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Abstract
The purpose of this article is to evaluate the application of forecasting models along with the use of residual control charts 
to assess production processes whose samples have autocorrelation characteristics. The main objective is to determine the 
efficiency of control charts for individual observations (CCIO) and exponentially weighted moving average (EWMA) charts 
when they are applied to residuals of models of AR(1) or MA(1) to detect outlier in autocorrelated processes. Considering 
autocorrelation strength and sign in the data series and the outlier range, the series were simulated accomplishing 640,000 
sets. The series were contaminated by anomalous observations at 100th position, an AR(1) or MA(1) model were fitted, and 
the residuals were evaluated by CCIO and EWMA control charts; the points correctly detected as an autocorrelation were 
recorded. For the parameters investigated (autocorrelation and outlier range), a detection rate was generated in each chart, 
and nonparametric comparison tests were applied. The result of the tests showed the superiority (p < 0.05) of the CCIO chart 
for both models. The study of the influence of the sign and magnitude of the autocorrelation parameter showed no significant 
(p > 0.05) for either AR(1) or MA(1) charts and models. In this context, control charts for individual observations (CCIO) 
were confirmed to effectively detect outliers through residuals in industrial autocorrelated processes originated in first-order 
AR and MA models.

Keywords Quality control · Residual control charts · Outliers · Efficiency of control charts · Residual control charts

Introduction

The statistical process control (SPC) methodology is used 
by companies and industries to evaluate the specification 
standards pattern and the process capability based on control 
charts, in order to promote the continuous improvement (He 
and Wang 2018; Woodall 2000; Peres and Fogliatto 2018). 
The justification and importance of studying this theme 
is revealed due to its incipient growth in terms of articles 
deposited in the Web of Science journal repository but not 

less important to industries. The growth of the scientific pro-
duction of the researched subject is shown in Fig. 1.

Figure 1 shows that we find only 188 works in the most 
diverse areas of knowledge. Just 28 works are from the 
industrial engineering area, published from 1992 to 2017. 
This shows that the theme “statistical process control” can 
still be explored, existing is a literature gap. For Montgom-
ery (2004), statistical quality control techniques can be 
applied in industrial and non-industrial processes, in order 
to detect and correct the anomalies in the process to meet the 
specified target of a given product. For Duarte and Saraiva 
(2008), Toledo et al. (2008) and Bouslah et al. (2018), the 
SPC is an important management tool for improving quality 
and increasing the productivity of industrial processes, used 
to reduce the variability process.

SPC uses different evaluation techniques applied to auto-
correlated data, such as time series analysis, regression anal-
ysis and artificial neural networks and support vector regres-
sion (Du and Lv 2013; Du and Zhang 2016). We notice that 
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research in the case of outlier detection in correlated pro-
cesses using neural networks is rare in the literature.

Lalor and Zhang (2001) presented a multivariate case to 
detect three types of outliers: range, spatial and relationship 
outliers. They showed that neural networks are a free and 
effective modelling to detect irregular data. Guo and Xue 
(2012) used statistical methods to detect outliers and treat 
these discrepancies to later carry out training and extrapo-
lations through neural networks. The conclusion was that 
statistical methods and neural networks promote analysis 
and prediction more assertively.

In order to evaluate water quality control, methodologies 
such as artificial neural networks (ANN), principal compo-
nent analysis (PCA) and universal process modelling (UPM) 
were used by Cancilla and Fang (1996) to characterize qual-
ity variables of the Niagara River. In this research, the meth-
odologies such as PCA and UPM were able to capture outli-
ers and ANN was used to carry out the predictions.

The basic quality control activities relay on reducing the 
quality variations, so the variance magnitude can be esti-
mated and the potential variability can be identified, result-
ing in the minimization of potential losses (Christino et al. 
2010). In relation to the control charts, these were created 
with the purpose of monitoring the process, by observ-
ing the average and standard deviation as highlighted by 
McCracken and Chakraborti (2013) and Trafimow et al. 

(2018). However, the relevant literature in statistical shows 
that other control charts could be used to control quality and 
productivity (Costa and Machado 2007; Abbas 2018).

