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Abstract In this study, the concept of nonlocal contin-

uum theory is used to characterize the nonlinear vibration

of an embedded single-walled carbon nanotube. The

Pasternak-type model is employed to simulate the inter-

action of the SWNTs. The parameterized perturbation

method is used to solve the corresponding nonlinear dif-

ferential equation. The effects of the vibration amplitude,

flow velocity, nonlocal parameter, and stiffness of the

medium on the nonlinear frequency variation are presented.

The result shows that by increasing the Winkler constant,

the nonlinear frequency decreases, especially for low

vibration amplitudes. In addition, it is resulted that influ-

ence of the nonlocal parameter is greater at higher flow

velocities in comparison with lower flow velocities.

Keywords Theoretical analysis � Single-walled carbon

nanotube (SWCNT) � Parameterized perturbation method �
Fluid flow � Nonlinear vibration

Introduction

Carbon nanotubes (CNTs) are an allotrope of carbon. They

take the form of cylindrical carbon molecules and have

novel properties that make them potentially useful in a

wide variety of applications in nanotechnology, electron-

ics, optics, and other fields of materials science. In the

recent few years, carbon nanotubes (CNTs) have been one

of the most promising studies in the field of mechanics,

physics, chemistry, materials science, and so on. They

exhibit extraordinary strength and unique electrical prop-

erties, and are efficient conductors of heat.

The discovery of CNTs by Iijima [1], especially the

discovery of the single-wall nanotube (SWNT) and the

successful composition of the CNT in the macrography

scale, has received considerable attention in recent years.

At the present, CNT has been the chief research subject in

the area of the fullerene, and it has been one of the most

promising researches in the field of mechanics, physics,

chemistry, materials science, and so on. Because of their

novel electronic, mechanical, and other physical and

chemical properties, CNT holds substantial promise as

building blocks for nanoelectronics, nanodevices, and

nanocomposites [2–4]. For example, the stiffness of CNT is

100 times as that of the steel, but the weight is one-sixth

times as that of the steel. It is foreseen to be the most

promising one-dimensional nanophase materials in the 21st

century. Therefore, it is necessary and significant to study

its mechanical property.

The classic elastic continuum models have been pre-

sented to investigate the vibration behavior of CNTs. Yoon

et al. [5] examined the effect of moving internal fluid on

free vibration and flow induced flutter instability of can-

tilever CNTs according to the continuum elastic model. It

was resulted that the resonance frequencies were related to
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the fluid-flow velocity. Structural instability of the CNTs

could happen at a critical flow velocity.

A theoretical approach based on a continuum elastic

model is studied by Natsuki et al. [6] to investigate the

sound wave propagation in both single- and double-walled

CNTs filled with fluids and found that there exist several

critical frequencies, and free wave speed of the fluids

influences the wave propagation in fluid-filled CNTs.

Reddy et al. [7] examined the influence of fluid flow on

the free vibration and instability of fluid-conveying single-

walled CNTs (SWCNTs). Wang et al. [8] studied the

Timoshenko beam model and the DQ method for free

vibration analysis of multi-walled CNTs (MWCNTs).

Zhang et al. [9]. used a double-elastic beam model for

transverse vibrations of double-walled carbon nanotubes

under compressive axial load according to the Euler–Ber-

noulli beam theory. The effect of internal moving fluid and

compressive axial load on the nonlinear vibration and

stability of conveying CNTs is presented by Rasekh and

Khadem [10].

The nonlocal Euler–Bernoulli elasticity theory [11] as a

modifying theory for nanostructers and nanoscale models

have been greatly used to model CNTs due to the nanoscale

effects. In this theory, the small scale effects are captured

by assuming that the stress at a point is a function of the

strains at all other points of the domain. Several references

are found related to the nonlocal elasticity theory [12, 13].

Most of the studies are limited to linear vibration at

present; however, the deformations of CNTs are nonlinear

in nature. Only when considering the nonlinearities in

geometry and physics, the more precise dynamic properties

of CNTs can be obtained, and then, the nanostructures can

receive more wide applications. Fortunately, more and

more researchers have begun to realize these ideas, and the

nonlinear mechanical behaviors of CNTs have received

considerable attentions in recent years. Pantano and Boyce

investigated the effect of the characteristic wavelike or

wrinkles on the bending mode of CNTs under considering

the geometric nonlinearity and explained the phenomenon

that the curve modes of CNTs decrease with the increase in

the diameter of CNTs. Fu et al. [14] analyzed the nonlinear

vibration for embedded CNTs and got the amplitude fre-

quency response curves of the nonlinear free vibration for

the SWCNTs and DWCNTs. Yan et al. [15] showed that

the radial vibration modes of the inner and outer tubes of

simply supported DWCNTs and concluded that the system

had twice dynamical mode transitions as the frequency

increased.

