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Abstract In the previous paper (Behroozi et al., Phys Rev

D 74:124014, 2006; Dehghani et al., Phys Rev D

77:064028, 2008), conformal invariance for massless ten-

sor fields (scalar, vector and spin-2 fields) was studied and

the solutions of their wave equations and two-point func-

tions were obtained. In the present paper, conformally

invariant wave equation for massless spinor field in de

Sitter space–time has been obtained. For this propose, we

use Dirac’s six-cone formalism. The solutions of massless

spin-1
2
and -3

2
equations, in the ambient space notation, have

been calculated.

Introduction

Today, latest discoveries of the modern astrophysics data

show that our universe in first approximation is in a de

Sitter (dS) phase. Therefore, it is important to find a for-

mulation of de Sitter quantum field theory with the same

level of completeness and rigor as for its Minkowskian

counterpart. The various physical stimulants for studying

quantum field in dS space are:

The de Sitter space–time is a curved space–time mani-

fold with maximum symmetry and it is a solution of the

Einstein equation with nonzero cosmological constant. It is

one of the simple curved space–time that one can find

unique vacuum state [3] and one can replace the usual

spectral condition by a certain geodesic spectral condition

[4]. For large separated points, the graviton propagator on

dS space has a pathological behavior (infrared divergence)

[5–7]. Therefore, one expectancy to discover inside the

dynamics of the space–time is some natural mechanism to

end inflation and to find a description for the cosmological

constant [8–10]. Covariant quantum field theory in de Sitter

space for the ‘‘massive’’ and ‘‘massless’’ conformally

coupled scalar field [11, 12] and for the ‘‘massless’’ mini-

mally coupled scalar field in de Sitter space [13] previously

made. It has been shown that conformally coupled scalar

field, vector field and spin-2 field in massive and massless

cases correspond to the unitary irreducible representations

(UIR) of de Sitter group [12, 14–18].

Conformal invariance was introduced for first time into

physics by Cunningham and Bateman [19, 20] when they

showed that Maxwell’s equations are covariant under the

larger 15-parameter conformal group rather than 10-pa-

rameter Poincare group. Equations of motion of charged

particles with nonzero mass are not conformal invariant.

The massless field in Minkowski space–time propagates on

the light cone. These fields are invariant under the con-

formal group SOð2; 4Þ. Fields with spin s� 1 are invariant

under the gauge transformation as well. In dS space, for the

set of observable transformations under the dS group

SOð1; 4Þ, mass is not an invariant parameter. However,

concept of light-cone propagator does exist and leads to the

conformal invariance. ‘‘Massless’’ is used in reference to

the conformal invariance (propagation on the de Sitter light

cone).

One of the original objectives of the quantum field

theory is the quantization of gravitational field [21]. The

quanta of gravitational field are massless particle with spin-

2 that call ‘‘graviton’’ so that the equation of this particle

‘‘Einstein equation’’ is not conformal invariant. Therefore,

conformal invariance may solve the problem of quantum

gravity. The fermionic partner of the gravitational field is a
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spin-3
2
field that call ‘‘gravitino’’. In the original formula-

tion of supergravity, there was one real massless gravitino

(accordingly N ¼ 1) this means that one generator exists

that change fermions to bosons dB ¼ ��F. For unification

between gravitational (spin-2) and nongravitational (spin-

1) forces existence of this generator, that can change spin,

is necessary. So, in this paper, we study conformal

invariant equation spin-3
2
field in dS space–time.

In the previous papers [1, 2], the conformally invariant

(CI) wave equations for scalar, vector and spin-2 fields in

de Sitter space–time were obtained. We are interested in

the conformal invariance properties of the massless spin-1
2

and spin-3
2
field in de sitter space–time. First, we introduce

massless spinor field equations in de Sitter space. After-

wards explained the Dirac’s six-cone formalism. With

using this formalism, we write the conformal invariant

spinor wave equations. Then, in the following sections, de

Sitter field solutions can be obtained.

Massless spinor field equations in de sitter space

de Sitter space–time is visualized as the hyperboloid

embedded in a five-dimensional Minkowski space–time:

XH ¼ fx2 IR5;x2 ¼ gabx
axb ¼�H�2g; a;b¼ 0;1;2;3;4;

ð2:1Þ

gab ¼ diagð1;�1;�1;�1;�1Þ:

where H is Habel constant (for simplicity, we can choose

H ¼ 1). The de Sitter metric is:

ds2 ¼ gabdx
adxb jx2¼�1¼ gdslmdX

ldXm; l; m ¼ 0; 1; 2; 3;

ð2:2Þ

where Xl are the four space–time intrinsic coordinates in

de Sitter hyperboloid and xa are the five global coordinates

in ambient space notation. Working in embedding space

has two advantages: first it is close to the group theoretical

language and second the equations are obtained in an easier

way than they might be found in de Sitter intrinsic space.

