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Abstract
In this work, the charged black hole solution to the Brans–Dicke gravity theory in the presence of the nonlinear elec-

trodynamics has been investigated. To simplify the field equations, a conformal transformation has been introduced which

transforms the Brans–Dicke–Born–Infeld Lagrangian to that of Einstein-dilaton–Born–Infeld theory. A new class of

ðnþ 1Þ-dimensional black hole solution has been constructed out as the exact solution to the Brans–Dicke theory in the

presence of the Born–Infeld nonlinear electrodynamics. The physical properties of the solutions have been studied. The

black hole charge and temperature have been calculated making use of the Gauss’s law and the concept of surface gravity,

respectively. Also, the black hole mass and entropy have been obtained from geometrical methods. Trough a Smarr-type

mass formula as a function of the black hole charge and entropy the black hole temperature and electric potential, as the

intensive parameters conjugate to the black hole entropy and charge, have been calculated. The consistency of results of the

geometrical and thermodynamical approaches confirms the validity of the first law of black hole thermodynamics for this

new black hole solution. Finally, making use of the ensemble canonical method, the local stability or phase transition of the

new ðnþ 1Þ-dimensional Brans–Dicke–Born–Infeld black hole solution has been analyzed.

Keywords Brans–Dicke modified gravity theory � Charged black holes � Born–Infeld electrodynamics � Higher-dimensional

black holes

Introduction

Brans–Dicke (BD) theory of gravity [1] is the simplest

modification of general relativity in which gravity is

described by a metric glm and a scalar W whose inverse

plays the role of Newtonian constant of gravity. In addi-

tion, there is a parameter denoted by x, which represents

the strength of scalar–tensor coupling. The BD theory

passed a large value of experimental and theoretical tests

successfully and can be used to explain some physical

phenomena such as inflation [2], the cosmological constant

problem [3] and dark energy [4]. The first black hole

solutions of BD theory have been obtained by Brans in

1962 [5]. These solutions were four-dimensional and

presented in four classes. Because of the coupling between

scalar field and curvature, higher-dimensional BD field

equations are too difficult to be solved directly. Fortu-

nately, as it is shown by many authors, there is a conformal

transformation which transforms the BD Lagrangian to that

of Einstein-dilaton theory. The Conformal transformation

is an interesting characteristic of the scalar–tensor theories

such as BD theory [6]. Using conformal transformation

enables us to solve BD field equations in a simpler. For

instance, we obtained charged rotating black branes in

Brans–Dicke–Born–Infeld (BDBI) theory by applying a

conformal transformation [7].

The appearance of an infinite self-energy for a point-like

charge at the charge position is one of the main problems of

the classical Maxwell theory. Although this divergence can

be removed in quantum electrodynamics, it still is a

problem in the classical electrodynamics. Born and Infeld

introduced a new Lagrangian to overcome this problem [8].

In addition to the Born–Infeld nonlinear electrodynamics,

other types of nonlinear electrodynamic fields such as the
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logarithmic, the exponential, and the power law Maxwell

field have received more attention [9–12]. These theories

are richer than linear electrodynamics and can reduce to

linear Maxwell theory. In addition, several authors have

studied cosmological models, including nonlinear electro-

dynamic fields [13–18]. Some authors have found charged

black hole and black brane solutions coupled to nonlinear

electrodynamics [19–26]. The thermal stability of the black

hole solutions in the presence of the linear and nonlinear

electrodynamics have been analyzed in [27–31]. So far,

exact charged spherical solutions of BD theory coupled to

Born–Infeld field have not been obtained. In the present

paper firstly, we introduce the action of BD theory with the

nonlinear Born–Infeld field and find the field equations.

Then, we construct charged black hole solutions in higher-

dimensional BD theory with the nonlinear Born–Infeld

field and investigate their properties.

The outline of this paper is as follows: The basic field

equations and conformal transformations between the

Einstein-dilaton theory and the BD theory are presented in

Sect. 2. Spherically symmetric higher-dimensional exact

solutions to the BDBI theory are obtained in Sect. 3. The

physical properties of the obtained solutions are investi-

gated in Sect. 4. Thermodynamics of the BD black hole

solution is studied in Sect. 5 and validity of the first law of

black hole thermodynamics is investigated. A thermal

stability analysis or phase transition is performed in Sect. 6.

Conclusions are presented in the last section.

