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Abstract
In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression 
relationships between several response variables and one explanatory variable, which is referred to as a “multivariate sim-
ple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, 
this assumption is violated; the parameters are unknown and should be estimated based on historical data sets in Phase I. 
This study aims to compare the effect of parameter estimation on the performance of three Phase II approaches for monitor-
ing multivariate simple linear profiles, designated as MEWMA, MEWMA_3 and MEWMA∕�2 . Three metrics are used 
to accomplish this objective: AARL, SDARL and CVARL. The superior method may be different in terms of the AARL and 
SDARL metrics. Using the CVARL metric helps practitioners make reliable decisions. The comparisons are carried out 
under both in-control and out-of-control conditions for all competing approaches. The corrected limits are also obtained by 
a Monte Carlo simulation in order to decrease the required number of Phase I samples for parameter estimation. The results 
reveal that parameter estimation strongly affects the in-control and out-of-control performance of monitoring approaches, 
and a large number of Phase I samples are needed to achieve a parameter estimation that is close to the known parameters. 
The simulation results show that the MEWMA and MEWMA∕�2 methods perform better than the MEWMA_3 method in 
terms of the CVARL metric. However, the superior approach is different in terms of AARL and SDARL.

Keywords Profile monitoring · Multivariate simple linear profiles · Estimation effect · Average run length · Statistical 
process monitoring · Phase II analysis

Introduction

In most statistical process monitoring (SPM) applications, it 
is assumed that the quality of a process or product is charac-
terized by the statistical distribution of a single quality char-
acteristic or a vector of several quality characteristics. How-
ever, in some cases, process quality could be characterized 
by a functional relationship between a response variable and 
one or more explanatory variables, which is referred to as a 
“profile.” Similar to other process monitoring approaches, 
profile monitoring is carried out by sampling. Several sets of 
data points are collected to represent their relationship with 

a curve (profile). The main objective of profile monitoring 
is to monitor the stability of this curve over time.

There are different types of profiles. If a linear regression 
model can represent the relationship between one response 
variable and one explanatory variable that is a simple linear 
profile. As an application of simple linear profiles, Kang 
and Albin (2000) addressed a calibration problem in semi-
conductor manufacturing and monitored the relationship 
between measured pressure (Y) and the amount of flow 
(X) using profiles. Monitoring and change point estima-
tion of simple linear profiles have been considered by some 
researchers, including Stover and Brill (1998), Mestek et al. 
(1994), Mahmoud and Woodall (2004), Wang and Tsung 
(2005), Gupta et al. (2006), Mahmoud et al. (2007), Zou 
et al. (2007), Noorossana et al. (2008), Jensen et al. (2008), 
Narvand et al. (2013), Khedmati and Niaki (2015, 2016) and 
Kalaei et al. (2018).

There are other more complicated types of profiles such 
as multiple, polynomial and nonlinear profiles that have 
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been studied by many researchers. Several approaches to 
monitor multiple linear profiles have been developed by 
some researchers, including Mahmoud (2008), Jensen et al. 
(2008), Zou et al. (2007), Parker and Finley (2007) and 
Amiri et al. (2012). In addition, Kazemzadeh et al. (2008, 
2009) proposed several methods for monitoring polynomial 
profiles. Nonlinear profile monitoring through parametric 
and nonparametric methods and mixed linear profiles has 
been studied by some researchers, including Ding et al. 
(2006), Jeong et al. (2006), Williams et al. (2007), Moguerza 
et al. (2007) and Vaghefi et al. (2009).

In the case of multivariate simple linear (MSL) profiles, 
which are the main focus of the current paper, the term “sim-
ple” refers to the uniqueness of the explanatory variable, 
and the term “multivariate” refers to the multiplicity of the 
response variable. In such profiles, there are several response 
variables, each of which has a linear regression relationship 
with one explanatory variable. Some researchers, such as 
Noorossana et al. (2010), Zou et al. (2012), Ayoubi et al. 
(2014) and Adibi et al. (2014), have studied different aspects 
of multivariate profile monitoring.

Noorossana et  al. (2010) were the first researchers 
who proposed three methods, designated as MEWMA_3, 
MEWMA∕�2 and MEWMA, for monitoring MSL profiles 
in Phase II. They evaluated the performance of these meth-
ods in detecting shifts in profile parameters under in-con-
trol and out-of-control conditions in terms of average run 
length (ARL). Their results showed that the MEWMA and 
MEWMA∕�2 methods outperform MEWMA_3. They also 
used these three methods in a real case study.

Based on the literature, profile monitoring approaches are 
divided into two phases: Phase I and Phase II. These phases 
are distinguished by the difference in their goals. In Phase I, 
a set of historical data points is available (m samples, each 
based on n observations). The main goals of Phase I are 
evaluating process stability, recognizing and eliminating 
assignable causes and estimating process parameters from 
in-control samples. The objective of Phase I is to recognize 
assignable causes with high probability. The main interest 
in Phase II is quick detection of shifts based on the esti-
mated parameters obtained in Phase I. Existing monitoring 
approaches in these two phases are dissimilar and use dif-
ferent evaluation metrics. In Phase I, the probability of a 
signal under out-of-control conditions is used to describe 
the ability of a control chart to detect shifts in parameters. 
The ARL metric and its statistical properties are applied to 
evaluate control chart performance in Phase II. To find out 
more about profile monitoring approaches in Phases I and II, 
see the review paper by Woodall et al. (2004) and Woodall 
2007) and the book edited by Noorossana et al. (2011).

In most studies of Phase II profile monitoring, it is 
assumed that the in-control parameters are known. In fact, 
the values of profile parameters are rarely known in practical 

environments and should be estimated in Phase I. This 
assumption may affect control chart performance because of 
the additional variability added by estimation of parameters. 
Therefore, the following questions should be answered:

• Does profile parameter estimation really affect the per-
formance of Phase II control chart schemes?

• What is the proper metric for measuring the effect of 
parameter estimation?

• Which method of profile monitoring is less affected by 
parameter estimation?

There are many studies in which the effect of parameter 
estimation on the performance of control charts is esti-
mated for quality characteristics except profiles, including 
Burroughs et al. (1993), Chen (1997), Chakraborti (2000), 
Shishebori and Zeinal Hamadani (2009), Shishebori et al. 
(2015), Jones et al. (2001, 2004), Shu et al. (2004), Jones 
(2002), Zhang and Chen (2002), Zwetsloot and Woodall 
(2017), Khoo (2005), Castagliola et al. (2016), Saleh et al. 
(2015). For information on more research on this area, see 
the following review papers: Jensen et al. (2006) and Psa-
rakis et al. (2014).

While a substantial number of studies have been done 
on evaluating the effect of parameter estimation on the per-
formance of control charts for non-profile characteristics, 
there are only a few studies on this topic for profile char-
acteristics. Woodall and Montgomery (2014) discussed the 
field of statistical process control, stating that “There is also 
work needed on the effect of parameter estimation error on 
the Phase II performance of profile monitoring methods.”