Dirac [22] deduces wave equation for electron in de

Sitter space–time. This equation, with using eigenvalue

equation for second-order Casimir operator Qð1Þ, previ-

ously is obtained [23]. There are two Casimir operators for

dS group, these operators commute with all the action of

the group generators and thus they are constant on each

representation. Two Casimir operators for dS group are:

Qð1Þ ¼ � 1

2
LabLab; ð2:3Þ

Qð2Þ ¼ �WaW
a; ð2:4Þ

where Wa ¼ 1
8
�abcdgL

bcLdg and �abcdg is the antisymmetric

tensor in the ambient space notation with �01234 ¼ 1. The

generator of de Sitter group is

Lab ¼ Mab þ Sab;

where the ‘‘orbital’’ part is:

Mab ¼ �iðxaob � xboaÞ ¼ �iðxa�ob � xb�oaÞ; ð2:5Þ

and the ‘‘spinoral’’ part Sab is [24]:

Sab ¼ �
i

4
½ca; cb�; ð2:6Þ

the transverse derivative is �ob ¼ ob þ xbx:o:
In this case, five c matrices needed instead of the four

ones of the flat Dirac theory. These matrices are found

within the Clifford algebra issued from the metric gab:

cacb þ cbca ¼ 2gab; cay ¼ c0cac0; ð2:7Þ

an explicit representation is provided by:

c0 ¼
I1 0

0 I1

� �
; c4 ¼

0 I1

�I1 0

� �

c1¼ 0 ir1

ir1 0

� �
; c2¼ 0 � ir2

�ir2 0

� �
; c3¼ 0 ir3

ir3 0

� �
;

where I1 is unit 2� 2 matric and ri are Pauli matrices.

By the eigenvalue of this two Casimir operator, the

unitary irreducible representation of de sitter group SO(1,4)

is characterized ‘‘the principal, complementary and dis-

crete series’’ [23]. The UIR’s Us;m in the principal series

correspond to the:

Qð1Þs ¼
9

4
þ m2 � sðsþ 1Þ

� �
; ð2:8Þ

Qð2Þs ¼
1

4
þ m2

� �
sðsþ 1Þ

� �
; ð2:9Þ

where s is spin and m is real positive parameter. The sec-

ond-order field equations can be written as:

hQð1Þs � hQð1Þs iiw ¼ 0: ð2:10Þ

For massive field with s ¼ 1
2
, we have:

Q
ð1Þ
1
2

� 3

2

� �
wðxÞ ¼ m2wðxÞ; ð2:11Þ

where wðxÞ is a 4-component spinor with arbitrary degree

of homogeneity (x � ow ¼ rw). The second-order Casimir

operator for spin-1
2
is given by

Q
ð1Þ
1
2

¼ � 1

2
MabM

ab � 1

2
SabS

ab � SabM
ab; ð2:12Þ
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where one can show

Q
ð1Þ
0 ¼ �

1

2
MabM

ab;
1

2
SabS

ab ¼ 5

2
;

SabM
ab ¼ � i

2
cacbM

ab ¼ � 6 x 6 oT ;
ð2:13Þ

note that cax
a �6 x. The massless elementary system

with spin s is described by the discrete series
Q�

p;s with

M ¼ ðs; sÞ for which [23]:

Qð1Þs ¼ 2ð1� s2Þ; Qð2Þs ¼ s2ð1� s2Þ:

In the representation of parameters M ¼ ð1
2
; 1
2
Þ, the eigen-

values of the Casimir operators become:

Q
ð1Þ
1
2

D E
¼ 3

2
; Q

ð2Þ
1
2

D E
¼ 3

16
: ð2:14Þ

Then, Eq. (2.11) is substituted by

Q
ð1Þ
1
2

� 3

2

� �
wðxÞ ¼ 0; ð2:15Þ

after using the relations (2.13) this equation is written as:

ðQ0þ 6 x 6 o> � 4Þw ¼ 0: ð2:16Þ

Now, consider the de Sitter–Dirac operator D that define

by:

D � � i

2
cacbM

ab þ 2 ¼ � 6 x �6 oþ 2: ð2:17Þ

With using this operator, Eq. (2.11) can be written as

follow:

ðiD� mÞðiDþ mÞwðxÞ ¼ 0; ð2:18Þ

this relation is similar to the ði 6 oþ mÞði 6 o� mÞwðxÞ ¼ 0;

in Minkowski space. Then, the first order of field equation

for particle with spin-1
2
and nonzero mass in de Sitter space

introduced as follow:

ðiDþ mÞwðxÞ ¼ 0; ð2:19Þ

where m�R and m 6¼ 0. Solutions of the de Sitter dirac first-

order equation are also the solutions of Eq. (2.18). For

massless case we have:

iDwðxÞ ¼ 0: ð2:20Þ

Therefore, with using the above equation, the de Sitter

massless spin-1
2
field equation (2.15) will be:

ðQ0 � 2Þw ¼ 0: ð2:21Þ

Now let us consider de Sitter massless spin-3
2
field equation.

As previously mentioned [25]. The spinor–vector unitary

irreducible representations can be classified using the

eigenvalues of Qð1Þ and the field equation can be written as:

Q
ð1Þ
3
2

� Q
ð1Þ
3
2

D E� �
jaðxÞ ¼ 0: ð2:22Þ

For spin-3
2
field, according to the possible values of p and q,

two types of the unitary irreducible representations are

distinguished for the de Sitter group SOð1; 4Þ namely, the

principal and discrete series.

1. The unitary irreducible representations U
3
2
;m in the

principal series where p ¼ s ¼ 3
2
and q ¼ 1

2
þ im corre-

spond to the Casimir spectral values:

Q
ð1Þ
3
2

D E
¼ m2 � 3

2
; m 2 IR m[

3

2
;

Note that U
3
2
;m and U

3
2
;�m are equivalent.

2. The unitary irreducible representations P�3
2
;q of the

discrete series, where p ¼ s ¼ 3
2
correspond to:

Q
ð1Þ
3
2

D E
¼ � 5

2
; q ¼ 3

2
; P�3

2
;3
2
; ð2:23Þ

Q
ð1Þ
3
2

D E
¼ � 3

2
; q ¼ 1

2
; P�3

2
;1
2
; ð2:24Þ

where the sign � stands for the helicity. The ‘‘massless’’

spin-3
2
field in dS space corresponds to the discrete series

P�3
2
;3
2
and the field equation is:

Q
ð1Þ
3
2

þ 5

2

� �
jaðxÞ ¼ 0; ð2:25Þ

where

Q
ð1Þ
3
2

jaðxÞ ¼ � 1

2
MabM

ab þ i

2
cacbM

ab � 3� 5

2

� �
jaðxÞ

� 2ox:jðxÞ þ 2xo:jðxÞ þ cc:jðxÞ:
ð2:26Þ

However, with the subsidiary condition o:j ¼ o>:j ¼
c:jðxÞ ¼ 0, the ‘‘massless’’ spin-3

2
field is singular. This

type of singularity is actually due to the divergencelessness

condition needed to associate this field with a specific

unitary irreducible representation of dS group. To solve

this problem, the subsidiary condition must be dropped.

Then, the field equation (2.25) replaced with the following

equation

Q
ð1Þ
3
2

þ 5

2

� �
jaðxÞ � D3

2
a
�o:jðxÞ ¼ 0; ð2:27Þ

where

D3
2
a ¼ ��oa � �ca 6 x:

One can show that this equation is invariant under the

gauge transformation:
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jaðxÞ ! j0aðxÞ ¼ jaðxÞ þ D3
2
af: ð2:28Þ

where f is an arbitrary spinor field. By introducing a gauge

fixing parameter c, the wave equation now reads as:

Q
ð1Þ
3
2

þ 5

2

� �
jðxÞ � cD3

2
a
�o:jðxÞ ¼ 0; ð2:29Þ

The role of c is just to fix the gauge field f. The first-order
field equation is now simply introduced as follows:

6 x �6 ojaðxÞ � jaðxÞ � xa 6 x 6 jþ D3
2
a 6 x 6 j ¼ 0; ð2:30Þ

where this equation is invariant under the gauge transfor-

mation as follow:

jaðxÞ ! j0aðxÞ ¼ jaðxÞ þ o>a f: ð2:31Þ

The solutions of this equation obviously satisfied the field

equation (2.29).