Basic equations and conformal
transformation

The action of the ðnþ 1Þ-dimensional BD gravitational

theory in the presence of nonlinear electrodynamics can be

written as

IBD ¼ � 1

16p

Z
dnþ1x

ffiffiffiffiffiffiffi�g
p

WR� UðWÞ � x
W
glmrlWrmWþ LðFÞ

� �
;

ð1Þ

where R is the Ricci scalar, W denotes the BD scalar field,

and UðWÞ is a potential for the scalar field W. The

parameter x is the scalar–tensor coupling constant. L(F) is

the Born–Infeld nonlinear electrodynamics and is given by

LðFÞ ¼ 2c 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ FlmFlm

c

s !
: ð2Þ

Here, Flm denotes the electromagnetic tensor and c is the

parameter of nonlinearity. It is well known that for large

values of c ! 1, L(F) reduces to Maxwell’s theory of

electrodynamics and in the limit c ! 0, LðFÞ ! 0. By

varying the action (1) with respect to the gravitational,

scalar and the gauge fields, we get the following coupled

field equations as

Rlm �
1

2
glmR ¼ x

W2
rlWrmW
�

� 1

2
glmðrWÞ2

�
� UðWÞ

2W
glm þ

1

W
rlrmW� glmr2W
� �

þ 2

W
1

4
glm 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ FlmFlm

c

s !
þ FlkF

k
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ FlmFlm

c

q
2
64

3
75;

ð3Þ

r2W ¼ 2

n� 1ð Þxþ n½ �
FlmF

lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ FlmFlm

c

q þ nþ 1ð Þ
n� 1ð Þxþ n½ �

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ FlmFlm

c

s !
þ 1

2 n� 1ð Þxþ nÞ½ �

ðn� 1ÞU dUðWÞ
dW

� nþ 1ð ÞUðWÞ
� 	

;

ð4Þ

rl
Flmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ FlmFlm

c

q
2
64

3
75 ¼ 0; ð5Þ

The appearance of the second order derivatives in the

Eq. (3) makes the field equations too difficult to be solved,

directly. Therefore, we propose the following conformal

transformations

glm ¼ X2~glm;

~W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðxþ 1Þ � x

p
2

lnW;

c ¼ ~c exp
8a ~W
n� 3

 !
;

ð6Þ

with X ¼ W� 1
n�1 in the BD action (1). By using these

conformal transformations, the action (1) transforms to the

following action

~IED ¼ � 1

16p

Z
dnþ1x

ffiffiffiffiffiffiffi
�~g

p

~R� ~Uð ~WÞ � 4

n� 1
~glm erl

~W erm
~Wþ ~Lð ~F; ~WÞ


 �
;

ð7Þ

which is the action of Einstein-dilaton gravity with the

Born–Infeld electrodynamic field [32], provided that the

following relation are fulfilled

x ¼ 1

n� 1

ðn� 3Þ2

4a2
� n

 !
; ð8Þ

In action (7) ~R is the Ricci scalar and er is the covariant
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differentiation with respect to the metric ~glm. The param-

eter a is the coupling constant between the scalar and

electromagnetic field. The transformed nonlinear field

~Lð ~F; ~WÞ and ~Uð ~WÞ are given by

~Lð ~F; ~WÞ ¼ 2~ce4a ~W=ðn�1Þ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ e�8a ~W=ðn�1Þ ~Flm ~F

lm

~c

s0
@

1
A;

ð9Þ

~Uð ~WÞ ¼ UðWÞW� nþ1
n�1ð Þ: ð10Þ

By varying the action (7) with respect to ~glm, ~W, and ~Al, we

get the following coupled field equations as

~Rlm ¼
4

n� 1
erl

~W erm
~Wþ 1

4
~U~glm


 �

þ 2e�4a ~W=ðn�1Þ 1 þ e�8a ~W=ðn�1Þ ~Flm ~F
lm

~c

 !�1=2

~Flg ~F
g
m

þ 2c
n� 1

e4a ~W=ðn�1Þ 1 þ e�8a ~W=ðn�1Þ ~Flm ~F
lm

~c

 !�1=2

�1

2
4

3
5~glm;

ð11Þ

er 2 ~W ¼ n� 1

8

o ~U

o ~W
þ ~cae4a ~W=ðn�1Þ

1 þ e�8a ~W=ðn�1Þ ~Flm ~F
lm

~c

 !�1=2

�1

2
4

3
5;

ð12Þ

erl
e�4a ~W=ðn�1Þ ~F

lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ e�8a ~W=ðn�1Þ ~Flm ~F

lm

~c

q
2
64

3
75 ¼ 0: ð13Þ

Here, we are interested on the charged spherically sym-

metric solutions of Eqs. (3)–(5). Since the field Eq. (11)

does not contain second order derivatives of scalar field W,

the field Eqs. (11)–(13) can be solved in a simpler way.

These solutions are obtained in [33]. In the next section

first, we review these solutions then by using the conformal

transformations (6) the solutions of Eqs. (3)–(5) are

obtained.