Statistical process control charts were used as process 
monitoring tool, in order to evaluate the effect of the regula-
tion of the rotary separation system on the losses observed 
during the mechanized harvest. Cunha et al. (2014) observed 
that the control charts were effective tools in detecting the 
total losses of the industrial tomato crop, because it was 
detected that the process was out of control and that the 
adoption of corrections in the process would provide a 
better harvesting efficiency (Cunha et al. 2014). Voltarelli 
et al. (2015) used the control charts as an indicator of qual-
ity in the monitoring of losses in mechanized harvesting of 
sugarcane in the Triângulo Mineiro region, in the State of 
Minas Gerais, Brazil. The control charts for individual val-
ues and for exponentially weighted moving averages were 
used. However, the control chart for individual values was 
one that had a good response in the monitoring of losses in 
mechanized harvesting of sugarcane.

The simultaneous monitoring process using a single 
nonparametric control chart makes it easy for process con-
trollers to use, because it allows to identify the presence of 
special causes in the process and does not hurt the assump-
tion of normality present in the traditional control charts 
(McCracken and Chakraborti 2013).

0

3

6

9

12

15

18

21

24

27

30
E

N
G

IN
E

ER
IN

G
 I

N
D

U
ST

R
IA

L

O
PE

R
A

TI
O

N
S 

R
ES

EA
R

C
H

 M
A

N
A

G
EM

EN
T

 S
C

IE
N

C
E

H
EA

L
T

H
 C

A
R

E
 S

C
IE

N
C

E
S 

SE
R

V
IC

E
S

PU
B

L
IC

 E
N

V
IR

O
N

M
E

N
T

A
L 

O
C

C
U

PA
TI

O
N

A
L…

IN
FE

C
T

IO
U

S 
D

IS
E

A
SE

S

PE
D

IA
T

R
IC

S

ST
A

TI
S

TI
C

S 
PR

O
B

A
B

IL
IT

Y

H
EA

L
T

H
 P

O
LI

C
Y

 S
E

R
V

IC
E

S

E
N

G
IN

E
ER

IN
G

 M
U

LT
ID

IS
C

IP
LI

N
A

R
Y

E
N

G
IN

E
ER

IN
G

 M
A

N
U

FA
C

T
U

R
IN

G

C
O

M
PU

T
E

R
 S

C
IE

N
C

E
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

…

E
N

G
IN

E
ER

IN
G

 E
L

E
C

T
R

IC
A

L
 E

LE
C

T
R

O
N

IC

E
N

G
IN

E
ER

IN
G

 C
H

EM
IC

A
L

A
U

T
O

M
A

T
IO

N
 C

O
N

T
R

O
L

 S
Y

ST
E

M
S

C
O

M
PU

T
E

R
 S

C
IE

N
C

E
 A

R
T

IF
IC

IA
L 

IN
T

E
L

LI
G

E
N

C
E

M
A

N
A

G
E

M
E

N
T

C
O

M
PU

T
E

R
 S

C
IE

N
C

E
 IN

FO
R

M
A

T
IO

N
 S

Y
ST

E
M

S

E
N

G
IN

E
ER

IN
G

 M
E

C
H

A
N

IC
A

L

M
E

D
IC

A
L

 IN
FO

R
M

A
T

IC
S

R
E

H
A

B
IL

IT
A

T
IO

N

R
E

SP
IR

A
T

O
R

Y
 S

Y
ST

E
M

A
G

R
IC

U
LT

U
R

E
 D

A
IR

Y
 A

N
IM

A
L 

SC
IE

N
C

E

C
R

IT
IC

A
L

 C
A

R
E 

M
E

D
IC

IN
E

E
M

E
R

G
EN

C
Y

 M
ED

IC
IN

E

E
N

D
O

C
R

IN
O

L
O

G
Y

 M
ET

A
B

O
LI

S
M

FO
O

D
 S

C
IE

N
C

E
 T

EC
H

N
O

L
O

G
Y

M
A

T
ER

IA
LS

 S
C

IE
N

C
E

 M
U

L
TI

D
IS

C
IP

L
IN

A
R

Y

N
U

R
SI

N
G

PH
A

R
M

A
C

O
L

O
G

Y
 P

H
A

R
M

A
C

Y

PH
Y

SI
C

S 
A

P
PL

IE
D

PS
Y

C
H

O
L

O
G

Y
 A

PP
L

IE
D

SU
R

G
E

R
Y

A
LL

E
R

G
Y

A
U

D
IO

L
O

G
Y

 S
PE