There exists another first-order field equation:

6 x �6 ojaðxÞ � 3jaðxÞ � xa 6 x 6 j� o>a 6 x 6 j ¼ 0; ð2:32Þ

this equation is invariant under the gauge transformation

jaðxÞ ! j0aðxÞ ¼ jaðxÞ þ D3
2
af:

UIRs of the conformal group

In the Minkowski space, the massless field equations are

conformally invariant. For every massless representation

of Poincare group, there exists only one corresponding

representation in the conformal group [26, 27]. The

massless field with spin-1
2
associated with discrete seriesQ�

p;s and their unitary irreducible representation are
Q�

1
2
;1
2
,

where p ¼ q ¼ s ¼ 1
2

correspond to hQð1Þ1
2

i ¼ 3
2

where

these two representations have a Minkowskian interpre-

tation. For spin-3
2
field, the two unitary irreducible rep-

resentations P�3
2
;3
2
have a Minkowskian interpretation. The

direct sum of two UIR’s Cðjþ 1; j; 0Þ and Cð�ðjþ
1Þ; j; 0Þ of the conformal group SO(2,4), with positive

and negative energy and j ¼ 1
2
for spinor field j ¼ 3

2
for

spin-3
2
field, is a unique extension of representation

Q�
j;j.

The massless Poincare UIR’s P[ ð0; jÞ and P\ð0; jÞ with
positive and negative energies, respectively, and posi-

tive helicity. The following diagrams illustrate these

relations:

Cðjþ1;j;0Þ Cðjþ1;j;0Þ  - P[ð0;jÞ

Pþj;j ,! 	 �!H¼0 	 	
Cð�ðjþ1Þ;j;0Þ Cð�ðjþ1Þ;j;0Þ  - P\ð0;jÞ;

ð3:1Þ

Cðjþ1;0; jÞ Cðjþ1;0; jÞ  - P[ ð0;�jÞ

P�j;j ,! 	 �!H¼0 	 	
Cð�ðjþ1Þ;0; jÞ Cð�ðjþ1Þ;0; jÞ  - P\ð0;�jÞ;

ð3:2Þ

where the arrows ,! designate unique extension. It is

important to note that the representations P�3
2
;1
2
do not have

corresponding flat limit.

Diracs six-cone and the projective of the six-cone

Diracs six-cone is a five-dimensional super-surface in IR6

that

define by:

u2 ¼ gabu
aub ¼ u20 � u!2 þ u25 ¼ 0; ð4:1Þ

where

gab ¼ diagð1;�1;�1;�1;�1; 1Þ; a; b ¼ 0; 1; 2; 3; 4; 5

u!� ðu1; u2; u3; u4Þ:

If operator Â that act on the field / in IR6 satisfy the

relation

Âu2/ ¼ u2 �̂A/;

for any /, it is to be intrinsic. Wave equations, subsidiary

conditions, etc., must be expressed in terms of operators

that are defined intrinsically on the cone. One of the

intrinsic operators is powers of d’Alembertian ðoaoaÞn
which acts intrinsically on fields of conformal degree

ðn� 2Þ. For tensor or spinor fields of degree �1; 0; 1; . . .;
the intrinsic wave operators are o2; ðo2Þ2; ðo2Þ3; . . .
respectively [28]. Thus, the following CI system of equa-

tions, on the cone, has been used [1]:

ðoaoaÞnW ¼ 0;

N̂5W ¼ ðn� 2ÞW;

�
ð4:2Þ

where W is tensor or spinor field of a definite rank and

symmetry. Other examples of the intrinsic operators are:

1. Fifteen generators of the conformal group SO0ð2; 4Þ
Mab ¼ iðuaob � uboaÞ;

2. The conformal-degree operator N5

N5 � uaoa;

3. The intrinsic gradient

Grada � uaobo
b � ð2N5 þ 4Þoa;

4. The powers of d’Alembertian
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ðoaoaÞn;

which acts intrinsically on fields of conformal degree

(n-2).