Spherically symmetric solutions in (n+1Þ-
dimensions

As we mentioned before, we cannot obtain the solutions of

BDBI gravity directly. In order to find the spherically

symmetric solutions of BDBI gravity in ðnþ 1Þ-dimen-

sions, we use the conformal transformations introduced in

Eq. (6). To do so, we should obtain the conformal solutions

of BDBI, the so-called Einstein-dilaton–Born–Infeld solu-

tions. Such solutions have been presented in Ref. [33] and

we shall give a brief review, here. The general form of a

ðnþ 1Þ-dimensional spherically symmetric metric can be

written as

d~s2 ¼ �WðrÞdt2 þ dr2

WðrÞ þ r2 ~H
2ðrÞdX2

n�1; ð14Þ

where dX2
n�1 is the metric of a unit ðn� 1Þ sphere. In [33],

a Liouville-type potential as the solution to the scalar field

Eq. (12) has been introduced in the following form

~Uð ~WÞ ¼ 2Ke2g ~W þ ðn� 1Þðn� 2Þa2

c2ða2 � 1Þ e2g0
~W; ð15Þ

with

g0 ¼ 2

ðn� 1Þa ; g ¼ 2a
ðn� 1Þ : ð16Þ

Also, this type of potential was studied in Einstein–Max-

well-dilaton gravity, previously [34, 35] and Born–Infeld–

Dilaton black holes [36]. The solutions for the field

Eqs. (11) and (12) are [33]

WðrÞ ¼ � n� 2ð Þ a2 þ 1ð Þ2

a2 � 1ð Þ nþ a2 � 2ð Þ
r

c

� �2b
� m

rðn�1Þð1�bÞ�1

þ 2ðK� ~cÞ a2 þ 1ð Þ2
c2

ðn� 1Þða2 � nÞ
c

r

� �2b�2

� 2~cða2 þ 1Þ2
c2

ðn� 1Þða2 � nÞ
c

r

� �2b�2

� 2F1 � 1

2
;

a2�1

2ðn� 1Þ�
1

2

� 	
;

a2�1

2ðn� 1Þþ
1

2

� 	
;
�2q2

~cc2ðn�1Þ




r

c

� �2ðn�1Þðb�1Þ
Þ;

ð17Þ

~WðrÞ ¼ ðn� 1Þb
2a

ln
c

r

� �
; ð18Þ

~HðrÞ ¼ c

r

� �b
; ð19Þ

~Ftr ¼
qe

4a ~W
n�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r ~HðrÞ
� �2n�2þ2q2

~c

q ; ð20Þ

where q and m are two integration constants and

b ¼ a2=ða2 þ 1Þ. It is notable to mention that these solu-

tions are ill-defined for a ¼ 1;
ffiffiffi
n

p
. Using the mentioned

conformal transformation (6) and Eq. (8), the (nþ 1)-di-

mensional charged spherical solutions of BDBI gravity for

ðn� 4Þ can be obtained as

ds2 ¼ X2d~s2 ¼ �AðrÞdt2 þ dr2

BðrÞ þ r2H2ðrÞdX2
n�1; ð21Þ

where A(r), B(r), WðrÞ, and H(r) are
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AðrÞ ¼ c

r

� ��!
WðrÞ

¼ � n� 2ð Þ a2 þ 1ð Þ2

a2 � 1ð Þ nþ a2 � 2ð Þ
r

c

� �2bþ!
� mc�!

r�!þðn�1Þð1�bÞ�1

þ 2Kc2 a2 þ 1ð Þ2

ðn� 1Þða2 � nÞ
r

c

� �2ð1�bÞþ!
þ 2cða2 þ 1Þ2

ðn� 1Þða2 � nÞ
r

c

� �2ð1�bÞþn!

� 1 �2 F1 � 1

2
;

a2 � n

2n� 2

� 	
;
a2 þ n� 2

2n� 2

� 	
;�f


 �
 �
;

ð22Þ

BðrÞ ¼ c

r

� �!
WðrÞ

¼ � n� 2ð Þ a2 þ 1ð Þ2

a2 � 1ð Þ nþ a2 � 2ð Þ
r

c

� �2b�!
� mc!

r!þðn�1Þð1�bÞ�1

þ 2Kc2ða2 þ 1Þ2

ðn� 1Þða2 � nÞ
r

c

� �2ð1�bÞ�!
þ 2cða2 þ 1Þ2

ðn� 1Þða2 � nÞ
r

c

� �2ð1�bÞþðn�2Þ!