MWCNTs composite nanofibers with various MWCNT

contents were fabricated by electrospinning process, and

their microwave absorption properties were evaluated in

the frequency range of 8–12 GHz at room temperature

[16].

Mathematical modeling is a vantage point to reach a

solution in an engineering problem, so the accurate mod-

eling of nonlinear engineering problems is an important

step to obtain accurate solutions [17–21]. Most differential

equations of engineering problems do not have exact ana-

lytic solutions, so approximation and numerical methods

must be used. Recently, some different methods have been

introduced to solving these equations, such as the varia-

tional iteration method (VIM) [22, 23], homotopy pertur-

bation method (HPM) [24, 25], parameterized perturbation

method (PPM) [26], differential transformation method

(DTM) [27, 28], modified homotopy perturbation method

(MHPM) [29], least square method (LSM) [30–32], col-

location method (CM) [33, 34], galerkin method (GM)

[35], optimal homotopy asymptotic method (OHAM) [36,

37], and differential quadrature method (DQM) [38].

In this study, the nonlocal continuum theory is utilized

to simulate the nonlinear vibration of an SWCNT con-

veying fluid, employing Pasternak-type elastic foundation.

To solve the governing equations of the problem, one of

the newest analytical methods named the PPM is used. This

method is one of the strong and effect method for solving

nonlinear problems and is investigated and developed by

some authors to solve nonlinear equations arising in engi-

neering problems.

This approach can be used as an efficient and practical

technique for solving such nonlinear problems in vibration

field. Comparisons revealed that PPM is a powerful

approach for solving these problems. In addition, the

results showed that the main attributions of this method are

very straightforward calculations and low computational

burden compared with previous analytical and numerical

approaches.

It can be found that PPM is very efficient but straight-

forward technique, while you just employ a transformation

equation and solve the original equation without the sep-

aration of linear and nonlinear terms. This method can be

easily extended to other strongly nonlinear vibration

equations and can be found widely applicable in engi-

neering and science.

The obtained results show good agreement with the

numerical simulation and also with a previous study. The

effects of the vibration amplitude, flow velocity, nonlocal

parameter, and stiffness of the medium on the nonlinear

frequency variation are illustrated.

Mathematical modeling

Figure 1 shows an SWCNT conveying fluid, as a hollow

cylindrical tube in a Pasternak-type elastic medium. The

nanotube is assumed to be simply supported at both ends,

and the effect of gravity is negligible.
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For the Euler–Bernoulli beam theory, the relationships

among the transverse shear force Q, the bending moment of

the model M, and the longitudinal force N are [39]:

oQ

ox
¼ o2M

o2x
þ N

o2w

o2x
ð1Þ

N and M are the stress resultants, defined as follows:

M ¼
Z

z:rxxdAc ¼
Z

z:EexxdAc;

N ¼
Z

rxxdAc ¼
Z

EexxdAc ð2Þ

where E is Young’s modulus of the SWCNT.

The nonlocal continuum theory, presented by Eringen in

1983, shows a more precise constitutive rule for small-

scale structures in comparison with the common local

elastic theories. This definition of nonlocal elasticity is

based on lattice dynamics and observations on phonon

dispersion. The nonlocal constitutive equation for the

uniaxial bending stress state forms as:

rxx ¼ Eexx þ ðe0aÞ2
o2rxx
ox2

ð3Þ

The parameter ðe0aÞ shows the small-scale effect, which

is called the nonlocal parameter, in which the parameter e0
is estimated such that the relations of the nonlocal elasticity

model could provide a good approximation of atomic dis-

persion curves of plane waves with those of atomic lattice

dynamics, and a represents an internal length, such as

lattice parameter and granular size

M � ðe0aÞ2
o2M

ox2
¼

Z
zEexxdAc ð4Þ

Based on the Euler–Bernoulli continuum theory, the

displacement field of the model is expressed as:

uðx; z; tÞ ¼ uðx; tÞ � z:
ow

ox
; wðx; z; tÞ ¼ wðx; tÞ ð5Þ

In addition, the von Karman strain based on the dis-

placement field is approximately expressed [40]:

exx �
ouðx; z; tÞ

ox
þ 1

2

owðx; z; tÞ
ox

� �2

¼ o2u

ox2
� z:

o2w

ox2
þ 1

2

owðx; z; tÞ
ox

� �2

ð6Þ

From Eqs. (3) and (6), the nonlocal stress resultant can

be defined as

M � ðe0aÞ2
o2M

ox2
¼ EI

o2w

ox2
ð7Þ

where the following relation has been usedZ
zdAc ¼ 0;