With CI conditions that added to the above system, the

space of solutions restricted. The following conditions are

introduced by:

1. transversality

uaW
ab... ¼ 0;

2. divergencelessness

GradaW
ab... ¼ 0;

3. tracelessness

Wa
ab... ¼ 0:

Now, with regard to the following relations:

xa ¼ ðu5Þ�1ua;
x5 ¼ u5;

(
ð4:3Þ

the coordinates on the cone u2 ¼ 0 projected to the 4þ 1

de sitter space. Note that in the projective coordinate, x5

becomes superfluous. So that intrinsic operators that

introduced read as:

1. The ten SO0ð1; 4Þ generators
Mab ¼ iðxaob � xboaÞ; ð4:4Þ

2. The conformal-degree operatorN5

N5 ¼ x5
o

ox5
; ð4:5Þ

3. The conformal gradient [29]

Grada ¼ �x�15 xa½Q0 � N5ðN5 � 1Þ� þ 2�oaðN5 þ 1Þ;
ð4:6Þ

4. The powers of d’AlembertianðoaoaÞn which acts

intrinsically on field of conformal degree (n-2)

ðoaoaÞn ¼ �x�2n5

Yn
j¼1
½Q0 þ ðjþ 1Þðj� 2Þ� : ð4:7Þ

In the next section, we use this formalism to write con-

formal invariant wave equation of massless field.

Conformal invariant spinor field equation in de
sitter space

For spinor field, the simplest conformally invariant system

is obtained from (4.2) with n ¼ 1:

ðoaoaÞW ¼ 0;

N5W ¼ �W:

�
ð5:1Þ

We introduce w ¼ x5W where W is spinor field on the cone

and w is spinor field on the de Sitter space. With using (4.7)

the conformally invariant equation derived as:

ðQ0 � 2Þw ¼ 0; ð5:2Þ

which is a massless conformally coupled spinor field in de

Sitter space. After making use of (2.16), the first-order field

equation in this case becomes as follows:

ð6 x 6 o> � 2ÞwðxÞ ¼ 0; ð5:3Þ

therefore, the field wðxÞ associates with the UIR of dS

group P�1
2
;1
2
and propagates on the dS light cone.

Now, we apply this method to the spin-3
2
field. In this

case, six degrees of freedom of spinor field on the cone are

classified as:

ja ¼ x5ðWa þ xax:WÞ; w1 ¼ x5W5; w2 ¼ x5x:W;

ð5:4Þ

where w1;w2 are spinor fields on dS space. The condition

x:j ¼ 0 satisfied by the above definition, therefore, ja is a

spin-3
2
field that lives on de Sitter hyperboloid. With using

n ¼ 1 in (4.2) conformal invariant wave equation for Wa

obtained as follows (Appendix 2):

ðQ0 � 2ÞWa ¼ 0; ð5:5Þ

where Wa is a spin-3
2
field on the cone.

After doing some calculations, following CI system of

field equations is obtained (see Appendix 2):

ðQ0 � 2Þja þ 2xa�o:jþ �oa�o:j ¼ 0; ð5:6Þ

ðQ0 � 2Þw1 ¼ 0; ðQ0 � 2Þw2 ¼ 0; ð5:7Þ

that indicates w1 and w2 are both conformal invariant

massless spinor fields. Using the transversality condition

on the cone we obtain:

w2 ¼
1

2
�o:j;

ðQ0 � 2Þ�o:j ¼ 0: ð5:8Þ

However, one can use (2.26), to write the CI equation (5.6)

as:

Q
ð1Þ
3
2

� 6 x �6 oþ 7

2

� �
ja þ �oa�o:j� cac:j ¼ 0; ð5:9Þ

with using Eqs. (2.25) and (2.30) the above field equation

can be rewritten as:
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Q
ð1Þ
3
2

�5

2

� �
ja�ð6 x 6 o>ja�ja�xa 6 x 6j� �oa�o:jþc>a 6jÞ¼ 0;

ð5:10Þ

the fields should be projected to the de Sitter space, the

transverse projection implies the transversality of fields,

x:j ¼ 0, so that from the homogeneity condition, one

obtains xax:oja ¼ 0. These two conditions impose the

following constrains on the projected fields:

x:W ¼ 0 ¼ W5, and consequently ja ¼ Wa. In Appendix 2,

it is shown that the CI divergencelessness condition on the

cone, namely raW
a ¼ 0, results in oT aja ¼ 0 ¼ oT aW

a,

which indicates the divergenceless fields are only mapped

from the cone on dS hyperboloid..

For simplicity and irreducibility of vector–spinor field

representation, the CI condition caWa ¼ 0 on the cone is

imposed, this leads to cbjb ¼6 j ¼ 0, which is the confor-

mally invariant condition on the de Sitter hyperboloid.