� 1 � 2F1 � 1

2
;

a2 � n

2n� 2

� 	
;
a2 þ n� 2

2n� 2

� 	
;�f


 �
 �
;

ð23Þ

WðrÞ ¼ c

r

� �ðn�1Þ!=2

; ð24Þ

HðrÞ ¼ c

r

� �b�!=2

; ð25Þ

where ! ¼ 4b=ðn� 3Þ and

f ¼ 2q2

cr2ðn�1Þ
r

c

� � n�1ð Þ 2b�!ð Þ
: ð26Þ

Under the conformal transformations (6), the electric field

(20) and the scalar potential (15) become

Ftr ¼
qcð3�nÞb

rðn�3Þð1�bÞþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2q2c2ð3�nÞb

cr2ððn�3Þð1�bÞþ2Þ

q ; ð27Þ

UðWÞ ¼ 2KW2 þ ðn� 1Þðn� 2Þ
c2

a2

a2 � 1


 �
W

ðnþ1Þþðn�3Þa2

n�1 :

ð28Þ

It is worth to note that these solutions are valid only for the

space times with dimensions equal or more than five (i.e.,

n� 4) and do not exist for a ¼ 1;
ffiffiffi
n

p
. One may note that as

c goes to infinity, these solutions reduce to the solutions of

Brans–Dicke–Maxwell gravity [37].

Physical properties of the solutions

In order to investigate the physical properties of the solu-

tions, we first study the behavior of the electric field. The

behavior of the electric field versus r for different values of

the parameter c has plotted in Fig. 1. From this figure, it is

clear that the electric field goes to zero for large r irre-

spective of the other parameters q, c and b and has a finite

value at r ¼ 0 in contrast to Maxwell electrodynamics. We

also notice that with increasing c, the electric field

increases as r ! 0. This result can be expected because for

large c our theory reduces to the Brans–Dicke–Maxwell

theory [37].

Next, we look for the curvature singularities. After some

calculation, we find that the Ricci scalar, R, and the

Kretschmann scalar RlmkgR
lmkg, are finite for r 6¼ 0 and

diverge at r ¼ 0

lim
r!0þ

R ¼ 1; lim
r!0þ

RlmkgR
lmkg ¼ 1: ð29Þ

These indicate that the spacetime has an essential singu-

larity located at r ¼ 0. In order to have a better under-

standing of the behavior of our solutions, we expand the

metric function (22) for large r. We find

lim
r!1

AðrÞ ¼ � n� 2ð Þ a2 þ 1ð Þ2

a2 � 1ð Þ nþ a2 � 2ð Þ
r

c

� �2bþ!

þ 2Kc2ða2 þ 1Þ2

ðn� 1Þða2 � nÞ
r

c

� �2ð1�bÞ�!
:

ð30Þ

It is notable that as x ! 1 ða ¼ b ¼ 0Þ and c ! 1,

solutions (22) and (23) reduce to

AðrÞ ¼ BðrÞ ¼ 1 � m

rn�2
� 2Kr2

nðn� 1Þ þ
2q2

ðn� 1Þðn� 2Þr2ðn�2Þ ;

ð31Þ

which has the form of static and spherically symmetric

Reissner–Nordstrom black hole in (A)dS spacetime. In the

absence of scalar field as r goes to infinity, the metric

function (31) takes the following form

Fig. 1 E(r) versus r for n ¼ 4, a ¼ 0:4, c ¼ 1 and q ¼ 2
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lim
r!1

AðrÞ ¼ 1 � 2Kr2

nðn� 1Þ ;
ð32Þ

which describes an asymptotically flat, dS or AdS space-

times for K ¼ 0, K[ 0 and K\0, respectively. Never-

theless, as one can notice from Eq. (30), in the presence of

the scalar field, our solutions are neither asymptotically flat

nor (A)dS. For example, taking a ¼
ffiffiffi
3

p
, n ¼ 5, and c ¼ 1,

we obtain

lim
r!1

AðrÞ ¼ � 16

5
r9=2 � 32K

15
r7=2; ð33Þ

which indicates that the metric function (22) is neither

asymptotically flat nor dS or AdS. After calculation of the

Ricci scalar in ðnþ 1Þ dimensions for large values of r, we

obtain

R / K
c

r

� �b nþ2
n�2ð Þ

; ð34Þ

which does not have the same form of the Ricci scalar for

asymptotically dS or AdS spacetime. The horizons of

spacetime can be obtained by solving the relation

BðrþÞ ¼ 0,

� n� 2ð Þ a2 þ 1ð Þ2

a2 � 1ð Þ nþ a2 � 2ð Þ
rþ
c

� �2b�!
� mc!

r
!þðn�1Þð1�bÞ�1
þ

þ 2Kc2ða2 þ 1Þ2

ðn� 1Þða2 � nÞ
rþ
c

� �2ð1�bÞ�!
þ 2cða2 þ 1Þ2

ðn� 1Þða2 � nÞ
rþ
c

� �2ð1�bÞþðn�2Þ!

