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Abstract The present study deals with spatially homo-

geneous and totally anisotropic Bianchi type-VI0 bulk

viscous cosmological models in Lyra geometry. The Ein-

stein’s field equations have been solved exactly by taking

the shear (r) in the model proportional to expansion scalar

ðhÞ which leads to A = Bn, where A and B are metric

functions and n is a positive constant (n [ 1). We also

adopt a condition fh ¼ L (constant) where f is the coeffi-

cient of bulk viscosity. It has been found that the dis-

placement vector (b) is a decreasing function of time and it

approaches to a small positive value at late time which is

supported by recent observations. It is also found that the

distance modulus curve of derived model matches with

observations perfectly.

Keywords Bianchi type-VI0 universe � Accelerated

expansion � Bulk viscosity � Lyra geometry

Introduction

Several modifications of Riemannian geometry have been

proposed so far in an attempt to unify gravitation, elec-

tromagnetic field and many other effects in the universe.

Weyl [1] tries to unify gravitation and electromagnetism in

single space–time geometry. But Weyl’s theory was not

taken seriously because it was based on the non-integra-

bility of length transfer. Later on, Lyra [2] proposed a

further modification of Riemannian geometry and removed

non-integrability of length transfer by introducing a gauge

function into the structure-less manifold as a result of

which a displacement vector arise naturally. In consecutive

investigations Sen [3], Sen and Dunn [4] proposed a new

scalar–tensor theory of gravitation and constructed an

analog of the Einstein field equations based on Lyra’s

geometry. Halford [5] has pointed out that the constant

vector displacement field /i in Lyra’s geometry plays the

role of cosmological constant K in the normal general

relativistic treatment. It is shown by Halford [6] that the

scalar–tensor treatment based on Lyra’s geometry predicts

the same effects within observational limits as the Ein-

stein’s theory.

Cosmological observations on expansion history of the

universe indicate that current universe is not only

expanding but also accelerating. This late time accelerated

expansion of the universe has been confirmed by high

redshift supernovae experiments (Riess et al. [7], Perl-

mutter et al. [8], Bennett et al. [9]). Also, observations such

as cosmic background radiation [10, 11] and large-scale

structure [12] provide an indirect evidence for late time

acceleration.

The simplest model of the observed universe is well

represented by Friedmann–Robertson–Walker (FRW)

models, which are both spatially homogeneous and iso-

tropic. These models in some sense are good global

approximation of the present day universe. But on smaller

scales, the universe is neither homogeneous nor isotropic.

There are theoretical arguments [13, 14] and recent

experimental data regarding cosmic background radiation

anisotropies which support the existence of an anisotropic

phase that approaches an isotropic one [15]. Bianchi types

I–IX cosmological models are important in the sense that

these are homogeneous and anisotropic, from which the
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process of isotropization of the universe is studied through

the passage of time. Bianchi type-VI0 space–time is of

special interest in anisotropic cosmology. Barrow [16]

pointed out that Bianchi type-VI0 models of the universe

give a better explanation of some of the cosmological

problems like primordial helium abundance and they also

isotropize in a special sense.

Astronomical observations of the large-scale distribution

of galaxies in the universe show that the distribution of

matter can be satisfactorily described by perfect fluid.

However, bulk viscosity is expected to play an important role

at certain stages of expanding universe. Various authors [14,

17, 18] have shown that bulk viscosity leads to inflationary-

like solution and acts like a negative energy field in an

expanding universe. At an early stage of the universe, when

neutrino decoupling occurs during radiation era and decou-

pling of radiation with matter takes place during recombi-

nation era, the matter behaves like a viscous fluid. The

coefficient of viscosity is known to decrease as the universe

expands. Gron [19] has reviewed viscous cosmological

models and deduced that viscosity plays an important role in

the process of isotropization of the universe. Apart from these

qualitative discussions, suitable viscous fluid cosmological

models have been discussed in different contexts by several

authors such as Pavon et al. [20], Burd and Coley [21], Fabris

et al. [22], Johri and Sudharsan [23], Murphy [24], Heller and

Klimek [25] and Bali et al. [26, 27].