Imposing this condition and irreducibility (see (2.25)), one

receives the following first- and second-order CI field

equations

6 x 6 oT � 1
� �

jaðxÞ ¼ 0; and Q
ð1Þ
3
2

þ 5

2

� �
ja ¼ 0:

ð5:11Þ

In this case, ja associates with the UIR of dS group,

namely P�3
2
;3
2
, and note that it propagates on the dS light

cone. In the following sections, we find the solution of this

vector–spinor field.

The solutions of conformally invariant field
equation

Using the de Sitter plane waves [30], the de Sitter–Dirac

plane wave for spinor field calculated [23]. In this section,

the solution of the conformally invariant wave equation in

terms of the de Sitter–Dirac plan wave calculated. A gen-

eral solution of Eq. (5.11) can be written in terms of spinor

fields w1;w2;w3 as follows:

jaðxÞ ¼ Z>a w1 þ D3
2
aw2 þ c>a w3; ð6:1Þ

where Z is an arbitrary five-component constant vector

field

Z>a ¼ habZ
b ¼ Za þ H2xax � Z; x � Z> ¼ 0:

If we want the field ja to obey simultaneously the second-

and first-order field equation (5.11) we find that, the spinor

fields w1;w2 and w3 must obey the following equations:

ðQ0þ 6 x 6 o> � 3Þw1 ¼ 0; ð6:2Þ

2ðx:ZÞw1 þ ðQ0þ 6 x 6 o>Þw2 ¼ 0; ð6:3Þ

6 xðZ:xÞþ 6 Z½ �w1 þ ðQ0þ 6 x 6 o>Þw3 ¼ 0; ð6:4Þ

and

ð6 x 6 o> � 1Þw1 ¼ 0; ð6:5Þ

ð6 x� 2Þw2 � 2 6 xw3 ¼ 0; ð6:6Þ

6 x 6 o>w3 � ð4 6 xþ 1Þw2� 6 x:Zw1 ¼ 0; ð6:7Þ

with using (6.2) and (6.5) we find that:

ðQ0 � 2Þw1 ¼ 0; ð6:8Þ

that indicates w1 is massless conformally coupled spinor

field with homogeneity degree of r ¼ �1 and �2 [23].

In Eq. (6.1), all sentences must have the same degree of

homogeneity. The homogeneity degree of Z>a and c>a is

zero. Therefore, the homogeneity degree of w3 must be

equal with w1. So, the homogeneity degree of w2 must be

r ¼ 0;�3.
Eq. (6.6) results in

w2 ¼
2

5
ð1� 2 6 xÞw3; or w3 ¼

1

2
ð1þ 2 6 xÞw2: ð6:9Þ

Now let us multiply 6 oT from the left on Eqs. (6.6) and

(6.7), after doing some calculations, this yields

Q0w2 ¼
2

5
ð1� 2 6 xÞw2 þ 2½3x:Z� 6 x 6 ZT �w1; ð6:10Þ

Q0w3 ¼ �
2

5
ð2 6 xþ 7Þw3 þ ½3x:Z� 6 x 6 ZT �w1: ð6:11Þ

Inserting these results in Eqs. (6.2), (6.3), (6.4) and after

making use of (6.9), one can write w2 and w3 in term of w1

as follows

w2 ¼
1

2
1þ 3 6 xð Þ½6 Z þ ð1þ 3 6 xÞx � Z�w1; ð6:12Þ

w3 ¼�
5

4
1� 6 xð Þ 6 Z þ ð1þ 3 6 xÞx � Z½ �w1: ð6:13Þ

Using the divergencelessness condition and the above

relations, one obtains

ðZ � oT þ 3x �ZÞw1þ
1

2
ð6 x� 3Þ½6 Zþð1þ 3 6 xÞx �Z�w1 ¼ 0;

ð6:14Þ

and making use of 6 j¼ 0 leads one to write

6 ZTw1 � ð4 6 xþ 6 oTÞw2 þ 4w3 ¼ 0;

and in terms of w1, this equation becomes

6 ZTw1 þ 2ð6 xþ 5Þ 6 Z þ ð1þ 3 6 xÞx � Z½ �w1

� 2

5
ð1þ 2 6 xÞx � Zw1 ¼ 0: ð6:15Þ
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Actually what we have obtained is that by dealing with w1,

the other two fields will be established as well. Conse-

quently by gathering all the results, j can be written as

follows

jaðxÞ ¼ Daðx; oT;ZÞw1; ð6:16Þ

where we have defined

Daðx; oT;ZÞ � ZT
a þ

1

2
Dð

3
2
Þ

a 1þ 3 6 xð Þ � 5

4
cTa ð1� 6 xÞ

	 