� 1 � 2F1 � 1

2
;

a2 � n

2n� 2

� 	
;
a2 þ n� 2

2n� 2

� 	
;�fþ


 �
 �
¼ 0;

ð35Þ

unfortunately, Eq. (23) is more complicated to be solved

for an arbitrary value of a. Thus, we have plotted the

function of B(r) versus r in Figs. 2, 3 and 4. For simplicity,

the other metric parameters a, c, c and q have kept fixed.

As it is clear from Fig. 4, we notice that the number of

horizons decreases with increasing the value of a. In fact,

in the case of a\
ffiffiffi
n

p
, one encounters with two horizons,

extreme black holes and naked singularities depending on

the values of the parameters such as a, c, m and q.

Some information can be obtained by calculating of the

mass parameter m as a function of the horizon radius rh

mðrhÞ ¼ � n� 2ð Þ a2 þ 1ð Þ2
c�2b

a2 � 1ð Þ nþ a2 � 2ð Þr
bð3�nÞþn�2
h

þ 2K a2 þ 1ð Þ2
c2b

ðn� 1Þða2 � nÞ r
n�bðnþ1Þ
h

þ 2cða2 þ 1Þ2
c�2b nþ1

n�3ð Þ
ðn� 1Þða2 � nÞ r

n�bðnþ1Þ�4b n�1
n�3ð Þ

h

� 1 �2 F1 � 1

2
;

a2�1

2ðn� 1Þ�
1

2

� 	
;

a2�1

2ðn� 1Þþ
1

2

� 	
;�fh


 �
 �
;

ð36Þ

which comes from this fact that BðrhÞ ¼ 0. We plot in

Figs. 5 and 6 the mass parameter m versus rh for a fixed

value of other parameters. These figures show that the

intersections of the curve mðrhÞ with the line m ¼ constant

determines the number of black hole horizons. For some

certain value of the mass parameter m, there are two inner

and outer horizons (r� and rþ). There is also a minimum

value mext in which the two horizons meet. It is the solution

of BðrÞ ¼ B
0 ðrÞ ¼ 0

Fig. 2 B(r) versus r for n ¼ 4, a ¼ 0:5, c ¼ 1, K ¼ � 6 and q ¼ 1

Fig. 3 B(r) versus r for n ¼ 4, a ¼ 0:5, c ¼ 1, K ¼ � 6 and m ¼ 1
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mext ¼
2ðn� 2Þða2 þ 1Þ2

c�2b

ðn� a2Þðnþ a2 � 2Þ r
ðn�2Þð1�bÞþb
ext

þ 4q2ða2 þ 1Þ2
c2ð2�nÞb

ðn� a2Þðnþ a2 � 2Þ r
ðn�3Þðb�1Þ�1
ext

� 2F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

� 	
;

a2�1

2ðn� 1Þþ
3

2

� 	
;�fext


 �
:

ð37Þ

Depending on the value of m, there are three cases to

consider separately. In the first case where m[mext, the

metric of (21) has two inner and outer horizons ðr� and

rþÞ. In the case of m ¼ mext, we have an extreme black

hole and a naked singularity provided m\mext.

Thermodynamics of Brans–Dicke black holes

In this section, we want to calculate the conserved and

thermodynamic quantities of the BD black hole solutions

with Born–Infeld field we just found. At first, it must be

noted that the Hawking temperature on the outer horizon

r ¼ rþ, is defined in terms of the surface gravity,

T ¼ j
2p

; ð38Þ

where the surface gravity j is given by

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2
rlvm
� �

rlvmð Þ
r

; ð39Þ

here v ¼ ot is the null Killing vector of the horizon. In the

Einstein-dilaton frame (14), we have vm ¼ ð1; 0; 0; . . .Þ and

vm ¼ ð�WðrÞ; 0; 0; . . .Þ. So, the Hawking temperature of

the Einstein-dilaton–Born–Infeld gravity becomes

~T ¼ j
2p

¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2
ðrlvmÞðrlvmÞ

r
¼ 1

4p
dWðrÞ

dr
jr¼rþ

:

ð40Þ

In the BD frame (21), by applying conformal transforma-

tion, the Hawking temperature is given by [38]

T ¼ ðX2WðrþÞÞ
0

4pX2
; ð41Þ

using the fact that WðrþÞ ¼ 0, it is a matter of calculation

to show that

Fig. 4 B(r) versus r for n ¼ 4, q ¼ 1, c ¼ 1, K ¼ � 6 and m ¼ 1 Fig. 5 The mass parameter m versus r for n ¼ 4, c ¼ 2, c ¼ 1, K ¼
� 6 and q ¼ 1