Motivated by the situation discussed above, in this paper

we have obtained accelerating Bianchi type-VI0 bulk vis-

cous cosmological models with a time-dependent dis-

placement field within the framework of Lyra’s geometry.

To get the deterministic model of the universe, we have

assumed two conditions: (1) fh ¼ L (constant) and (2)

r / h. The physical and geometrical aspects of the models

are also discussed.

Metric and field equations

We consider the spatially homogeneous and anisotropic

Bianchi type-VI0 space–time in the form

ds2 ¼ �dt2 þ A2dx2 þ B2e2xdy2 þ C2e�2xdz2 ð1Þ

where the metric potentials A, B and C are functions of the

cosmic time t.

Einstein’s modified filed equation in normal gauge for

Lyra’s manifold obtained by Sen [3] is given by (in

geometrized unit where 8pG = 1, c = 1)

R
j
i �

1

2
g

j
i R þ 3

2
/i/

j � 3

4
/k/

kg
j
i ¼ �T

j
i ; ð2Þ

where /i is the displacement vector defined as

/i = (0, 0, 0, b(t)) and other symbols have their usual

meaning as in Riemannian geometry. We assume the

cosmic matter consisting of bulk viscous fluid given by the

energy momentum tensor

T
j

i ¼ p þ qð Þviv
j þ pg

j
i � fh g

j
i þ viv

j
� �

; ð3Þ

where vi = (0, 0, 0, -1), vivi = -1, v4 = -1, v4 = 1, p is

the isotropic pressure, q the matter density, vi the fluid flow

vector and b the gauge function.

The equation of state for the fluid is taken as

p ¼ xq; ð4Þ

where 0 B x B 1 is a constant. For the metric (1), the field

Eqs. (2) together with (3) lead to
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Here and in what follows, an overhead dot denotes

ordinary differentiation with respect to t. The energy con-

servation equation T
j

i;j ¼ 0 leads to,

_q þ q þ p � fhð Þ
_A

A
þ

_B

B
þ

_C

C

� �
¼ 0 ð10Þ

and conservation of L.H.S of (2) leads to

R
j
i �

1

2
g

j
i R

� �

;j

þ 3

2
/i/

j
� �

;j
� 3

4
/k/

kg
j
i

� �
;j ¼ 0: ð11Þ

Equation (11) leads to
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Equation (12) is automatically satisfied for i = 1, 2, 3.

For i = 4, Eq. (12) leads to

3
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which leads to

3

2
b _b þ 3

2
b2

_A

A
þ

_B

B
þ

_C

C

� �
¼ 0: ð14Þ

Integrating Eq. (9), we obtain

B ¼ lC: ð15Þ

Here, l is a constant of integration which can be taken as

unity without any loss of generality so that

B ¼ C: ð16Þ

The average scale factor a for the metric (1) is defined

by

a ¼ AB2
� �1

3: ð17Þ

The spatial volume V is given by

V ¼ a3 ¼ AB2: ð18Þ

The generalized mean Hubble parameter H is given by

H ¼ _a

a
¼ 1

3
H1 þ H2 þ H3ð Þ ð19Þ

where H1 ¼ _A
A
, H2 ¼ H3 ¼ _B

B
are the directional Hubble

parameters in the directions of x, y and z axes, respectively.

The expansion scalar h and shear scalar r are given by

h ¼
_A

A
þ 2

_B

B
; ð20Þ

r2 ¼ 1

2

_A2

A2
þ 2

_B2

B2

� �
� 1

6
h2: ð21Þ

The mean anisotropy parameter Am is given by

Am ¼ 1

3

X3

i¼1

DHi

H

� �2

; ð22Þ

where DHi = Hi - H(i = 1, 2, 3). An important observa-

tional quantity in cosmology is the deceleration parameter

q which is defined as

q ¼ � a€a

_a2
¼ �

_H þ H2

H2

� �
: ð23Þ

Solutions of the Field Equations

To solve the field equations completely, we constrain, the

system of equations with proportionality relation of shear

scalar (r) and expansion scalar ðhÞ [28]. This condition

leads to the following relation between metric potentials

A ¼ Bn; ð24Þ

where n is a positive constant (n [ 1).