Z
z2dAc ¼ I ð8Þ

The equations of motion can now be expressed in terms

of displacements. Substituting for the second derivative of

M from Eq. (1) into Eq. (8), we obtain

M ¼ ðe0aÞ2
oQ

ox
� N

o2w

ox2

� �
þ EI

o2w

ox2
ð9Þ

Now, substituting for M from Eq. (9) into Eq. (7), the

governing equation of motion is readily identified as

EI
o4w

ox4
þ oQ

ox
� N

o2w

ox2
� ðe0aÞ2

o3Q

ox3
� N

o4w

ox4

� �
¼ 0 ð10Þ

Hence, the governing equations for a fluid-conveying

SWCNT can be written as

mc

o2w

ot2
þ EI

o4w

ox4
þ kew� kp

o2w

ox2
þ F

o2w

ox2

þ mf 2v
o2w

oxot
þ v2

o2w

ox2
þ o2w

ot2

� �
� ðe0aÞ2

� mc

o4w

ot2ox2
þ ke

o2w

ox2
� kp

o4w

ox4
þ F

o4w

ox4

�

þ mf 2v
o2w

ox3ot
þ v2

o4w

ox4
þ o4w

ox2ot2

� �
� EAc

2L

:
o4w

ox4
:

Z L

0

ow

ox

� �2

dx

�
� EAc

2L

o2w

ox2

Z L

0

ow

ox

� �2

dx ¼ 0

ð11Þ

Fig. 1 Single-walled carbon

nanotube embedded in a

Pasternak-type foundation

model
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The deflection of the nanotube is subjected to the fol-

lowing boundary conditions:

wð0; tÞ ¼ o2wð0; tÞ
ox2

¼ 0 at x¼ 0

wðL; tÞ ¼ o2wðL; tÞ
ox2

¼ 0 at x = L

ð12Þ

W(x,t) can be expanded as:

wðx; tÞ ¼ qðtÞ:/1ðxÞ ð13Þ

U1 performs as the normalized mode functions of the

nanotube from the linear vibration analysis due to the

specified boundary conditions.

Substituting Eq. (13) in Eq. (11) leads to:

€qðtÞ

þ
1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2
� �

:x2
0

1þ e2

:qðtÞ þ x2
0

4r2
:q3ðtÞ ¼ 0 ð14Þ

These equations can be made dimensionless using the

following definitions

x0 ¼
p2

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

mcþmf

s
; e¼ p

L
ðe0aÞ; Ke ¼

L4

p4
1

EI
ke;

Kp ¼
L2

p2
1

EI
kp; T ¼ L2

p2
1

EI
F; U ¼ L

p

ffiffiffiffiffiffi
mf

EI

r
; r¼

ffiffiffiffiffi
I

Ac

r

ð15Þ

Analytical solution

The PPM was first proposed in 1999 in [41]. An expanding

parameter is introduced by a linear transformation

f ¼ euþ a ð16Þ

where e is the perturbation parameter, by substituting Eq. (16)

into an original equation to have no secular term in the

equation; we can obtain the unknown constant parameters

a and b. Then, the solution is expanded in the form

u ¼
Xn
i¼0

eiui ¼ u0 þ eu1 þ e2u1 þ � � � ð17Þ

q ¼ A0 cosðxtÞ �
1

8

A3
0 cosðxtÞa2

x2
þ 1

8

A3
0 cos

3ðxtÞa2
x2

ð18Þ

q ¼ 0:9771563284 cosð0:04831221268p2tÞ
þ 0:02284367164 cos3ð0:04831221268p2tÞ ð19Þ

To validate the present solution of the problem and find

the accuracy, the comparison between our solution and

numerical result is done. Good agreement between the

present PPM and the numerical solution is observed in

Fig. 2.

Fourth-order Runge–Kutta numerical method

It is obvious that the type of the current problem is the

boundary value problem (BVP), and the appropriate

numerical method needs to be selected. The numerical

solution is performed using the algebra Maple package to

solve the present problem. The available methods in this

software are a combination of the base scheme (midpoint

or trapezoid), and a method enhancement scheme (deferred

corrections or Richardson extrapolation). The trapezoid

method is generally efficient for typical problems, but the

midpoint method can handle harmless end-point singular-

ities that the trapezoid method cannot. The midpoint

method, also known as the fourth-order Runge–Kutta

method, improves the Euler method by adding a midpoint

in the step, which increases the accuracy by one order [42].

Thus, the fourth-order Runge–Kutta method is used as a

suitable numerical technique in this study.

Results and discussion

In this section, the effects of the nonlocal parameters (e0a),

axial tensions (F), Winkler constants (Ke), and Pasternak

constants (Kp) on nonlinear frequency are studied in the

following figures.