Mahmoud (2012) was the first author to compare the in-
control and out-of-control performance of three well-known 
simple linear profile monitoring approaches that had first 
been proposed by Kang and Albin (2000), Kim et al. (2003) 
and Mahmoud et al. (2010), for use when parameters are 
estimated. In this study, the ARL and standard deviation 
of run length (SDRL) metrics are used to compare the per-
formance of simple linear profile monitoring approaches. 
The results showed that using estimated profile parameters 
instead of known values in Phase II strongly affects the 
performance of all three methods under in-control and out-
of-control conditions in terms of both the ARL and SDRL 
metrics. This author also used simulated corrected limits to 
investigate the out-of-control performance of the monitoring 
approaches. Corrected limits are usually wider than control 
limits based on known parameters and reflect variability 
added to the process by parameters estimation. A smaller 
number of Phase I samples are needed for proper estimation 
when the corrected limits are applied. The simulation results 
showed that the method described by Mahmoud et al. (2010) 
has better out-of-control run length performance than other 
competing methods.
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Mahmoud (2012) used only the ARL and SDRL metrics 
to compare control chart performance based on estimated 
parameters. However, the standard deviation of average run 
length (SDARL) is also important in comparison with con-
trol chart performance. When different practitioners take 
samples in Phase I, they may estimate different values for 
process parameters. Consequently, they may obtain different 
values for in-control ARL, adding a new source of variabil-
ity to the process: practitioner-to-practitioner variability. In 
other words, when it is assumed that the process param-
eters are unknown in Phase II and should be estimated from 
the Phase I data set, the ARL is no longer a parameter, but 
becomes a random variable. The ARL curve has almost a 
right-skewed distribution (Jensen et al. 2006). Zhang et al. 
(2014) maintained that practitioner-to-practitioner variation 
is inevitable because different Phase I data sets are used. The 
SDARL is a very useful metric for measuring this variation. 
Researchers have suggested that the SDARL should be within 
5–10% of the desired in-control ARL value. It is obvious 
that when the process parameters are known, the SDARL is 
equal to zero. Aly et al. (2015), similar to Mahmoud (2012), 
compared the performance of three methods of simple lin-
ear profile monitoring [the method proposed by Kang and 
Albin (2000), Kim et al. (2003) and Mahmoud et al. (2010)] 
in terms of in-control AARL and SDARL, but they did not 
investigate the out-of-control performance of the mentioned 
control charts. The results of their study showed that when 
the parameters are estimated, the Kim et al. (2003) method 
generally shows better in-control performance compared to 
the other competing methods in terms of the SDARL. They 
also illustrated that if a control chart shows a particular per-
formance in terms of the ARL, it may not show the same 
performance in terms of the SDARL.

The coefficient of the variation of average run length 
(CVARL), along with the AARL and SDARL, has also been 
used to evaluate the performance of multivariate adaptive 
EWMA control charts by Aly et al. (2016). The CVARL is 
calculated by the following equation:

To the best of the authors’ knowledge, there is no study 
in the literature that evaluates the effect of parameter esti-
mation on the performance of control charts for monitor-
ing MSL profiles. This paper can be an useful source for 
quality control engineers in choosing the best control chart 
for monitoring MSL profiles. According to the simula-
tion results, using parameter estimates with upper control 
limits designed based on the known parameters can result 
in a significant deterioration of the chart performance. 
Because these estimators add extra variability in the 
chart control limit(s). Therefore, applying a control chart 
scheme which is less affected by this effect would be very 

(1)CVARL =
SDARL

AARL
× 100.

constructive and leads to a huge cost saving in terms of 
time or expenses for any manufacturing systems. Measur-
ing the estimation effect can be carried out by computing 
some metrics. In this paper, for the first time, the AARL , 
SDARL and CVARL are used to evaluate the in-control and 
out-of-control performance of control chart schemes. Note 
that, using different metrics such as the AARL or SDARL 
may lead to different results, which can lead to ambigu-
ity in choosing the best method. In this situation, using 
the CVARL , which considers both the AARL and SDARL 
metrics, can help achieve a reliable decision and choose 
the best method.

According to the literature, it is obvious that the large 
Phase I sample leads to more accurate estimates and, con-
sequently, better Phase II performance. However, there 
might be situations in which collecting a large number of 
samples is not possible. Hence, using corrected control 
limits is suggested; in this procedure, a large number of 
m Phase I data are not required to achieve the desired in-
control ARL . Using wider control chart limits to reflect 
the variability of parameters estimation is the main idea 
of using corrected limits. In previous studies such as 
Mahmoud (2012), corrected limits have been obtained in 
order to achieve an in-control value of ARL = 200. How-
ever, in the current study, corrected limits are established 
in order to achieve an in-control value of AARL = 200 
through simulation runs to consider practitioner-to-prac-
titioner variability and reduce the number of Phase I sam-
ples for parameters estimation. Note that the out-of-control 
performance of monitoring approaches is also evaluated 
based on simulated corrected limits.

The rest of this paper is organized as follows. “The mul-
tivariate simple linear regression model” section contains a 
brief explanation of the multivariate simple linear regression 
model. In “Phase II monitoring methods for multivariate 
simple linear profiles” section, three MSL profile monitor-
ing approaches in Phase II are presented. “The proposed 
approach for measuring the effect of parameter estimation 
on the performance of Phase II control charts” section pre-
sents a description of the procedure for evaluating the effect 
of parameter estimation on the performance of monitoring 
approaches. Then, “Comparison of control chart perfor-
mance under in-control conditions” section presents the 
in-control performance of competing approaches in terms 
of the AARL , SDARL and CVARL metrics. “The proposed 
approach for establishing corrected limits” section presents 
the simulated corrected limits to achieve the desired in-con-
trol AARL . In “Comparison of control chart performance 
under out-of-control conditions” section, the detection per-
formance of the control chart schemes is compared under 
different types of shifts. Finally, the conclusions and sug-
gestion for further research are provided in “Conclusion and 
suggestions for future research” section.
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The multivariate simple linear regression 
model

In this model, there is a linear regression relationship among 
several response variables and one explanatory variable in an 
MSL profile. Assume that m Phase I samples are available. In 
each sample, there are n fixed values for explanatory variable 
( x ), and for each value of n, there are p corresponding val-
ues of the response variables. Therefore, for the kth sample, n 
observations are available as follows:

where xi is ith value of the explanatory variable and 
yi1k, yi2k,… , yipk are corresponding values of the response 
variables. The relationship among the explanatory and 
response variables can be represented as:

or

where �k =
(

y1k, y2k,… , ynk
)T is an n × p matrix of the 

response variables for the kth sample. Each row of �k ( yik ) is 
related to one of the xi values, which contains p values of the 
response variables. In addition, � =

