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Abstract
In the present research, the effect of variations of the electron beam voltage on the output power is studied. In order to

develop the study, this problem was investigated at different frequencies, which are the products of nonlinear behavior of

the traveling wave tube (TWT) in response to the input frequency. Moreover, for a more realistic understanding, the tubes

were considered with two linear and nonlinear responses to the input frequency. The TWT output power was calculated in

linear and nonlinear modes, at different frequencies using the numerical solution of the mathematical equations of the

Lagrangian model. Then, the output power in terms of distance and beam voltage in different frequencies was plotted and

compared. The results revealed that the effects of variations of voltage on the output power were more proper in a single-

mode TWT in comparison with a multimode one.
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Introduction

Traveling wave tubes (TWTs) are devices that are widely

used in communication, electronic warfare and radar sys-

tems [1, 2]. These devices have wide bandwidths, high-

frequency and high-power operating points; as a result,

they have wider spread application. The nonlinear behav-

iors of the TWTs are known as one of the important

practical limits of them. Until now, many efforts have been

made to reduce these nonlinear effects [7–9, 11, 12]. The

nonlinearity features are recognized as spectral distortions

and saturating mechanism [3]; both of which decrease the

efficiency of the TWT.

For single-tone mode, nonlinear distortion products

appear as harmonics products (f, 2f, 3f…), while for multi

tone mode (multicarrier operation) nonlinear distortion

products appear as intermodulation products (mf1 ? nf2)

at the output of the amplifier [3]. In this work, the effects of

changes in beam voltage on the output power of TWTs are

studied in both the presence and absence of a nonlinear

phenomenon (spectral distortion).

The most important mechanism that occurs inside the

tube is the interaction between the input wave and the

electron beam. When an electron beam is injected along the

axis of the helix, electric field horizontal component of the

wave accelerates some electrons and decelerates the others.

This is the basis for the formation of bunch of the electron

beam and the transfer of energy from the beam to the wave

and ultimately the amplification of the output wave [1, 2].

Electron beam emission voltage into the tube is the source

of energy and beam velocity. Therefore, determination of

the cathode voltage and its variations, which are the emitter

of the electrons from the gun and called the beam voltage,

is very important. In many previous attempts, the basis for

selecting the voltage for the beam was the TWT efficiency

and maximum output power. In the previous studies, the

value of the beam voltage or the cathode voltage was equal

to 3150 V [6, 10, 15]. In other studies, this value was

considered as 2750 v in [11], 4350 v in [5], 4880 v in [13]

and 4920 v in [14]. Therefore, in this study, the effects of

voltage changes on the improvement in TWT output power

is studied using numerical solution of the governing

equations. The TWT is modeled by several authors using

the Eulerian and Lagrangian electron beam coordinates [4].
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Among all of the present models, the multi-frequency

spectral Eulerian (MUSE) and Lagrangian TWT equations

(LATTE) are the most important physical models. The

basis of using these two models is the physical interpre-

tation used for the electron beam as a fluid [4]. In ‘‘For-

mulation’’ section, we formulate the governing equations

for the Lagrangian model of the TWT. The numerical

solutions as well as the diagrams which show output power

in terms of voltage and distance are presented in

‘‘Numerical results’’ section. Finally, the discussion and

conclusion of the numerical results are given in ‘‘Discus-

sion and Conclusion’’ section.

Formulation

The transmission line, Poisson, continuity and Vlasov

equations are used to derive the mathematical equations of

the TWT which are expressed in the domain of time as

follows [3, 4, 16]:

Transmission line equations:

oV

oz
¼ h1

oI

o t
ð1Þ

oI

oz
¼ h2

oV

o t
� A

oq
o t

ð2Þ

In Eqs. (1) and (2), the current and voltage are expressed

with I and V, respectively. The q, volume charge density, t,

time and z is the axial distance.

Poisson’s equation:

oE

oz
¼ q

e0

ð3Þ

In Eq. 3, E is the space charge electric field.

Continuity and Vlasov equations:
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ot
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In Eqs. (1) and (2), the coefficients of and are the

Fourier transforms inverse that are expressed as follows:

h1ðz; tÞ ¼ F�1
~Kðz; flx0Þ
~vphðz; flx0Þ

� �
ð6Þ

h2ðz; tÞ ¼ F�1 1

~vðz; flx0Þ ~Kðz; flx0Þ

� �
ð7Þ

<ðz; tÞ ¼ F�1f<ðz; flx0Þg ð8Þ

where the functions ~vphðz; flx0Þ, ~Kðz; flx0Þ and <ðz; flx0Þ
are defined as cold circuit phase velocity, frequency

domain circuit interaction impedance and space charge

reduction factor, respectively.