The reasons for consideration of Eq. (24) can be explained

by the work of Thorne [29]. The observations of the velocity–

redshift relation for extragalactic sources suggest that the

Hubble expansion of the universe is isotropic today within

approximately 30 % [30, 31]. More precisely, the redshift

studies place the limit r/H B 0.30 where r is shear and H the

Hubble constant. Collins et al. [32] have pointed out that for

spatially homogeneous metric, the normal congruence to the

homogeneous hypersurface satisfies the condition r=h as

constant which leads to the assumption A = Bn.

We also assume that coefficient of bulk viscosity f is

inversely proportional to the expansion h; i.e.,

fh ¼ L ðconstantÞ: ð25Þ

The motive behind assuming this condition is explained

in Ref. [33–35]. Using Eq. (24) in Eqs. (5) and (6), we

obtain

2€B þ 2a _B2B�1 ¼ 2cB1�2n ð26Þ

where a = n ? 1, c ¼ 2
n�1

. Putting _B ¼ gðBÞ, €B ¼ g dg
dB

in

Eq. (26) and then integrating, we obtain

dt ¼ c
2

B4�2a þ k1B�2a
h i�1

2

dB; ð27Þ

where k1 is a constant of integration.

If we put n = 1, in Eq. (26) (since c ¼ 2
n�1

) then there

arises a singularity. So, we cannot consider n = 1 in the

present model to explain the feature of the universe.

With the help of Eq. (27), the line element (1) reduces to

ds2 ¼ � dB2

B�2a c
2

B4 þ k1

� 	þ B2ndx2

þ B2 e2xdy2 þ e�2xdz2
� �

: ð28Þ

After using the suitable transformation of coordinates

B = T, the above model (28) transforms to

ds2 ¼ � dT2

T�2 nþ1ð Þ 1
n�1

� �
T4 þ k1

� 	þ T2ndx2

þ T2 e2xdy2 þ e�2xdz2
� �

: ð29Þ

Some physical and geometrical features

The displacement vector bð Þ, energy density qð Þ and

pressure ðpÞ for the model (29) are found to be

b ¼ k2

1

n � 1
T�4n�2 þ k1T�4n�6

� �1
2

; ð30Þ

q¼ nþ2

n�1
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2
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�3

4
k1k2

2T�4n�6; ð31Þ
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�

� 3k2
2
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4
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where k2 is a constant of integration. It is observed that the

displacement vector (b) was large in the beginning, but

decreases fast with the evolution of the model analogous to

cosmological constant (K). The energy density (q) and

pressure (p) are also decreasing function of time T. The

energy density q ? ? when T ? 0 and q ? 0 when

T ? ?.

The mean Hubble parameter (H), expansion scalar ðhÞ,
shear scalar (r) are given by

H ¼ n þ 2

3

� �
1

n � 1

� �
T�2n þ k1T�2n�4

� �1
2

; ð33Þ

h ¼ n þ 2ð Þ 1

n � 1

� �
T�2n þ k1T�2n�4

� �1
2

; ð34Þ

r2 ¼ 1

3
n � 1ð Þ2 1

n � 1

� �
T�2n þ k1T�2n�4

� �
: ð35Þ

The Hubble parameter (H), expansion scalar ðhÞ and

shear scalar (r) are tend to zero when T ? ? and they

become infinite when T ? 0.

Average scale factor (a) and spatial volume (V) are

given by

a ¼ T� 2nþ3ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n � 1

� �
T4 þ k1

s" #�1
3

; ð36Þ

V ¼ Tnþ2: ð37Þ

The spatial volume V ? 0 when T ? 0 and V ? ?
when T ? ?.

Also,

limT!1
r2

h2
¼ 1

3

n � 1

n þ 2

� �2

6¼ 0: ð38Þ

Therefore, the model does not isotropic for large values

of T .