Fig. 6 The mass parameter m versus r for n ¼ 4, a ¼ 0:4, c ¼ 1,

K ¼ � 6 and c ¼ 1
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T ¼ ~T ¼ W 0ðrþÞ
4p

¼ � ðn� 2Þða2 þ 1Þ
4pða2 � 1Þc ðrþ

c
Þ2b�1

� ðK� cÞða2 þ 1Þc
2pðn� 1Þ

c

rþ


 �2b�1

� ða2 þ 1Þcc
2pðn� 1Þ ð

c

rþ
Þ2b�1

� 2F1 �1

2
;

a2�1

2ðn� 1Þ�
1

2

� 	
;

a2�1

2ðn� 1Þþ
1

2

� 	
;�fþ


 �

� q2ða2 þ 1Þ
pða2 þ n� 2Þc2n�3

ðrþ
c
Þ2ðn�2Þðb�1Þ�1

� 2F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

� 	
;

a2�1

2ðn� 1Þþ
3

2

� 	
;�fþ


 �
:

ð42Þ

The mass of the black holes can be calculated through the

use of Brown and York method [39, 40]. Thus, the mass of

the solution per volume of the unit ðn� 1Þ sphere Xn�1 can

be obtained as [33, 41]

M ¼ ðn� 1Þcðn�1Þbm

16pð1 þ a2Þ : ð43Þ

Black hole entropy follows the area law which states that

the black hole entropy is one-quarter of the event horizon

area. In BD theory, where we have a scalar field, the

entropy is not one-quarter of the event horizon area and is

defined by [42]

S ¼ AW
4

¼
~A

4
; ð44Þ

where A and ~A are the horizon area in the BD and Einstein-

dilaton theory respectively. Therefore, the entropy per unit

volume of the hypersurface boundary can be obtained as

S ¼ cðn�1Þb

4
r
ðn�1Þð1�bÞ
þ : ð45Þ

The electric charge of the solutions, Q, can be calculated

through the Gauss theorem, obtaining

Q ¼ 1

4p

Z
r!1

dn�1x
ffiffiffiffiffiffiffi�g

p Flmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ FlmFlm

c

q ¼ q

4p
Xn�1: ð46Þ

The gauge potential At corresponding to the electric field

(20) can be easily calculated through the relation

Flm ¼ olAm � omAl. Since we deal with static solution, we

have otAr ¼ 0, and hence the gauge potential At can be

derived as

At ¼ �
Z

Ftrdr ¼
qcð3�nÞb

DrDþ
2

F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

� 	
;

a2�1

2ðn� 1Þþ
3

2

� 	
;�f


 �
;

ð47Þ

where D ¼ n�3
a2þ1

þ 1. The black hole’s electric potential U

on the horizon, measured at the reference point, is defined

by [43, 44]

U ¼ Alv
l

r!1 � Alv
l

�� ��
r¼rþ

; ð48Þ

where v ¼ ot is the null generators of the horizon. There-

fore, the electric potential may be derived as

U ¼ qcð3�nÞb

DrDþ
2 F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

� 	
;

a2�1

2ðn� 1Þþ
3

2

� 	
;�fþ


 �
:

ð49Þ

Finally, we check the first law of thermodynamics for the

black hole. For this purpose, we obtain the mass M as a

function of extensive quantities S and Q. Combining

equations for mass, the entropy and the charge given in

(43), (45) and (46) and by using the fact that BðrþÞ ¼ 0, we

can obtain a Smarr-type formula as

MðS;QÞ ¼ � ðn� 1Þðn� 2Þða2 þ 1Þc�bða2þ1Þ

16pða2 � 1Þða2 þ n� 2Þ ð4SÞ
nþa2�2
n�1

þ ða2 þ 1ÞKcbða2þ1Þ

8pða2 � nÞ ð4SÞ
n�a2

n�1 � ða2 þ 1Þccbða2þ1Þ

8pða2 � nÞ ð4SÞ
n�a2

n�1

� 1 �2 F1 �1

2
;

a2�1

2ðn� 1Þ�
1

2

� 	
;

a2�1

2ðn� 1Þþ
1

2

� 	
;� 2p2Q2

cS2


 �
 �
;