[

1 x
]

 is an n × 2 matrix 
of the explanatory variables in which x is a vector of x val-
ues. It is assumed that � =

[

1 x
]

 is fixed in all sampling 
points. �k =

(

�1k, �2k,… , �nk
)T is an n × p matrix of error 

terms for the kth sample in which each row ( �ik ) corresponds 
to one row of the response variable matrix ( �k ). Based on 
the assumptions of the multivariate regression model, each 
�ik follows a multivariate normal distribution with a 1 × p 
mean vector of zero and a p × p covariance matrix � . In 
fact, the elements of each row of �k are dependent on each 
other by a multivariate normal distribution; however, each 
row is independent of the other rows. �k =

(

�0k, �1k

)T is a 
2 × p matrix of known simple regression coefficients. Based 
on the least squares approach, the estimation of �k can be 
calculated by the following relation:

(2)
(

xi, yi1k, yi2k,… , yipk
)

, i = 1, 2,… , n k = 1, 2,… ,

(3)�k = �� + �k, k = 1, 2,… ,

(4)
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(5)

�̂k =
(

�
T
�
)−1

�
T
�k =

(

�̂0k, �̂1k

)T
=

[

𝛽01k ⋯ 𝛽0pk

𝛽11k ⋯ 𝛽1pk

]

=

[

ȳ.1k − 𝛽11kx̄ ⋯ ȳ.pk − 𝛽1pkx̄
Sxy(1)

Sxx
⋯

Sxy(p)

Sxx

]

,

where ȳ
.jk = n−1

∑n

i=1
yijk, Sxy(j) =

∑n

i=1

�

xi − x̄
�

yijk, j = 1,

2,… , p, and Sxx =
∑n

i=1
(xi − x̄)2.

Phase II monitoring methods 
for multivariate simple linear profiles

Noorossana et  al. (2010) proposed three control chart 
approaches for monitoring MSL profiles in Phase II. Then, 
they evaluated the performance of the proposed methods in 
terms of the ARL metric under in-control and out-of-control 
conditions. These three approaches are briefly discussed 
below.

MEWMA control chart

This method was first introduced by Lowry et al. (1992). �k 
can be rewritten by a 1 × 2p vector, namely �T

k
 , as follows:

The least squares error estimate of �T

k
 is �̂T

k
 , where it fol-

lows a multivariate normal distribution with mean vector of 
�T =

(

�01, �02,… , �0p, �11, �12,… , �1p

)

 and 2p × 2p covari-
ance matrix ��̂ . The formulas for computing the elements of 
��̂ were given in their paper. Finally, the zk statistic is given 
as follows (Noorossana et al. 2010):

where zk is a 1 × 2p matrix and 𝜃(0 < 𝜃 ≤ 1) is a smoothing 
parameter. It can be shown that under in-control conditions, 
zk follows a 2p multivariate normal distribution with a mean 
vector of zero and a covariance matrix �zk

=
{

𝜃

(2−𝜃)

}

��̂ . 
Hence, for kth sample, the MEWMA statistic is obtained by 
using the following equation (Noorossana et al. 2010):

In this method, the chart alarms when T2
zk
> h

𝛽
 . The value 

of h
�
 . is determined through the simulation to achieve a 

specified in-control ARL.

�����∕�2 control chart

This method is an extension of the second approach proposed 
by Kang and Albin (2000). The vector of the average error 
for the kth sample is denoted by ēk =

(

ē1k, ē2k,… , ēpk
)T , in 

which ējk =
1

n

∑n

i=1
eijk . It can be shown that under in-control 

conditions, ēk follows a p-variate normal distribution with 
a mean vector of zero and a covariance matrix �ē = n−1�.

The MEWMA method proposed by Lowry et al. (1992) is 
used to monitor average error. For the kth sample, the 1 × p 

(6)�T

k
=
(

�01k, �02k,… , �0pk, �11k, �12k,… , �1pk

)

.

(7)zk = 𝜃
(

�̂k − �
)T

+ (1 − 𝜃)zk−1, k = 1, 2,… ,

(8)T2

zk
= zk�

−1
zk
zT
k
, k = 1, 2,…
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vector of weighted moving average errors ( zk,e ) is given by 
(Noorossana et al. 2010):

where z0,e is a 1 × p vector and 𝜃(0 < 𝜃 ≤ 1) is a smoothing 
parameter. It can be shown that under in-control conditions, 
zk,e follows a p-variate normal distribution with a mean vec-
t o r  o f  z e r o  a n d  a  c o v a r i a n c e  m a t r i x 
�z,e =

{

𝜃

(2−𝜃)

}

�ē =
{

𝜃

n(2−𝜃)

}

� . For the kth sample, the 
MEWMA statistic is obtained by (Noorossana et al. 2010):

The chart signals as soon as T2
zk,e

> he . The value of he is 
determined through the simulation to achieve a specified 
in-control ARL.

Noorossana et al. (2010) developed the method proposed 
by Noorossana et al. (2004) for monitoring process variabil-
ity and proposed a new Chi-square statistic, �2

ik
= eik�

−1eT
ik
, 

which follows a Chi-square distribution with p degrees of 
freedom; consequently, �2

k
=
∑n

i=1
�
2

ik
 follows a Chi-square 

distribution with np degrees of freedom. Hence, �2
np,�

 which 
denotes the 1 − � percentile of a Chi-square distribution with 
np degrees of freedom can be used as an upper control limit 
for this statistic.

MEWMA_3 control chart

This approach is an extension of the approach given by Kim 
et al. (2003) where x values are coded so that their aver-
age becomes zero. When X̄ = 0 , the covariance between the 
estimated slope and intercept of the profile becomes zero. In 
this situation, the 1 × p vector of intercepts and 1 × p vector 
of slopes are independent and can be monitored separately. 
Then, the monitoring process of regression parameters, as 
well as process variability, can be carried out using three 
separate control charts. In this case, the relation between the 
explanatory and response variables for the ith observation is 
given by (Noorossana et al. 2010)

where x�

i
=
(

xi − x̄
)

 , �
�

1
= �1 , �

�

1
= �1 + x̄J and J is a 1 ×p 

vector of 1’s. In the new model, the estimation of intercepts 
is obtained by �̂

�

0k
=
(

ȳ.1k, ȳ.2k,… , ȳ.pk
)

 the kth sample; how-
ever, the estimation of slopes is the same as the estimate in 
the original model. When the process is in-control, �̂

′

0k
 and 

�̂
′

1k
 follow a multivariate normal distribution with mean vec-

tors of �
′

0
 and �

′

1
 and covariance matrices of �

�
�

0

= n−1� and 
�
�
�

1

=
(

Sxx
)−1

� , respectively. Note that the covariance 
between each element of �̂

′

0k
 and �̂

′

1k
 . is equal to zero. Hence, 

(9)zk,e = 𝜃ēk + (1 − 𝜃)zk−1,e, k = 1, 2,… ,

(10)T2

zk,e
= zk,e�

−1
zk,e
zT
k,e
, k = 1, 2,…

(11)yik = �
�

0
+ x

�

i
�

�

1
+ �ik, i = 1, 2,… , n,

separate control charts for monitoring of �
′

0
 and �

′

1
 can be 

implemented (Noorossana et al. 2010).
The main advantage of using three separate control 

charts is easier identification of the parameter responsible 
for out-of-control signals. In the proposed MEWMA chart 
for monitoring of intercept vector ( ̂�

′

0k
 ), the variable zIk can 

be computed by (Noorossana et al. 2010):

where zI0 is a 1 × p vector of zeros and 𝜃(0 < 𝜃 ≤ 1) is a 
smoothing parameter. It can be shown that when the process 
is in-control, zIk follows a p-variate normal distribution with 
an average vector of zero and a known covariance matrix 
�zI =

{

�

n(2−�)

}

� . Therefore, the T2

Ik
 statistic for the kth sam-

ple is given as follows (Noorossana et al. 2010):

The chart signals when T2

Ik
> hI where hI is determined to 

achieve a specified in-control ARL.
In the MEWMA chart for slope monitoring, zSk can be 

calculated as follows (Noorossana et al. 2010):

where zS0 is a 1 × p vector of zeros and 𝜃(0 < 𝜃 ≤ 1) is a 
smoothing parameter. When the process is in-control, zSk 
follows a p-variate normal distribution with a mean vector 
o f  z e ro  a n d  a  k n ow n  c ova r i a n c e  m a t r i x 
�zS =

{

𝜃

(2−𝜃)

}

�
�̂
�

1

=
{

𝜃

Sxx(2−𝜃)

}

� . Therefore, the MEWMA 
statistic for the kth sample can be defined as follows 
(Noorossana et al. 2010):

The chart signals when T2

Sk
> hS and hS is determined such 

that a specified in-control ARL is obtained.
Another MEWMA control chart similar to that proposed 

by Crowder and Hamilton (1992) is developed for moni-
toring of process variability. The logarithm of the statistic 
�
2

k
=
∑n

i=1
eik�

−1eT
ik

 is used for computing zEk (Noorossana 
et al. 2010):

where np is the mean of a Chi-square distribution with np 
degrees of freedom and 𝜃(0 < 𝜃 ≤ 1) is a smoothing param-
eter. In this approach, the chart signals when zEk > hE where 
hE is determined in such a way that a specified in-control 
ARL is achieved.

(12)zIk = 𝜃

(

�̂
�

0k
− �

�

0

)

+ (1 − 𝜃)zI(k−1), k = 1, 2,… ,

(13)T2

Ik
= zIk�

−1
zI
zT
Ik
, k = 1, 2,…

(14)zSk = 𝜃

(

�̂
�

1k
− �

�

1

)

+ (1 − 𝜃)zS(k−1), k = 1, 2,… ,

(15)T2

Sk
= zSk�

−1
zS
zT
Sk
, k = 1, 2,…

(16)
zEk = Max

{

� ln
(

�
2

k

)

+ (1 − �)zE(k−1), np
}

, k = 1, 2,… ,
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The proposed approach for measuring 
the effect of parameter estimation 
on the performance of Phase II control 
charts

Based on the literature, it is usually assumed that the param-
eters of a profile (matrix B) and the covariance matrix of 
the response variables ( � ) are known in Phase II. In the 
current study, it is assumed that matrix B is unknown and 
should be estimated through in-control Phase I samples. 
Now the question is whether the B estimation affects the 
performance of the MSL profile monitoring approaches 
( MEWMA , MEWMA_3 and MEWMA∕�2 methods) that 
have been developed based on known parameters, and which 
method is more robust to the effects of parameter estimation.

To answer these questions, a Monte Carlo simulation 
algorithm is proposed to evaluate the effect of parameter 
estimation on the performance of control chart schemes.

Note that the current study, for better comparison, uses 
the same multivariate profile model given by Noorossana 
et al. (2010):

Assume that xi values are set equal to 2, 4, 6 and 8 ( X̄ = 5 ) 
which are considered to be fixed in all the sampling stages, 
and the covariance matrix of the response variables is 

� =

[

1 0.9

0.9 1

]

 . The steps of the proposed Monte Carlo 

simulation algorithm are as follows:

1. Assume that B and � are known. Using 10,000 simu-
lation runs under in-control conditions, calculate the 
upper control limits for each of the three methods to 
achieve ARL0 = 200 when the parameters are known. 
The upper control limits for different values of � are 
shown in Table 1. Note that Noorossana et al. (2010) 
obtained the upper control limits for each of the three 
methods just for � = 0.2 . In the current study, the con-
trol limits were obtained for � = 0.05, 0.1 to evaluate 
the effect of � on the control limit values. Table 1 shows 
that the control limit values increase when � increases. It 
should be noted that since the �2 statistic is not depend-
ent on � , this parameter does not affect the upper limit 
of the �2 control chart.

2. Generate m in-control MSL profiles based on known 
parameters using a multivariate normal distribution with 
a mean vector of zero and a covariance matrix �.

3. Calculate �̂k where k = 1, 2,… ,m for each of the pro-
files generated in step 2, then calculate ̂̄𝐁 =

∑m

k=1
�̂�k

m
.

4. Generate an in-control profile based on known param-
eters and estimate the matrix of profile parameters (B) 

(17)
{

Y1 = 3 + 2X + �1,

Y2 = 2 + 1X + �2.

using Eq. 5, and calculate the chart statistic. Note that ̂̄𝐁 
obtained in step 3 should be considered as the estimation 
of profile parameters, instead of � which contains known 
parameters. Then, set RL = 1.

5. Compare the calculated chart statistic with the corre-
sponding upper control limit (UCL) (Table 1). If the 
chart statistic is larger than the UCL , go to step 6; other-
wise, set RL = RL + 1 and go to step 4.

6. Record the RL value and go to step 4.
7. Repeat steps 4–6, 10,000 times and calculate the ARL 

by averaging the RL values. Then, go to step 2.
8. Repeat steps 2–7, 10,000 times to achieve 10,000 

different values of the ARL . Then, calculate the 
AARL = Mean(ARL) , SDARL = STD(ARL) and CVARL 
using Eq. 1.

Comparison of control chart performance 
under in‑control conditions

In this section, the in-control performance of the three con-
trol chart approaches for monitoring MSL profiles is com-
pared when profile parameters are estimated using the simu-
lation algorithm described in “The proposed approach for 
measuring the effect of parameter estimation on the perfor-
mance of phase II control charts” section. Table 2 contains 
the results of the simulation study for different values of 
m and θ in order to compare the performance of the con-
trol chart schemes in terms of the in-control AARL, SDARL 
and CVARL metrics. In general, more Phase I samples lead 
to better estimation that is closer to the desired in-control 
AARL = 200 , SDARL = 0 and CVARL = 0. 