6 Z þ ð1þ 3 6 xÞx � Z½ �:

In this formalism, a given spin-3
2
field could be constructed

from the multiplication of the polarization vector Da or Za
(5 degrees of freedom) with the spinor field w1 (2 degrees

of freedom), which appears naturally ten polarization

states. After making use of (6.14) and (6.15), the degrees of

freedom are indeed reduced to the usual four polarization

states m3
2
¼ 3

2
; 1
2
;� 1

2
and � 3

2
, where two of them are the

physical states � 3
2
[31].

Now, w1 should be identified. Making use of the relation

between the s ¼ 1=2 and spin-zero Casimir operators,

Eq. (6.8) can be written as

Q
ð1Þ
1
2

� 1

2

� �
w1ðxÞ ¼ 0: ð6:17Þ

This means that w1 and its related two-point functions can

in fact be extracted from a massive spinor field in the

principal series representation given by (2.11) by setting

m ¼ �i.
Therefore, the solutions of (6.8) are found to be [23, 32]:

w1n;VðxÞ ¼ Vðx; nÞðHx:nÞ
�1; ð6:18Þ

w
0

1n;UðxÞ ¼ UðnÞðHx:nÞ
�3; ð6:19Þ

where Vðx; nÞ ¼ 6x 6n
x:nVðnÞ and

n2 Cþ ¼ fn; gabnanb ¼ ðn0Þ2� n~:n~�ðn4Þ2 ¼ 0; n0[0g:

The two spinors VðnÞ and UðnÞ are

UaðnÞ ¼ n0 � n~:c~c0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ 1Þ

q Uaðnþ
o

Þ;

VaðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ 1Þ

q Uaðn�
o

Þ; a ¼ 1; 2;

ð6:20Þ

where

U1ðn
o

þ
Þ ¼ 1ffiffiffi

2
p

a

a

� �
; U2ðnþ

o

Þ ¼ 1ffiffiffi
2
p

b

b

� �
; ð6:21Þ

U1ðn
o

�
Þ ¼ 1ffiffiffi

2
p

a

alpha

� �
; U2ðn�

o

Þ ¼ 1ffiffiffi
2
p

b

�b

� �
; ð6:22Þ

with a ¼ 1

0

� �
, b ¼ 0

1

� �
and n ¼ n

o

�
� ð1; 0~;�1Þ.

Eventually, two solutions for jaðxÞ are

j1aðxÞ ¼ ZT
a þ

1

2
Dð

3
2
Þ

a 1þ 3 6 xð Þ � 5

4
cTa ð1� 6 xÞ

	 
	

6 Z þ ð1þ 3 6 xÞx � Z½ ��VðnÞðHx:nÞ�1

� Vaðx; n; ZÞðHx:nÞ�1; ð6:23Þ

and

j2aðxÞ ¼ ZT
a þ

1

2
Dð

3
2
Þ

a 1þ 3 6 xð Þ � 5

4
cTa ð1� 6 xÞ

	 
	

6 Z þ ð1þ 3 6 xÞx � Z½ ��UðnÞðHx:nÞ�3

� Uaðx; n;ZÞðHx:nÞ�3: ð6:24Þ

By taking the derivative of plan wave ðx:nÞr; the explicit

forms of Ua and Va are obtained in terms of n as follows:

Vaðx; n; ZÞ ¼ ZT
a þ

1

2
Dð

3
2
Þ

a 1þ 3 6 xð Þ � 5

4
cTa ð1� 6 xÞ

	 
	

6 Z þ ð1þ 3 6 xÞx � Z½ �� 6 x 6 n
x:n
VðnÞ;

ð6:25Þ

and

Uaðx; n; ZÞ ¼ ZT
a þ

1

2
Dð

3
2
Þ

a 1þ 3 6 xð Þ � 5

4
cTa ð1� 6 xÞ

	 
	

6 Z þ ð1þ 3 6 xÞx � Z½ ��UðnÞ:
ð6:26Þ

Conclusion

Conformal transformations and conformal techniques have

been used in general relativity for a long time [33]. As one

knows, the quantum theory of gravity based on Einstein

equation is not renormalizable [34]. Also, it is proved that

the conformal theories of gravity are better to renormalize

[35, 36]. The gravitational field is long range and propa-

gates with the speed of light, thus in the linear approxi-

mation, expected the equations governing its dynamic must

be conformally invariant, whereas, the Einstein equation is

not conformally invariant equation.