Coefficient of bulk viscosity (f) and mean anisotropy

parameter (Am) are found to be

f ¼ L

n þ 2

� �
1

n � 1
T�2n þ k1T�2n�4

� ��1
2

: ð39Þ

Am ¼ 1

3
1 � 3n

n þ 2

� �2

þ2 1 � 3

n þ 2

� �2
" #

: ð40Þ

Therefore, the model has constant anisotropy parameter

throughout the evolution of the universe except n = 1.

The deceleration parameter q is found to be

q ¼ �1 þ 3

n þ 2

� �
1

n � 1
T4 þ k1

� ��1

� n þ 2ð ÞTnþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n � 1
T4 þ k1

r

�
2

n�1
Tnþ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1
T4 þ k1

q

0

B@

1

CA:

ð41Þ

Recent observations (Perlmutter et al. [8, 36, 37]; Riess

et al. [7, 38]; Tonry et al. [39]; John [40]; Knop et al. [41])

reveal that the value of deceleration parameter q is con-

fined in the range -1 B q \ 0 and the present day universe

is undergoing an accelerated expansion. We have seen in

Fig. 1 that the value of q lies in the range -1 B q \ 0

which is consistent with recent observations. The negative

value of deceleration parameter implies that our proposed

model (29) of the universe is accelerating.

Distance modulus curve

The distance modulus is given by

l ¼ 5 log dL þ 25; ð42Þ

where the luminosity distance dL is defined as

dL ¼ r1 1 þ zð Þa0: ð43Þ

Here, z and a0 represent redshift parameter and present

scale factor, respectively. For the determination r1, we

assume that photon is emitted by a source with co-ordinate

(r, t) and received at a time t0 by an observer located at

r = 0. Then, we determine r1 from

r1 ¼
Zt0

t

dt

a
: ð44Þ

Using Eqs. (27) and (36) (considering k1 = 0) and

solving Eqs. (42)–(44), we can obtain the expression for

distance modulus (l) in terms of redshift parameter (z) as

l ¼ 5 log
3
ffiffiffiffiffiffiffiffiffiffiffi
n � 1

p 2n þ 1

3H0

� �nþ2
3

1 þ zð Þ 1 � 1 þ zð Þ
1�n

2nþ1

� �
" #

þ 25: ð45Þ

In this paper, we have analyzed 18 data set out of

recently released 38 data set of SN Ia in the range

0 2 4 6 8
1.0

0.8

0.6

0.4

0.2

0.0

T

q

Fig. 1 The variation of q vs. T for the model (29) with parameters

n = 1.25, k1 = 0.001
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0.0015 B z \ 0.12 as reported by Amanullah et al. [42]

which are shown in Table 1. The comparison between

calculated l(z) and observed l(z) SN Ia data as reported by

Amanullah et al. [42] can be seen in Fig. 2. We observed

that derived model is fit well with SN Ia observations.

Conclusion

In this paper, we have obtained accelerating Bianchi type-

VI0 bulk viscous cosmological models in the framework of

Lyra’s geometry for time-dependent displacement field. To

get the deterministic model of the universe, we have

assumed two conditions: (1) fh ¼ L (constant) and (2)

r / h, where f is the coefficient of bulk viscosity, h the

expansion in the model and r the coefficient of shear vis-

cosity. It is observed that the spatial volume V ? 0 as

T ? 0 and V ? ? as T ? ?. This shows that the universe

starts expanding with zero volume at T = 0 and expands

with cosmic time T. When T ? 0, the expansion scalar

h ? ? and energy density q ? ?. Again, when T ? ?
then h ? 0 and q ? 0. Therefore, the model represents

expanding, shearing and non-rotating universe with big bang

start. Since limT!1
r2

h2 6¼ 0, therefore, the model is not iso-

tropic for large values of T. At T = 0, Hubble parameter H,

expansion scalar h, shear scalar r, pressure p and energy

density q are infinite and at late times they become zero. The

role of bulk viscosity is to retard expansion in the model. We

can see from the above discussion that the bulk viscosity

plays a significant role in the evolution of the universe. We

also observe that the displacement vector b is large in the

beginning of the universe and reduces fast during its evo-

lution so that its behavior coincides with the nature of the

cosmological constant K. The distance modulus of the

derived model fits well with the observational l(z) values

(see Fig. 2 and Table 1).
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