Since three different metrics were used in the current 
study, it is better to separately compare the performance 
of the schemes in terms of each metric. Table 2 and Fig. 1 

Table 1  In-control upper control limits of three control charts 
approaches

� Control chart

MEWMA MEWMA∕�2 MEWMA_3

0.05 11.2 MEWMA 9.07 MEWMA(I) 10.68
MEWMA(S) 10.68

�
2 23.77 MEWMA(E) 2.208

0.1 12.7 MEWMA 10.25 MEWMA(I) 11.82
MEWMA(S) 11.82

�
2 23.77 MEWMA(E) 2.298

0.2 13.9 MEWMA 11.1 MEWMA(I) 12.55
MEWMA(S) 12.55

�
2 23.77 MEWMA(E) 2.43
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show that the performance of the control chart approaches 
under in-control conditions is strongly affected by parameter 
estimation. Based on the AARL metric, it can be inferred 
that the MEWMA∕�2 method performs better than com-
peting methods because of a larger AARL value in most of 
the cases. For instance, if � = 0.2 , the AARL value of the 
MEWMA∕�2 method is almost 90% of the specified in-con-
trol ARL ( ARL0 = 200 ) using a smaller number of samples 
( m = 200 ) than the other methods.

Table 1 shows that the AARL value increases when the 
value of the smoothing parameter ( � ) increases. This could 
be very useful in practical environments. In some industries, 
such as military or high-tech industries, a high number of 
false alarms lead to high expenses; therefore, choosing the 
method that has a larger in-control AARL is suggested in 
order to reduce the rate of false alarms.

Figure 2 shows a comparison of the performance of 
the control chart schemes in terms of the SDARL metric 
for different values of m and � . It is obvious that smaller 
values of the SDARL represent better performance of the 
control chart schemes. However, it is recommended that 
the SDARL be within 5–10% of the desired in-control ARL . 
Choosing the superior method in terms of the SDARL met-
ric is not clear in this case. According to Fig. 2, there is no 

method that results in smaller SDARL value than the other 
competing methods for all the values of m. This ambigu-
ity rises when the value of � decreases. However, it can 
be confidently inferred that the MEWMA_3 method per-
forms best in terms of the SDARL except for small values 
of m ( m = 10 ) when � = 0.2 . Furthermore, the MEWMA_3 
and MEWMA∕�2 methods reached SDARL values that are 
within 5%–10% of the desired in-control ARL = 200 using 
a smaller number of Phase I samples than the MEWMA 
method. Now the question is: What is the best decision in 
such situations?

The solution we propose is using the CVARL metric, 
which is calculated by Eq. 1. Using this metric allows both 
the AARL and SDARL to be considered simultaneously in 
deciding which is the superior method. Aly et al. (2016) 
used this metric in their study on adaptive EWMA control 
charts. Figure 3 shows the CVARL comparison of the con-
trol chart schemes when the process is in-control. Whereas 
the MEWMA_3 and MEWMA∕�2 methods both perform 
better than the MWEMA method, the MEWMA_3 method 
uniformly performs better than the other competing meth-
ods. Moreover, the performance of the MEWMA_3 method 
improves as the value of m increases.

Table 2  In-Control AARL , SDARL and CVARL comparisons of MEWMA , MEWMA∕�2 and MEWMA_3 methods when m samples of Phase I 
are used to estimate the unknown parameters

m AARL SDARL CVARL(%)

MEWMA MEWMA∕�2 MEWMA_3 MEWMA MEWMA∕�2 MEWMA_3 MEWMA MEWMA∕�2 MEWMA_3

� = 0.2
 10 43.8 85.08 57.9 42.64 47.86 39.85 97.35 56.24 68.82
 70 132.56 155.2 142.96 34.93 32.93 29.25 26.35 21.22 20.44
 200 166.53 180.57 179.35 20.69 18.24 15.31 12.42 10.1 8.5
 500 185.53 194.99 191.81 12.43 8.6 9.3 6.70 4.42 4.8
 1000 194.79 197.95 198.05 7.32 6.04 7.78 3.76 3.05 3.9
 2000 200.07 201.19 199.68 6.2 5.9 6.63 3.10 2.9 3.32
�= 0.1
 10 35.72 70.27 44.83 37.654 46.33 38.65 105.41 65.93 86.21
 70 105.36 139.58 128.54 34.54 40.22 36.9 32.78 28.82 28.71
 200 149.22 174.57 179.13 25.75 25.33 19.48 17.26 14.51 10.87
 500 175.19 195.51 195.82 16.22 11.5 13.04 9.26 5.88 6.66
 1000 186.89 197.63 206 9.48 10.24 8.15 5.07 5.18 3.96
 2000 191.36 202.06 201.33 7.46 6.65 7.75 3.90 3.29 3.85
�= 0.05
 10 32.35 54.84 39.83 36.47 48.64 39.11 112.74 88.69 98.19
 70 90.72 131.03 116.51 32.32 42.26 35.89 35.63 32.25 30.80
 200 143.39 168 161.81 30.14 27.42 26.28 21.02 16.32 16.24
 500 169.68 188.31 186.77 15.76 16.04 15.98 9.29 8.52 8.56
 1000 181.53 198.32 200.45 12.33 10.51 10.24 6.79 5.30 5.11
 2000 193.68 203.82 205.63 6.6 8.05 8.16 3.41 3.95 3.97



564 Journal of Industrial Engineering International (2019) 15:557–570

1 3

The proposed approach for establishing 
corrected limits

As observed in “Comparison of control chart performance 
under in-control conditions” section, in the MEWMA∕�2 
method, we need at least 200 in-control Phase I samples 
for parameters estimation so that the AARL value is at least 
90% of the specified in-control ARL0 = 200 . Therefore, the 
practitioner should wait too long to collect samples. Hence, 
in these situations, using corrected control limits is strongly 
suggested. By using corrected limits which are usually wider 
than original ones due to the extra variability added to the 
process by estimators, the problem of large Phase I samples 
requirement for estimation can be solved. Corrected limits 

can also be established based on the small size of historical 
data set. However, it should be noted that very wide cor-
rected limits due to very small Phase I samples can deterio-
rate the detection performance of Phase II control charts. To 
learn more about corrected limits please see Quesenberry 
(1993), Jones (2002), Champ et al. (2005) and Mahmoud 
and Maravelakis (2010).

In the current study, the corrected limits are obtained 
through the Monte Carlo simulation algorithm discussed in 
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“The proposed approach for measuring the effect of parame-
ter estimation on the performance of Phase II control charts” 
section for each of the profile monitoring methods to achieve 
AARL ≅ 200 by 10,000 simulation runs and using the num-
ber of m in-control Phase I profiles for parameter estimation. 
Note that in the previous studies, such as Mahmoud (2012), 
the corrected limits are obtained to achieve a specified in-
control ARL . However, in the current study, the corrected 
limits are obtained based on achieving in-control AARL in 

order to consider practitioner-to-practitioner variability. The 
results of the simulation study are shown in Table 3. The 
corrected limits are usually wider than the control limits 
derived based on known parameters (Table 1). Therefore, 
the control limits given in Table 1 can be used as the start-
ing point in simulation runs. Similar to the known parameter 
case, corrected limits also increase when � increases.