In the linear approximation, gravitational field resem-

bles as a massless particle with spin-2 that propagates on

the background space–time. In this paper, we study fer-

mionic partner of gravitational field, massless spin-3
2
field,

in de Sitter space. We used Dirac’s six-cone formalism to

obtain CI massless spin-3
2
wave equation in dS space which

corresponds to UIRs of the dS group. We obtain the

solutions in ambient space notation.
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Appendix 1: Some useful relations

In this appendix, some useful relations are given.

�oa ¼ oa þ xax:o ¼ oa � xa þ x:oxa ð7:1Þ

Q0
�oa ¼ �oaQ0 þ 2 �oa þ 2xaQ0 ð7:2Þ

Q0xa ¼ xaQ0 � 4xa � 2 �oa ð7:3Þ

�ca ¼ Hb
acb ¼ ca þ xax:c ð7:4Þ

D3
2
a ¼ � �oa � �ca 6 x ð7:5Þ

Q
ð1Þ
3
2

D3
2
¼ D3

2
Q
ð1Þ
1
2

ð7:6Þ

Q0 ¼ ��o
2 ð7:7Þ

c>a 6 x ¼ �6 xc>a ð7:8Þ

Q3
2
o>a ¼ o>a ðQ0þ 6 x 6 o>Þ ð7:9Þ

6 o>D3
2
a ¼ D3

2
a 6 o>� 6 xo>a � xa 6 o> � 4xa 6 xþ 3c>a ð7:10Þ

Q0D3
2
a ¼D3

2
aQ0� 4o>a þ 4c>a 6 x� 2c>a 6 o> � 2xa 6 x 6 o> ð7:11Þ

6 x 6 o>xa ¼ xa 6 x 6 o>þ 6 xc>a ð7:12Þ

Q0 6 x 6 o> ¼6 x 6 o>Q0 ð7:13Þ

Z>a ¼ Za þ xax:Z ð7:14Þ

Q0Z
>
a ¼ Z>a Q0 � 2xaZ:o

> � 4xax:Z ð7:15Þ

o>:Z> ¼ Z:o> þ 4x:Z ð7:16Þ

6 Z> ¼6 Zþ 6 xx:Z ð7:17Þ

6 o> 6 Z> ¼6 Z> 6 o>þ 6 x 6 Z> þ 4x:Z ð7:18Þ

Q0 6 xðx:ZÞ ¼6 xx:ZQ0 � 8 6 xx:Z � 2 6 xðZ:o>Þ � 2 6 o>ðx:ZÞ ð7:19Þ

Q0 6 xðZ:o>Þ ¼6 xðZ:o>ÞQ0 � 2 6 xðZ:o>Þ
þ 2 6 xðx:ZÞQ0 � 2 6 o>ðZ:o>Þ

ð7:20Þ

6 o>ðZ:o>Þ ¼ �2 6 xðZ:o>Þþ 6 xðx:ZÞ ð7:21Þ

6 o>ðx:ZÞ ¼ � 6 xðx:ZÞþ 6 Z> ð7:22Þ

Appendix 2: CI wave equation

By considering (4.7) and (5.1) we can write:

ðQ0 � 2ÞWa ¼ 0 ð8:1Þ

then using transversality condition we have:

ðQ0 � 2Þx:W ¼ 0 ð8:2Þ

If we multiply the relation (2.1) this appendix in xa from

left we obtain:

Q0xaW
a þ 2xaW

a þ 2�oaW
a ¼ 0

then

�o:W ¼ �2x:W ð8:3Þ

Now we get divergence from ja in (5.4) as follows:

�o:j ¼ 2x5x:W ð8:4Þ

where the relation (2.3) in this appendix has been used to

obtain the above relation. Also, it is known that

ðQ0 � 2Þ�o:j ¼ 0

Now the operator ðQ0 � 2Þ can work on relationship ja in
(5.4):

ðQ0 � 2Þja ¼ x5½�8xax:W� 2xa�o:W� 2�oaðx:WÞ�

then

ðQ0 � 2Þja ¼ x5½�4xax:W� 2�oaðx:WÞ�

Finally, we obtain CI spin-3
2
equation as follows:

ðQ0 � 2Þja þ 2xa�o:jþ �oa�o:j ¼ 0 ð8:5Þ
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