ð50Þ

making use of Eq. (50), we can calculate the intensive

parameters U and T as the extensive parameters conjugate

to the black hole charge and entropy, respectively. After

some algebraic calculations, we obtain

oM

oS


 �
Q

¼ � ðn� 2Þða2 þ 1Þc�bða2þ1Þ

16pða2 � 1ÞS ð4SÞ
nþa2�2
n�1

� ða2 þ 1ÞKcbða2þ1Þ

8pðn� 1ÞS ð4SÞ
n�a2

n�1

þ ða2 þ 1Þccbða2þ1Þ

8pðn� 1ÞS ð4SÞ
n�a2

n�1

� 1 �2 F1 �1

2
;

a2�1

2ðn� 1Þ�
1

2

� 	
;





a2�1

2ðn� 1Þþ
1

2

� 	
;� 2p2Q2

cS2
ÞÞ

� ða2 þ 1ÞpQ2cbða
2þ1Þ

4ða2 þ n� 2ÞS3
ð4SÞ

n�a2

n�1

� 2 F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

� 	
;

a2�1

2ðn� 1Þþ
3

2

� 	
;� 2p2Q2

cS2


 �
;

ð51Þ
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oM

oQ


 �
S

¼ pQða2 þ 1Þcbða2þ1Þ

4ða2 þ n� 2ÞS2
ð4SÞ

n�a2

n�1

� 2 F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

� 	
;

a2�1

2ðn� 1Þþ
3

2

� 	
;� 2p2Q2

cS2


 �
:

ð52Þ

Note that in obtaining these equations the following rela-

tion has been used

o2F1 a; b; c; zð Þ
oz

¼ ab

c 2
F1 aþ 1; bþ 1; cþ 1; zð Þ; ð53Þ

regarding Eqs. (45) and (46), it is easy to show

oM

oS


 �
Q

¼ T; ð54Þ

oM

oQ


 �
S

¼ U: ð55Þ

Thus, these quantities satisfy the first law of black hole

thermodynamics,

dMðS;QÞ ¼ oM

oS


 �
Q

dSþ oM

oQ


 �
S

dQ: ð56Þ

It is worthwhile to note that the thermodynamic quantities

of our solutions coincide with the thermodynamic quanti-

ties of Einstein-dilaton theory in the presence of the Born–

Infeld field. This coincidence shows that these thermody-

namic quantities are invariant under the conformal trans-

formations. Thus, the satisfaction of the first law for BD

black holes in the presence of Born–Infeld field is expec-

ted. It is also notable that for large values of the Born–

Infeld parameter (c ! 1), our conserved and thermody-

namic quantities reduce to those of Brans–Dicke-Maxwell

theory [37].

Stability analysis in the canonical ensemble

Here, we are interested in the investigation of the thermal

stability or phase transition of the new BD black holes

solutions, we just obtained. To do so, we need to calculate

black hole heat capacity with the black hole charge as a

constant. It is defined as

CQ ¼ T
o2M

oS2


 ��1

Q

; ð57Þ

it is well known that the black hole with positive heat

capacity is thermodynamically stable. Unstable black hole

undergoes phase transition to be stabilized. The points at

which black hole heat capacity vanishes are known as the

points of type one phase transition. The divergent point of

heat capacity or the points at which the denominator of the

black hole heat capacity vanishes are the points of type two

phase transition [31, 45]. Regarding the mentioned points,

we proceed to analyze the stability or Phase transition of

the new BD black holes introduced in this work. For this

purpose, we need to calculate the denominator of the black

hole heat capacity. That is

o2M

oS2


 �
Q

¼ � ðn� 2Þða2 þ 1Þc�bða2þ1Þ

16pðn� 1ÞS2
ð4SÞ

nþa2�2
n�1

þ ða4 � 1ÞKcbða2þ1Þ

8pðn� 1Þ2
S2

ð4SÞ
n�a2

n�1 � ða4 � 1Þccbða2þ1Þ

8pðn� 1Þ2
S2

ð4SÞ
n�a2

n�1

� 1 �2 F1 �1

2
;

a2�1

2ðn� 1Þ�
1

2

� 	
;

a2�1

2ðn� 1Þþ
1

2

� 	
;� 2p2Q2

cS2


 �
 �

þ ða2 þ 1Þcbða2þ1Þ

8pðn� 1Þða2 þ n� 2ÞS3
ða2 � nÞ þ 2p2Q2ða2 þ 2n� 3Þ

S

� 	
ð4SÞ

n�a2

n�1

2F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

� 	
;

a2�1

2ðn� 1Þþ
3

2

� 	
;� 2p2Q2

cS2


 �

� ða2 þ 1Þp3Q4cbða
2þ1Þ

2ða2 þ 3n� 4ÞS6
ð4SÞ

n�a2

n�1

� 2 F1

3

2
;

a2�1

2ðn� 1Þþ
3

2

� 	
;

a2�1

2ðn� 1Þþ
5

2

� 	
;� 2p2Q2

cS2


 �
:

ð58Þ

The real roots of o2M
oS2

� �
Q
¼ 0, which we label by r0 are the

points of type two phase transition. Because of the com-

plexity of the statement given in (58), it can not be solved,

analytically. Therefore, we have plotted it in Figs. 7, 8 and

(9). The nominator of the black hole heat capacity is the

black hole temperature which has been shown in (42).