Corrected limits could be used in evaluating the out-of-
control performance of control charts. Assume that when 
parameters are estimated, a shift has occurred in one of the 
profile parameters and the control chart has alarmed. In this 
situation, we cannot determine whether this alarm is due to 
the effect of parameter estimation or the effect of the shift 
in the in-control parameter. Hence, using corrected limits 
ensures that chart alarming occurs only because of the shift 
in profile parameters. Consequently, evaluating the perfor-
mance of the control chart schemes under out-of-control 
conditions was carried out using corrected limits; the results 
are shown in Table 3.

Comparison of control chart performance 
under out‑of‑control conditions

Several types of shifts are considered to evaluate the out-
of-control performance of control chart schemes using 
parameter estimation, including: (1) a shift in the intercept 
of the first profile ( �01 ); (2) a shift in the slope of the first 
profile ( �11 ). To apply these shifts, we should generate an 
out-of-control profile based on the shifted parameters in step 
4 of the simulation algorithm presented in “The proposed 
approach for measuring the effect of parameter estimation on 
the performance of Phase II control charts” section.

Note that the applied shifts in this paper are the same as 
the shifts applied in a study by Noorossana et al. (2010), 
which was based on known parameters, in order to compare 
the results of our study (when parameters are estimated) with 
the results of Noorossana et al. (2010) (when parameters are 
known). In addition, the corrected limits (Table 3) are used 
to compare the out-of-control performance of the control 
chart schemes.

Table 4 shows the out-of-control AARL , SDARL and 
CVARL metrics of the control chart schemes when �01 shifts 
to �01 + �0�1 . In this case, the performance of the MEWMA 
and MEWMA∕�2 methods is uniformly better than that of 
the MEWMA_3 method in terms of the AARL for all values 
of m. However, the performance of the

MEWMA∕�2 method is better than the MEWMA method 
for small shifts; for the large shifts, both methods perform 
similarly. On the other hand, the MEWMA method has 
a smaller SDARL value than the other competing meth-
ods. However, the SDARL performance of MEWMA and 
MEWMA∕�2 methods are almost similar.
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Finally, considering the CVARL metric, showed bet-
ter performance of the MEWMA method compared with 
the other competing methods. However, Noorossana et al. 
(2010) found that the MEWMA∕�2 method performs better 
compared to the other competing methods in terms of out-
of-control ARL when the parameters are known.

The out-of-control AARL , SDARL and CVARL values 
when �11 shifts to �11 + �1�1 are given in Table 5. Similar to 
the case in which the parameters are known, the results show 
that the MEWMA method performs better than the other 
competing methods in terms of all three metrics. However, 
the MEWMA∕�2 method is more capable of detecting very 
small shifts than the other methods in terms of the CVARL.

Based on the results obtained, it is possible to conclude 
that control chart performance under out-of-control condi-
tions is strongly affected by the parameter estimation, simi-
lar to in-control conditions. When estimated parameters are 
used for calculating the control chart statistic, a large number 
of Phase I samples are needed in order to achieve the same 
in-control performance as when the parameters are known. 
On the other hand, taking more Phase I samples for the 
parameter estimation leads to better detection performance.

Therefore, we can say with confidence not only that the 
in-control and out-of-control performance of control chart 
schemes for monitoring MSL profiles is seriously affected 
by parameter estimation, but also that ignoring the variabil-
ity added to the process by parameter estimation can affect 
choosing the superior monitoring scheme.

This could have many economic and competitive advan-
tages in manufacturing and non-manufacturing industries 
because of decreasing the rate of false alarms.

Conclusion and suggestions for future 
research

The current study was an investigation of the effect of 
parameter estimation on three approaches to MSL profile 
monitoring. The approaches are: (1) a MEWMA control 
chart for monitoring profile parameters; (2) a combination 
of a MEWMA control chart based on the vector of residual 
means and a �2 chart for monitoring process variability 
( MEWMA∕�2 ); and (3) a combination of three separate 
MEWMA control charts ( MEWMA_3 ) for monitoring the 
vector of intercepts, the vector of slopes and the process 
variability. Since the ARL is no longer a parameter when 
it is assumed that the process parameters are estimated, we 
used three metrics, the AARL , SDARL and CVARL , which 
are based on the statistical properties of the ARL distribu-
tion. Our goal is to compare the methods and choose the best 
one, which is more robust to the effect of parameter estima-
tion. The simulation results showed that the MEWMA∕�2 
method performs better in terms of the in-control AARL 

Table 3  Corrected limits for three control charts in order to achieve 
AARL = 200 for different values of m and �

m MEWMA MEWMA∕�2 MEWMA_3

� = 0.2
 30 16.9 MEWMA 12.76 MEWMA(I) 14.13

MEWMA(S) 14.1
�
2 27.62 MEWMA(E) 4.12

 50 15.5 MEWMA 12.12 MEWMA(I) 13.71
MEWMA(S) 13.64

�
2 26.86M MEWMA(E) 3.82

 100 14.9 MEWMA 12.21 MEWMA(I) 13.33
MEWMA(S) 13.2

�
2 24.91 MEWMA(E) 3.22

 300 14.2 MEWMA 12.24 MEWMA(I) 13.19
MEWMA(S) 12.94

�
2 24.35 MEWMA(E) 2.9

 600 14.05 MEWMA 11.73 MEWMA(I) 12.91
MEWMA(S) 12.83

�
2 24.1 MEWMA(E) 2.68

� = 0.1
 30 16.52 MEWMA 12.6 MEWMA(I) 13.45

MEWMA(S) 13.81
�
2 27.62 MEWMA(E) 3.515

 50 15.3 MEWMA 11.85 MEWMA(I) 13.18
MEWMA(S) 13.11

�
2 26.86 MEWMA(E) 3.322

 100 14.1 MEWMA 11.5 MEWMA(I) 12.83
MEWMA(S) 12.75

�
2 24.91 MEWMA(E) 3.032

 300 13.4 MEWMA 10.75 MEWMA(I) 12.32
MEWMA(S) 12.44

�
2 24.35 MEWMA(E) 2.882

 600 13.05 MEWMA 10.55 MEWMA(I) 12.18
MEWMA(S) 12.11

�
2 24.1 MEWMA(E) 2.544

� = 0.05
 30 16.25 MEWMA 11.44 MEWMA(I) 13.42

MEWMA(S) 13.88
�
2 27.62 MEWMA(E) 3.201

 50 15.1 MEWMA 10.93 MEWMA(I) 13.19
MEWMA(S) 13.46

�
2 26.86 MEWMA(E) 2.881

 100 13.4 MEWMA 10.54 MEWMA(I) 12.87
MEWMA(S) 12.65

�
2 24.91 MEWMA(E) 2.621

 300 12.1 MEWMA 9.92 MEWMA(I) 11.83
MEWMA(S) 11.92

�
2 24.35 MEWMA(E) 2.411

 600 11.7 MEWMA 9.47 MEWMA(I) 11.48
MEWMA(S) 11.34

�
2 24.1 MEWMA(E) 2.369
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Table 4  AARL , SDARL and 
CVARL comparison when �

01
 

has shifted to �
01
+ �

0
�
1

m Method Metric �
0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

30 MEWMA AARL 18.43 5.31 3.26 2.54 1.98 1.91 1.54 1.20 1.02 1.00
SDARL 7.43 0.49 0.28 0.09 0.07 0.04 0.05 0.03 0.01 0.00
CVARL 40.31 9.23 8.59 3.54 3.54 2.09 3.25 2.50 0.98 0.00

MEWMA_3 AARL 21.36 6.11 3.40 2.57 2.03 1.93 1.54 1.23 1.02 1.08
SDARL 5.42 0.63 0.28 0.19 0.13 0.07 0.05 0.03 0.01 0.01
CVARL 25.37 10.31 8.24 7.39 6.40 3.63 3.25 2.44 0.98 0.93

MEWMA∕�2 AARL 17.64 5.12 2.93 1.98 1.55 1.42 1.21 1.07 1.01 1.00
SDARL 9.24 0.62 0.33 0.11 0.09 0.05 0.05 0.03 0.01 0.00
CVARL 52.38 12.11 11.26 5.56 5.81 3.52 4.13 2.80 0.99 0.00

50 MEWMA AARL 17.53 5.26 3.21 2.43 1.97 1.91 1.52 1.18 1.08 1.00
SDARL 4.70 0.48 0.18 0.07 0.07 0.04 0.04 0.03 0.01 0.00
CVARL 26.81 9.13 5.61 2.88 3.55 2.09 2.63 2.54 0.93 0.00

MEWMA_3 AARL 21.73 5.41 3.36 2.52 2.16 1.86 1.50 1.20 1.12 1.06
SDARL 5.41 0.53 0.26 0.11 0.08 0.08 0.06 0.05 0.03 0.01
CVARL 24.90 9.80 7.74 4.37 3.70 4.30 4.00 4.17 2.68 0.94

MEWMA∕�2 AARL 16.11 5.03 2.87 1.98 1.54 1.41 1.18 1.07 1.01 1.00
SDARL 5.34 0.51 0.20 0.08 0.06 0.05 0.05 0.03 0.01 0.00
CVARL 33.15 10.14 6.97 4.04 3.90 3.55 4.24 2.80 0.99 0.00

100 MEWMA AARL 17.41 5.25 3.19 2.41 1.94 1.87 1.49 1.16 1.08 1.00
SDARL 2.73 0.27 0.13 0.04 0.04 0.03 0.03 0.02 0.01 0.00
CVARL 15.68 5.14 4.08 1.66 2.06 1.60 2.01 1.72 0.93 0.00

MEWMA_3 AARL 21.44 5.34 3.34 2.51 2.16 1.86 1.51 1.18 1.10 1.03
SDARL 2.84 0.34 0.19 0.14 0.07 0.06 0.04 0.04 0.03 0.01
CVARL 13.25 6.37 5.69 5.58 3.24 3.23 2.65 3.39 2.73 0.97

MEWMA∕�2 AARL 15.34 4.88 2.43 1.94 1.48 1.36 1.15 1.05 1.00 1.00
SDARL 2.76 0.36 0.16 0.08 0.05 0.05 0.04 0.02 0.00 0.00
CVARL 17.99 7.38 6.58 4.12 3.38 3.68 3.48 1.90 0.00 0.00

300 MEWMA AARL 17.46 5.23 3.17 2.37 1.97 1.83 1.43 1.16 1.06 1.00
SDARL 2.59 0.25 0.11 0.03 0.02 0.02 0.01 0.02 0.01 0.00
CVARL 14.85 4.70 3.47 1.47 0.83 1.09 0.70 1.72 0.94 0.00

MEWMA_3 AARL 19.76 5.34 3.31 2.46 2.14 1.86 1.47 1.16 1.08 1.00
SDARL 1.83 0.34 0.18 0.10 0.07 0.05 0.05 0.04 0.02 0.00
CVARL 9.26 6.37 5.44 4.07 3.27 2.69 3.40 3.45 1.85 0.00

MEWMA∕�2 AARL 15.37 4.86 2.39 1.92 1.43 1.31 1.15 1.03 1.00 1.00
SDARL 2.63 0.27 0.15 0.08 0.04 0.04 0.03 0.00 0.00 0.00
CVARL 17.11 5.56 6.28 4.17 2.80 3.05 2.61 0.00 0.00 0.00

600 MEWMA AARL 17.24 5.14 3.23 2.37 1.99 1.73 1.40 1.12 1.02 1.00
SDARL 1.31 0.19 0.04 0.02 0.02 0.02 0.02 0.02 0.01 0.00
CVARL 7.60 3.70 1.13 0.80 0.81 1.21 1.82 1.65 0.69 0.17

MEWMA_3 AARL 19.58 5.16 3.25 2.41 2.03 1.76 1.41 1.16 1.00 1.00
SDARL 1.81 0.26 0.16 0.05 0.05 0.04 0.02 0.02 0.00 0.00
CVARL 9.24 5.04 4.92 2.07 2.46 2.27 1.42 1.72 0.00 0.00

MEWMA∕�2 AARL 15.34 4.75 2.35 1.92 1.39 1.24 1.15 1.00 1.00 1.00
SDARL 1.36 0.22 0.06 0.03 0.03 0.03 0.02 0.00 0.00 0.00
CVARL 8.87 4.62 2.55 1.56 2.16 2.42 1.74 0.00 0.00 0.00

∞ (Nooros-
sana et al. 
2010)

MEWMA ARL 14.80 4.90 3.00 2.20 1.90 1.60 1.30 1.00 1.00 1.00
MEWMA_3 ARL 16.10 5.10 3.00 2.20 1.90 1.60 1.30 1.10 1.00 1.00
MEWMA∕�2 ARL 13.70 4.50 2.60 1.80 1.30 1.10 1.00 1.00 1.00 1.00
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Table 5  AARL , SDARL and CVARL comparison when �
11

 has shifted to �
11
+ �

1
�
1

m Method Metric �
1

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

30 MEWMA AARL 42.08 9.64 5.22 3.60 2.79 2.45 2.11 1.94 1.72 1.57
SDARL 20.14 1.49 0.57 0.24 0.11 0.09 0.08 0.06 0.04 0.01
CVARL 47.86 15.46 10.92 6.67 3.94 3.67 3.79 3.25 2.33 0.64

