous section one can consider only one of them. So 
by using vector field operator, spinor two-point function 
[30–33, 42] and delta function definition in flat space–time, 
after some mathematical calculations, the S(3) for interaction (
� ⟶ � � + � ��

)
 is obtained as follows:

where

Given that the trace of odd number of gamma matrices is 
zero, with respect to the Delta function property, one can 
obtain this relation:

(4.2)

S
(3)

(𝛾→𝛾 �+𝛾 �� , 𝛾 �+𝛾 ��→𝛾)

= S
(3)

a
+ S

(3)

b
= −

e3

6ℏ3 ∫ d
4X1 ∫ d

4x2 ∫ d
4X3

×
{
N
[
A̸(X1) S(X1,X2) A̸(X2) S(X2,X3) A̸(X3) S(X3,X1)

]
+ N

[
A̸(X1) S(X1,X3) A̸(X3) S(X3,X2) A̸(X2) S(X2,X1)

]}
.

S
(3)

(�⟶� �+� ��)
=i∫ d

3
k ∫ d

3
k
� ∫ d

3
k
��

∑
r

∑
r�

∑
r��

� d
r(k)d†r

�

(k�)d†r
��

(k��),

(4.3)

� = −ie3NkNk�Nk�� ∫ d
4p∫ d

4p� ∫ d
4p�� �4(p�

− p + k)�4(p�� − k� − p�)�4(p − p�� − k��)

×

{
Tr
[
(̸p + m) ̸�(r)(k)(̸p� + m) ̸�(r

�)(k�)(̸p�� + m) ̸�(r
��)(k��)

]
(p2 − m2 + i�)(p�2 − m2 + i�)(p��2 − m2 + i�)

}
.

(4.4)

� = −ie3NkNk�Nk�� �4(k

− k� − k��) ∫ d
4p

1

[p2 − m2 + i�][(p − k)2 − m2 + i�][(p − k��)2 − m2 + i�]

×
{
Tr[̸p ̸� ̸p ̸�

�

̸p̸�
��

] − Tr[̸p ̸� ̸p ̸�
�

̸k
��

̸�
��

]

− Tr[̸p ̸� ̸k ̸�
�

̸p̸�
��

] + Tr[̸p ̸� ̸k ̸�
�

̸k
��

̸�
��

]

+ m2Tr[̸p̸� ̸�
�

̸�
��

]

+ m2Tr[̸� ̸p̸�
�

̸�
��

] + m2Tr[̸� ̸�
�

̸p̸�
��

]

−m2Tr[̸� ̸k ̸�
�

̸�
��

] − m2Tr[̸� ̸�
�

̸k
��

̸�
��

]
}
,

where � ≡ �(r) , �� ≡ �(r
�) , ��� ≡ �(r

��). The energy of outgo-
ing photons is the same, and it is equal to half the energy 
of incoming photons, k�

0
= k��

0
=

1

2
k0 . By attention to k2 = 0 

and by supposing that the direction of outgoing photons is 
the same for simplicity, one can obtain:

After some mathematical calculations, the constant � is 
obtained as [43]:

where the � = 0.5772157 is Euler’s constant and one can 
write � = −Γ(0) − limn→0(n) [44]. It is clear that the coef-
ficient � also depends on the energy momentum and the 
polarization states of the photons.

Null curvature limit

The dS manifold is a hyperboloid with radius H−1 . For large 
radius, or equivalently H → 0 , the curvature of space–time 
vanishes so the H → 0 limit is called null curvature limit. 
In this limit, dS space–time matches with Minkowski 
space–time. The following coordinate system is useful in 
calculating the null curvature limit:

where || �⃗X|| = (X2

1
+ X2

2
+ X2

3
)
1

2 . By using this coordinate 
system, it is easy to show that the dS flat waves of massive 
fields (x ⋅ �)−2±i� , (x ⋅ �)−1±i� or (x ⋅ �)

3

2
±i� in null curvature 

limit reduce to Minkowski flat wave e±ik⋅X [16]. Also for 
massless vector fields, the dS flat wave (x ⋅ �)−2 or (x ⋅ �)−1 
can be mapped to intrinsic coordinate and then it can be 
shown that the null curvature limit of them matches with 
their Minkowskian counterparts [16, 34]. Also, one can 
show that [16]:

For dS massless vector field, one can show that the polariza-
tion states are [16, 34]:

(4.5)�⃗k� = �⃗k�� =
1

2
�⃗k, ⟶ k

�𝜇 = k
��𝜇 =

1

2
k𝜇 .