Thus, the real root(s) of the equation, T ¼ 0 is the van-

ishing point(s) of black hole heat capacity at which type

one phase transition takes place. The plots of T versus rþ
are shown in Figs. 7, 8 and 9, too. Thermodynamically

speaking, the black hole having positive temperature are

physically reasonable, and those with negative temperature

are known as the physical black holes. Therefore, the

physical black holes with o2M
oS2

� �
Q
[ 0 are locally stable.

As it is shown in Figs. 7, 8 and 9, three following cases

are distinguishable:

1. T ¼ 0 has two real roots labeled by r1ext and r2ext and

o2M
oS2

� �
Q
¼ 0 has only one real root denoted by r0. In this

case, the black holes are stable if rþ [ r2ext [ r1ext.

Type two phase transition takes place at point r ¼ rþ,

where the black hole heat capacity diverges. The black

holes undergo type one phase transition at the point

rþ ¼ r1ext and rþ ¼ r2ext (Fig. 7).

2. T ¼ 0 has only one real root located at r ¼ rext and

o2M
oS2

� �
Q

vanishes at r0. In this case, type one phase

transition occurs at rþ ¼ rext and black holes with rþ ¼
r0 undergo type two phase transition to be stabilized.
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Also, black holes with rþ [ r0 are locally

stable (Fig. 8).

3. T ¼ 0 does not has any real roots and o2M
oS2

� �
Q

has a

real root located at rþ ¼ r0. In this case, no type one

phase transition occurs. The black holes with rþ ¼ r0

undergo type two phase transition. Also the black holes

with rþ [ r0 have positive heat capacity and are

thermodynamically stable (Fig. 9).

Conclusions

In this paper, we presented the ðnþ 1Þ-dimensional BDBI

action and obtained the coupled field equations by varying

this action with respect to the gravitational field glm, the

dilaton field W, and the gauge field Al. Because of the

coupling between the scalar field W and curvature R,

solving the field equations is complicated. For this purpose,

new conformal transformations are presented to transform

the Einstein-dilaton–Born–Infeld gravity Lagrangian to the

BDBI gravity Lagrangian. Then, by using these conformal

transformations, we constructed a new class of charged

black hole solutions in ðnþ 1Þ-dimensional BDBI theory

in the presence of the generalized Liouville-type potential.

These solutions are neither asymptotically flat ðK ¼ 0Þ nor

(A)dS. In addition, our solutions can describe black holes

with two horizons, an extreme black hole or naked singu-

larity depending on the value of the solution parameters in

theory. In the limiting case c ! 1, our solutions are

reduced to Brans–Dicke-Maxwell black hole solutions,

which are presented in [37]. We also obtained charge and

thermodynamic quantities and found that these quantities

satisfy the first law of black hole thermodynamics. We also

found out that the conserved and thermodynamic quantities

are invariant under conformal transformations. Finally, we

performed a thermal stability analysis making use of the

black hole heat capacity with the black hole charge as a

constant. We showed that black holes with rþ ¼ r0

undergo type two phase transition and those these with

rþ ¼ r1ext or rþ ¼ r2ext undergo type one phase transition.

Also, the black holes with rþ [ r2ext [ r1ext are locally

stable (Fig. 7). We showed that, for properly fixed

Fig. 7 T (continuous line) and 0:6 o2M
oS2

� �
Q

(dashed line) versus rþ for

n ¼ 4, c ¼ 1, K ¼ � 6, c ¼ 10, a ¼ 0:27 and q ¼ 2

Fig. 8 T (continuous line) and 0:6 o2M
oS2

� �
Q

(dashed line) versus rþ for

n ¼ 4, c ¼ 1, K ¼ � 6, c ¼ 10, a ¼ 0:27 and q ¼ 0:6

Fig. 9 T (continuous line) and 0:6 o2M
oS2

� �
Q

(dashed line) versus rþ for

n ¼ 4, c ¼ 1, K ¼ � 6, c ¼ 10, a ¼ 0:27 and q ¼ 0:4
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parameters, T ¼ 0 has only one real root located at rext. In

this case, rext is a point of type one phase transition, r0 is a

type two phase transition point, and black holes with

rþ [ r0 [ rext are locally stable (Fig. 7). It is possible to fix

the parameters such that the black hole temperature be

positive everywhere. In such a case there is no type one

phase transition. The black holes with rþ ¼ r0 undergo

type two phase transition and the black hole with rþ [ r0

are thermodynamically stable (Fig. 8). As for future work,

it would be interesting to study the rotating black hole

solutions. In addition, one may consider other types of

nonlinear electrodynamic fields such as the logarithmic or

exponential field [46, 47].
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