Figure 3 shows the behavior of nonlinear frequency for

different values of nonlocal parameters. The figure shows

that the nonlinear frequency increases with an increase in

the nonlocal parameter. The reason is that the nonlocal

Fig. 2 Comparison between PPM solution and numerical result
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theory introduces a more flexible model, and with

increasing the flexibility, the effect of the nonlinearity on

the model becomes more significant. The Pasternak model

expresses the base of the SWCNT. The Pasternak-type

foundation, also named the two-parameter foundation

model, models the interaction between the medium and the

nanotube using two different parameters. These two

parameters are: Winkler constant (Ke), which shows nor-

mal pressure and Pasternak constant (Kp), which express

transverse shear stress due to the interaction of shear

deformation of the surrounding elastic medium.

Figure 4 shows the nonlinear frequency variation

against the nonlinear amplitude as a function of axial

tension. It is shown that the axial tension of the SWCNT

can decrease the difference between the nonlinear and the

linear resonant frequency, and this effect is profound for

high vibration amplitude. It means that increasing the axial

tension F can control the nonlinearity.

Figures 5 and 6 show the influences of Winkler con-

stants (Ke) and Pasternak constants (Kp) on nonlinear fre-

quency variation. Figure 5 indicated that by increasing the

Winkler constant, the nonlinear frequency decreases,

especially for low vibration amplitudes. This means that as

the nanotube vibrates in a stiff medium, the nonlinear

frequency turns to the linear frequency. It means that for

low amplitudes and stiff elastic foundations, the linear

simulation of the SWCNT shows a precise theoretical

model for transverse flow-induced vibrations.

Figure 6 shows the effects of Pasternak constant on the

nonlinear frequency. It can be seen an increase in the

shear stiffness of the medium results in the decrease in

the nonlinear frequency for the small vibration

amplitudes, and also the nonlinear flow-induced frequency

reduces to the linear. The influence of the effect nonlocal

parameter on the nonlinear frequency variation against the

flow velocity is shown in Fig. 7. It is resulted that the

influence of the nonlocal parameter is greater at higher

flow velocities in comparison with lower flow velocities.

This effect is more significant when the nonlocal

parameter increases.

Figure 8 shows the nonlinear frequency variation

against the flow velocity for various axial tensions. The

result shows that for low flow velocities, the effect of axial

Fig. 3 Variation of nonlinear frequency against the maximum

nonlinear amplitude for different nonlocal parameters
Fig. 4 Variation of nonlinear frequency against the maximum

nonlinear amplitude for different axial tensions

Fig. 5 Variation of nonlinear frequency against the maximum

nonlinear amplitude for different Winkler constants
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tension on the nonlinear frequency variation is little. For

high flow velocities, the nonlinear frequency variation

decreases with increment in axial tensions.

Figure 9 shows the influence of the Winkler constant on

the nonlinear frequency variation against the flow veloci-

ties. It shows that the nonlinear frequency variation does

not change greatly for low fluid velocities, and the medi-

ums with rigid elastic properties origin the difference

between the nonlinear and linear frequencies to remain

unchanged with respect to flow velocity. Furthermore, for

flexible mediums, the nonlinear frequency variation

increases with the flow velocity. The effect of the Paster-

nak constant on the nonlinear frequency variation with the

dimensionless flow velocity is shown in Fig. 10. The result

shows that for low fluid velocities (U\ 0.5) and as the

shear stiffness of the elastic medium increases, the non-

linear frequency variation decreases, and for the higher

flow velocities, it remains constant. This shows that the

nonlinear vibration behavior of the SWCNT is independent

of the fluid flow.

Fig. 6 Variation of nonlinear frequency against the maximum

nonlinear amplitude for different Pasternak constants

Fig. 7 Variation of nonlinear frequency against the dimensionless

fluid velocity for different nonlocal parameters

Fig. 8 Variation of nonlinear frequency against the dimensionless

fluid velocity for different axial tensions

Fig. 9 Variation of nonlinear frequency against the dimensionless

fluid velocity for different Winkler constants
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Conclusion

In this study, the PPM is used to solve the nonlinear

vibration model of a fluid-conveying SWCNT embedded in

a Pasternak foundation. The approximate solution for the

nonlinear frequency variation is obtained by the proposed

technique. The present results are in excellent agreement

with the numerical ones. In addition, this method is pow-

erful and efficient technique for finding science and engi-

neering nonlinear differential equations.

The results show that the nonlinear flow-induced fre-

quency alters from the linear frequency greatly when the

amplitude, flow velocity, and nonlocal parameter are high,

while for the CNTs embedded in the mediums of high

Pasternak parameters, the nonlinearity of the model does

not demonstrate a significant effect on the frequency.

Moreover, the axial tension restricts the nonlinear effect

and limits the flow induced-vibration of the nanotube at

high flow velocity and for high vibration amplitudes.
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