(4.6)

� =
2

3
�2e3 (� − 1) �4(k − k�

− k��) NkNk�Nk��

[(
k ⋅ ��

)(
� ⋅ ���

)
−
(
k ⋅ ���

)(
� ⋅ ��

)]
,

x
𝛼 ≡

(
H

−1 sinh(HX0) ,
�⃗X

H|| �⃗X||
cosh(HX0) sinh(H|| �⃗X||) ,

H
−1 cosh(HX0) cosh(H|| �⃗X||)

)
,

lim
H→0

H  x = lim
H→0

H����
�x� = −�4 .
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where � = 0, 1, 2, 3 and �(n)
�

 is the polarization of massless 
vector field in Minkowski space–time. By attention to Dirac 
equation for spinor (2.5) and adjoint spinor (2.8), one can 
see that the null curvature limits of Ψ and Ψ̄ are:

Thus, by attention to (5.1) and (2.9), one can obtain:

Therefore, one can obtain the null curvature limit of �dS as:

By using (2.4) and Fourier transformation of spinor two-
point function S(X,X�) , and also by attention to that 
�4�4 = −I , one can obtain:

where,  � = ���
�� . After some mathematical calculations, the 

lim
H→0

�dS is obtained as:

As it seen, the null curvature limit of S(3)

�→� �+� ��
 is matched on 

Minkowski result (4.3) exactly.

Conclusion

A photon decaying to two photons in dS ambient space 
formalism is investigated, and its S-matrix elements are 
obtained in the first approximation. Indirect gravitational 
effect appears in this S-matrix elements from the two-point 

lim
H→0

E2�(x, �, n) = lim
H→0

E1�(x, �, n) = �(n)
�

,

(5.1)lim
H→0

Ψ(x) = 𝜓(X) , lim
H→0

Ψ̄(x)𝛾4 = �̄�(X).

(5.2)

lim
H→0

�(x1, x2) = −i lim
H→0

⟨Ω�Ψ(x1) Ψ̄(x2)�Ω⟩
= i⟨0� 𝜓(X1) �̄�(X2)𝛾

4 �0⟩ = −S(X1,X2)𝛾
4.

lim
H→0

𝜒dS = −
iq3

ℏ3
NkNk�Nk��

∫ ∫ ∫ d
4X1d

4X2d
4X3e

−ik⋅X1e−ik
�
⋅X2e−ik

��
⋅X3

× Tr
{
𝛾4
(
−𝛾4

)
𝜖𝜇𝛾

𝜇
(
S(X1,X2)𝛾

4
)

𝛾4
(
−𝛾4

)
𝜖𝜈𝛾𝜈

(
S(X2,X3)𝛾

4
)
𝛾4
(
−𝛾4

)
𝜖𝜆𝛾

𝜆
(
S(X3,X1)𝛾

4
)}

,

lim
H→0

𝜒dS =
1

(2𝜋)12
iq3

ℏ3
NkNk�Nk�� ∫ ∫ ∫ d

4p d
4p�d4p��

Tr
[
�̸�(̸p + m) �̸�

�(
̸p� + m

)
�̸�

��(
̸p�� + m

)]
(
p2 − m2 + i𝜏

)(
p�2 − m2 + i𝜏

)(
p��2 − m2 + i𝜏

)

× ∫ ∫ ∫ d
4X1d

4X2d
4X3

{
e−ik⋅X1eik

�
⋅X2eik

��
⋅X3e−ip⋅(X1−X2)e−ip

�
⋅(X2−X3)e−ip

��
⋅(X3−X1)

}
,

lim
H→0

𝜒dS =
iq3

ℏ3
NkNk�Nk��𝛿

4(k − k� − k��)

× ∫ d
4p��

Tr
[
(̸p + m) �̸�(̸p− ̸k + m) �̸�

� (̸
p− ̸k�� + m

)
�̸�

�� ]
(
p2 − m2 + i𝜏

)(
(p − k)2 − m2 + i𝜏

)(
(p − k��)2 − m2 + i𝜏𝜏

) .

functions and the polarization vectors. This gravitational 
effect can be calculated explicitly by numerical methods 
which may be done in the next work. It was shown that the 
S-matrix elements in the null curvature limit exactly reduce 
to the Minkowskian counterparts.

The Hamiltonian interaction of three photons was 
obtained from quantum field theory approach. The inter-
action constant � is approximately obtained theoretically. 
This constant depends on the energy momentum and the 
polarization states of photons. These photons interact with 
electrons of the spinor loop or virtual electrons which appear 
in the quantum vacuum fluctuations. It should be noted that 
these electrons are not those of the matter or crystal, these 
are electrons that create and annihilate in quantum vacuum 
fluctuations that interact with the real photons. These results 
are obtained for one incoming photon ,and we ignore the 
bulk effects. The bulk effects could be investigated in the 
next works.
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