MEWMA_3 AARL 69.12 17.43 7.76 6.17 4.67 2.93 2.31 2.08 1.93 1.74
SDARL 23.87 1.73 0.84 0.45 0.21 0.10 0.09 0.07 0.04 0.02
CVARL 34.53 9.93 10.82 7.29 4.50 3.41 3.90 3.37 2.07 1.15

MEWMA∕�2 AARL 49.23 9.86 5.86 3.84 2.71 2.18 1.75 1.68 1.59 1.42
SDARL 20.29 2.82 0.66 0.27 0.14 0.12 0.06 0.05 0.03 0.01
CVARL 41.21 28.60 11.26 7.03 5.17 5.50 3.43 2.98 1.89 0.70

50 MEWMA AARL 41.98 9.62 5.21 3.59 2.76 2.42 2.09 1.92 1.72 1.56
SDARL 20.27 1.32 0.38 0.18 0.08 0.08 0.06 0.05 0.02 0.01
CVARL 48.28 13.72 7.29 5.01 2.90 3.31 2.87 2.60 1.16 0.64

MEWMA_3 AARL 67.15 17.36 7.64 5.91 4.41 2.87 2.29 1.97 1.89 1.73
SDARL 21.68 1.49 0.52 0.23 0.15 0.09 0.08 0.07 0.03 0.02
CVARL 32.29 8.58 6.81 3.89 3.40 3.14 3.49 3.55 1.59 1.33

MEWMA∕�2 AARL 48.25 9.76 5.61 3.79 2.66 2.16 1.72 1.63 1.59 1.38
SDARL 19.56 1.38 0.42 0.21 0.09 0.08 0.07 0.05 0.02 0.01
CVARL 40.54 14.14 7.49 5.54 3.38 3.70 4.07 3.07 1.26 0.72

100 MEWMA AARL 39.36 9.57 5.18 3.54 2.75 2.37 2.08 1.90 1.72 1.52
SDARL 14.07 1.01 0.37 0.16 0.08 0.05 0.03 0.02 0.01 0.01
CVARL 35.75 10.55 7.14 4.52 2.91 2.11 1.44 1.05 0.58 0.66

MEWMA_3 AARL 59.45 17.11 7.62 5.82 4.38 2.86 2.27 1.97 1.88 1.61
SDARL 20.52 1.42 0.48 0.19 0.12 0.08 0.07 0.04 0.03 0.02
CVARL 34.51 8.30 6.30 3.26 2.74 2.80 3.08 2.03 1.60 1.24

MEWMA∕�2 AARL 46.21 9.65 5.53 3.78 2.64 2.13 1.67 1.45 1.58 1.36
SDARL 16.54 1.31 0.42 0.18 0.08 0.06 0.05 0.05 0.03 0.01
CVARL 35.79 13.58 7.59 4.76 3.03 2.82 2.99 3.45 1.90 0.74

300 MEWMA AARL 39.20 9.31 5.11 3.53 2.74 2.33 2.05 1.89 1.71 1.52
SDARL 4.81 0.70 0.24 0.12 0.08 0.04 0.03 0.02 0.01 0.01
CVARL 12.27 7.52 4.70 3.40 2.92 1.72 1.46 1.06 0.58 0.66

MEWMA_3 AARL 54.12 15.24 7.65 5.80 4.36 2.84 2.23 1.97 1.88 1.59
SDARL 5.73 1.08 0.35 0.15 0.09 0.09 0.08 0.05 0.02 0.01
CVARL 10.59 7.09 4.58 2.59 2.06 3.17 3.59 2.53 1.06 0.63

MEWMA∕�2 AARL 43.01 9.62 5.44 3.72 2.64 2.12 1.59 1.43 1.57 1.35
SDARL 4.62 0.84 0.26 0.18 0.09 0.08 0.06 0.06 0.04 0.01
CVARL 10.74 8.73 4.78 4.84 3.41 3.77 3.77 4.20 2.55 0.74

600 MEWMA AARL 37.34 9.22 5.00 3.51 2.70 2.28 2.03 1.88 1.69 1.46
SDARL 3.24 0.53 0.15 0.08 0.04 0.03 0.02 0.02 0.01 0.01
CVARL 8.68 5.75 3.00 2.28 1.48 1.18 0.99 1.06 0.59 0.68

MEWMA_3 AARL 48.23 13.14 6.85 4.11 3.22 2.60 2.16 1.92 1.86 1.49
SDARL 4.12 1.03 0.35 0.12 0.09 0.08 0.08 0.04 0.02 0.01
CVARL 8.54 7.84 5.04 2.92 2.80 3.08 3.70 2.08 1.08 0.67

MEWMA∕�2 AARL 39.12 9.46 5.31 3.53 2.56 1.86 1.45 1.26 1.16 1.23
SDARL 3.89 0.73 0.21 0.16 0.09 0.07 0.06 0.03 0.01 0.01
CVARL 9.94 7.72 3.95 4.53 3.52 3.76 4.14 2.38 0.86 0.81

∞ (Noorossana 
et al. 2010)

MEWMA ARL 30.20 8.60 4.80 3.30 2.60 2.20 2.00 1.80 1.60 1.40
MEWMA_3 ARL 40.70 10.20 5.30 3.70 2.80 2.30 2.10 1.90 1.70 1.40
MEWMA∕�2 ARL 34.40 9.10 4.90 3.30 2.40 1.80 1.40 1.20 1.10 1.00
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metric and needs fewer Phase I samples to achieve 90% of 
the desired in-control ARL = 200 . Although it is confidently 
inferred that the MEWMA_3 method performs better than 
the other competing methods in terms of the SDARL metric 
when � = 0.2 , the results are not the same for other values 
of � . We recommended using the CVARL metric as the basis 
of the comparison in order to simultaneously consider the 
AARL and SDARL . The results showed that the MEWMA_3

method performs uniformly better than other approaches in 
terms of the CVARL , although the MEWMA∕�2 method 
performs better than the MEWMA_3 method for small 
values of m. The performance of the MEWMA_3 method 
improves by increasing m. After obtaining simulated cor-
rected limits in order to reflect the variability added to the 
process by parameter estimation, we investigated the out-of-
control performance of the control chart schemes in terms 
of all the metrics, considering different out-of-control sce-
narios. The simulation results showed that the MEWMA 
and MEWMA∕�2 charts have similar out-of-control perfor-
mance in most cases. However, it can be declared that the 
MEWMA method generally performs better than other com-
peting methods in terms of the AARL , SDARL and CVARL 
for all out-of-control scenarios.

Future research in this area could involve investigation 
of the parameter estimation effect on the in-control and out-
of-control performance of different monitoring approaches 
for other types of profiles, such as nonlinear or polynomial 
profiles. Also, new metrics could be used in order to better 
measure the effect of parameter estimation, which is very 
useful in deciding on superior methods.
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