Using the furrier transform, Eqs. (1), (2), (3), (4) and (5)

are transformed from the time domain to the frequency

domain.

Using the coordinate transformation in Eqs. (9) and

(10), where z is the distance and w is the phase. The phase

is described with respect to a traveling wave of speed u0

and frequency x0

z ¼ z ð9Þ

w ¼ x0

z

u0

� t

� �
ð10Þ

According to Fig. 1, in which, R is the resistance, C is

capacitance, G is shunt, and L is the inductive series;

applying Kirchhoff’s voltage and current laws, Eqs. (1) and

(2) are as follows.
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If Eqs. (9) and (10) are used, Eqs. (3), (4) and (5) are

derived as follows.
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In Eq. 14, m is the electron beam velocity and < is space

charge reduction factor.

Also, me and e are, respectively, the mass and the charge

of the electron.

Fig. 1 Each section of the helix is represented by an equivalent

circuit [16]
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According to the above discussion, each TWT contains

three main parts, the slow wave structure, the source of the

electron beam and the propagation of an electromagnetic

wave that have approximately the same phase velocity with

electron beam. The mathematical Eqs. (11)–(15) form a

differential equation system which describes the mecha-

nism of the TWT. In order to normalize the quantities used,

the following characteristic quantities are defined:

z ¼ L ð16Þ
U ¼ u0 ð17Þ

T ¼ z

U
ð18Þ

In the above equations, u0 is the DC beam velocity, L is

the TWT circuit length, and T is a characteristic time. The

following variables illustrate the normalization of depen-

dent variables and independent coordinates [3, 4, 16].

Independent coordinates:

ẑ ¼ z

L
ð19Þ

ŵ ¼ w
x0T

¼ ðẑ� t̂Þ ð20Þ

t̂ ¼ t

T
: ð21Þ

Dependent variables:

~V ¼ C

K I0
V ð22Þ

~I ¼ C

I0
I ð23Þ

~E ¼ e0

Lq0

E ð24Þ

~q ¼ q
q0

ð25Þ

~v ¼ v

u0

: ð26Þ

Normalized quantities:

R̂ ¼ R
L

K
ð27Þ

L̂ ¼ L
U

K
ð28Þ

Ĝ ¼ GðZKÞ ð29Þ

Ĉ ¼ ðUKÞ ð30Þ

<̂ ¼ eq0T
2

mee0

< ¼ x 2
p T

2< ð31Þ

Derivatives with respect to z and then w become

o

oz
¼ 1

L

o

oẑ
ð32Þ

o

ow
¼ 1

x0T

o

oŵ
ð33Þ

Some other relationships between DC parameters can be

written as follows:

C ¼ KI0

4V0

� �1=3

ð34Þ

I0 ¼ q0 u0A ð35Þ

u0 ¼ 2eV0

me

� �1=2

ð36Þ

In Eqs. (34)–(36), q0 is the DC linear charge density,V0

is the DC beam voltage, I0 is the DC beam current, and C is

the Pierce gain parameter.

The function x ðz; wÞ is the Fourier series relations that

is defined as follows [3, 4, 16]

x ðz; wÞ ¼
X1

j¼� 1
~xj ðzÞ ei fj w ð37Þ

~x j ðzÞ ¼
1

2p

Z
2p
xðz;wÞe�i fj wdw ð38Þ

where,

fj ¼ mf1 � nf2ð Þ ð39Þ

fj is the set of frequencies that are the drive frequencies

together with the frequencies produced from nonlinear

interactions, m and n are the integers positive and negative,

and w is the periodic function.

ðz; wÞ are Eulerian independent variables and ðz; w0Þ
are Lagrangian independent variables, where z is axial

position and w is phase, and w0 is the phase position of a

fluid element with respect to the stream wave. The trans-

formation from Lagrangian to Eulerian coordinates is given

by functions Z and w

z
w

h i
¼ Zðz;w0Þ

Wðz;w0Þ

h i
ð40Þ

Zðz;w0Þ is the axial position of fluid element w0 at z so

Zðz;w0Þ ¼ z: ð41Þ

A function gE of Eulerian variables ðz; wÞ is trans-

formed to a function gL of Lagrangian variables ðz; w0Þ
using

gLðz;w0Þ ¼ gEðZðz;w0Þ;Wðz;w0ÞÞ ð42Þ

According to Eqs. (40) and (41), transformation matrix

of equation is as follows:
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1 0
oW
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That Jacobin matrix equals to:

J ¼ oW
ow0

ð44Þ

The partial derivatives are transformed as follows

o
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According to a certain method in the Lagrangian model,

we have:

oW
oz

¼ x0

u0

1 � u0

vL

� �
ð46Þ

Using Eq. (46), convective derivative in the Eulerian

coordinates becomes

vE

ovE

oz
þ x0

vE

u0

� 1

� �
ovE

ow
¼ vL

ovL

oz
ð47Þ

Applying derivative transformation relation (45) to the

continuity Eq. (15), the following relation is obtained:

oW
ow0

oqLvL

oz
¼ �x0

oqL

ovL

ovL

ow0

ð48Þ

Derivative from Eq. (46) relative to w0 one gets

o

oz

oW
ow0

¼ x0

ðvLÞ2

ovL

ow0

ð49Þ

Substitute (49) into (48) and integrate to get

oW
ow0

qLvL ¼ j ð50Þ

In which j is a constant of integration. By definition

Wð0;w0Þ ¼ w0, the values oW
ow0

and qLvL on the w0 axis, are

oWð0;w0Þ
ow0

¼ 1 and q0v0, respectively. Considering the fol-

lowing equation

q0ð0;w0Þv0ð0;w0Þ ¼
I0ð0;w0Þ

A
ð51Þ

Equation (50) becomes

oW
ow0

����
����qLð0;w0ÞvLð0;w0Þ ¼ j ¼ I0ðw0Þ

A
ð52Þ

The Fourier coefficient of qE is expressed as

~qlE ¼ 1

2p

Z
2p

qEe�iflwdw ð53Þ

Pulling Eq. (53) back to Lagrangian coordinates (for

fixed z) and using Eq. (44) one gets

~qlE ¼ 1

2p

Z
2p

qL

oW
ow0

����
����e�iflWð0;w0Þ dw0

¼ 1

2p

Z
I0ð0;w0Þ
AvLð0;w0Þ

oW
ow0

����
����e�iflWð0;w0Þ dw0

ð54Þ

Using Eqs. (37), (38) and (54), the circuit equations,

space charge equation, Newton’s law and phase relation

(11–15), in Lagrangian coordinates, the following equa-

tions are created

d ~Vj
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¼ � i fjx0
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1
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Z
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d~Ej

dz
¼ � i fjx0
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v

Xþ1
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me~vph ðfjx0Þ

~I j þ
e

me
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oW
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¼ x0

u
0

1 � u0

v

	 

ð59Þ

where �1\ j\1, and fj ¼ fm þ fn, for

m [ n ; fm [ fn.

For practical implementation, one neglects higher fre-

quencies and limits to �M\ j\M.

The equations in (55–59) are ordinary differential

equations, and we will use standard ordinary differential

equation integration techniques. The problem is an initial

value problem, where one can calculate the proper initial

values using (38). Otherwise for, j 6¼ 0 ; ~Ej ¼ ~vj ¼ ~qj ¼ 0,

also for j ¼ 0 ; ~E0 ¼ ~V0 ¼ ~I0 ¼ 0 and

~v0ð0Þ ¼ u0 ; ~q0ð0Þ ¼ q0.

In addition to the initial conditions mentioned above,

there are other parameters that are very important in the

performance of the TWT. These constant values are given

in Table 1.

Numerical results

In this work, different voltages have been applied to the

electron beam in the assumed frequency range in order to

evaluate the TWT response. In this process among different

mathematical models, the Lagrangian mathematical model
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has been applied on the TWT, which includes all the

nonlinear features of a TWT properly. Accordingly, the

governing equations on TWTs which indicate the changes

in voltage and current circuit, space charge field as well as

velocity and density of the electron beam are written. Also

by applying the initial conditions appropriate to the TWT

features and using fixed step fourth-order Runge–Kutta

integrator numerical method, the differential equation

systems 55–59 have been solved.

In this study, the TWT has been examined in two dif-

ferent situations; as a result, two different responses are

reached which are discussed below:

Situation (1)

In this case, the response of the TWT is examined under

the influence of applying the voltage in the absence of

harmonic and intermodulation frequencies (single-tone

mode). In this situation, the operation of the TWT was

studied in the single frequency mode, which means the

output frequency from the TWT is the same as the single

input frequency entered to it. The final results of the cal-

culations in this mode are revealed in diagrams 2–3 which

display output power in terms of distance (z), voltage

(v) and frequency (f).

In Fig. 2, the output power of the circuit is plotted at

frequencies of 1400, 1600 and 1800 MHz, in terms of

different voltage of the electron beam. In this case, the

circuit power is calculated for each single input frequency,

the harmonic frequencies and the intermodulation are not

produced. In the voltage range of 2000–3300 v, the

amplification of the wave at these three frequencies is

approximately constant.

In Fig. 3, the output power is plotted in terms of axial

distance, for a voltage of 3200 v at frequencies of 1400,

1600 and 1800 MHz. It is noticeable that the circuit power

is saturated at 40 cm in all the three frequencies. According

to Fig. 2, if the voltage of 2600 was selected, the amplifi-

cation of all the three frequencies would occur alike.

Situation (2)

In this case, the response of the TWT is examined under

the influence of applying the voltage in the presence of

drive, harmonic and intermodulation frequencies (multi

tone mode). Here, when two input frequencies which their

difference is about 1 MHz are entered to the TWT, drive

frequencies as well as unwanted harmonic and intermod-

ulation output frequencies are produced (Table 2). The

final results of the calculations in this mode are revealed in

diagrams 4–8 which display output power in terms of

distance (z), voltage (v) and frequency (f).

In Fig. 4, the output power of the circuit is plotted at

frequencies of 1400, 1600 and 1800 MHz, in terms of

different voltage of the electron beam. In this case, the two

main input frequencies are considered (Table 2); as a

result, harmonic and intermodulation frequencies are pro-

duced. In the voltage range of 2000–2800 v, the difference

in amplification of the wave at these three frequencies is

small (Fig. 5).

Table 1 Constant values

Parameter Value Parameter Value Parameter Value

Electron mass (me) 9:11 � 10�31 kg Circuit length (L) 0.42 m Number of circuit sections 10

Electron charge (e) 1:6 � 10�19 c Beam outer radius 0.0009652 m Number dispersion frequency 27

Helix radius 0.002353 m Beam inner radius 0.0

Helix wire width (w) 0.000305 m Beam current (I0) 0.0655 A Base frequency (x 0) 1 GHz
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In the above figure, the output power is plotted in terms

of axial distance, for a voltage of 3200 v at frequencies of

1400, 1600 and 1800 MHz. These calculations are done for

each of the three frequencies in the presence of second-

order harmonic and intermodulation frequencies (table). It

is noticeable that the circuit power is saturated at 38 cm at

all three frequencies.

In Fig. 6, the output power is plotted in terms of axial

distance, for a voltage of 3200 v at frequencies of 2800,

3200 and 3600 MHz. These frequencies are second-order

harmonics, which are produced by the nonlinear response

of the pipe to the two main input frequencies, as shown in

Table 2. As shown in Fig. 6, at these frequencies, the

saturation occurs with a gentle slope.

In Fig. 7, the output power of the circuit is plotted at

frequencies of 2800, 3200 and 3600 MHz, in terms of

different voltage of the electron beam. These frequencies

are second-order harmonics (Table 2). In the range of

2000–2600 v, it is clear that the output power difference in

the circuit is small in these three frequencies.

In Fig. 8, the output power of the circuit is plotted in

terms of different voltage of the electron beam, at fre-

quencies of 1399, 1599 and 1799 MHz. These frequencies

are third-order intermodulation frequencies (Table 2). In

the range of 2200–3000 v in all the three frequencies, the

output power difference in the circuit is small.

Discussion and conclusion

As it can be seen, when voltage changes at different fre-

quencies in TWT, the output power will change. Voltage

variation is important in a particular range.

Table 2 Nonlinear second- and

third-order products created for

two input signals

Input frequency (MHz) Frequencies generated by the TWT (MHz)

Driven-order First-order Second-order harmonics Third-order

Harmonics Intermodulation

1400, 1401 1400, 1401 1, 2800, 2801, 2802 4200, 4203 1399, 1402, 4201, 4202

1600, 1601 1600,1601 1, 3200, 3201, 3202 4800, 4803 1599, 1602, 4801, 4802

1800, 1801 1800,1801 1, 3600, 3601, 3602 5400, 5403 1799, 1802, 5401, 5402
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Applying a lower voltage is needed to achieve a higher

power in low frequencies, but for gaining a higher power in

high frequencies, using a bigger voltage is required. In a

specified voltage range, the changes in the output power

are not noticeable. Beam emission voltage has a direct

relationship with output power to a certain extent, but after

a certain limit this relationship becomes inverse which

means increasing beam emission voltage results in the

decrease in output power. This happens because of the

saturation phenomena which is the nonlinear operation of

TWT. In smaller frequencies, saturation phenomena (this

phenomena happens when increasing of the output power

stops) in the TWT happen in lower voltage. For instance in

Fig. 2, it can be seen that the blue plot (1400 MHz)

decreases in a lower voltage (about 3200 v), but the orange

plot (1600 MHz) along with the gray plot (1800 MHz)

decreases in a higher frequency (about 3400 v) but with

different slopes. Comparing Figs. 2 and 3, it is observed

that at 1400 MHz (single-tone mode), for a voltage of

2200 V, the TWT output power is 45 dBm, while this

power is 30 dBm in the same conditions in a multi tone

mode. All shapes show the fact that the voltage applied at

each frequency does not create a unique power; at some

voltages, the power generated at various frequencies is the

same approximately.
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