E
C

H
 L

A
N

G
U

A
G

E 
PA

TH
O

LO
G

Y

C
H

E
M

IS
T

R
Y

 A
N

A
L

Y
T

IC
A

L

C
H

E
M

IS
T

R
Y

 P
H

Y
SI

C
A

L

C
O

M
PU

T
E

R
 S

C
IE

N
C

E
 S

O
F

TW
A

R
E

 E
N

G
IN

E
ER

IN
G

E
N

E
R

G
Y

 F
U

E
L

S

G
EO

SC
IE

N
C

E
S 

M
U

LT
ID

IS
C

IP
LI

N
A

R
Y

IM
M

U
N

O
L

O
G

Y

IN
FO

R
M

A
T

IO
N

 S
C

IE
N

C
E

 L
IB

R
A

R
Y

 S
C

IE
N

C
E

IN
ST

R
U

M
E

N
T

S 
IN

ST
R

U
M

EN
T

A
TI

O
N

L
IN

G
U

IS
T

IC
S

M
A

T
H

E
M

A
T

IC
S 

IN
TE

R
D

IS
C

IP
L

IN
A

R
Y

…

M
E

D
IC

IN
E

 G
EN

E
R

A
L

 IN
TE

R
N

A
L

M
E

T
A

L
L

U
R

G
Y

 M
E

TA
L

LU
R

G
IC

A
L

 E
N

G
IN

E
E

R
IN

G

M
IC

R
O

B
IO

LO
G

Y

M
IN

IN
G

 M
IN

E
R

A
L

 P
R

O
C

E
SS

IN
G

O
B

ST
E

TR
IC

S 
G

Y
N

EC
O

L
O

G
Y

O
R

T
H

O
PE

D
IC

S

28 28

21
19

16 16 16
15

14
12

11
10

9
8

7
6

5
4 4 4 4

3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Fig. 1  Number of publications on the topic statistical process control in the Web of Science
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Dumičić and Žmuk (2015) used exponentially weighted 
moving average (EWMA) and cumulative sum (CUSUM) 
charts to support decision making in the stock market trading 
process. The EWMA and CUSUM control charts were used 
for the purpose of pointing out stock purchase and sale sig-
nals. The control charts did not perform satisfactorily with 
the presence of anomalies such as non-normality and auto-
correlation, which impacted the performance of the control 
charts. The importance of control charts is also highlighted 
by Aparisi et al. (2018), demonstrating that the quality pro-
cess has improved a lot in relation to previous decades, and 
the majority of the samples collected in high-quality pro-
cesses do not defective units.

Silva et al. (2017) have developed a strategy for continu-
ous monitoring from multivariate statistical process control 
in the Consigua™25 tablet manufacturing line. This strategy 
was based on the technique of principal component analysis, 
while the impact of the deviations imposed on the continuity 
of the process was evaluated from the residues through the 
Hotelling  T2 control charts. The results evidenced that the 
residues imposed were detected in the control chart, thus 
showing effectiveness in its application, mainly in monitor-
ing the temperature control of the granulator drum.

Durmusoglu (2018) proposed an approach to detect 
abnormal deviations by updating the methodology of time 
series forecasting models using control charts. Its purpose 
was to monitor the residues (difference between actual and 
expected values of the interest variable) in a continuous way 
using the control charts, in order to ascertain whether such 
residues were outside the established limits, which would be 
an alert or a process change.

Control charts are usually planned and evaluated assum-
ing that consecutive observations of the process are inde-
pendent and identically distributed (i.i.d.). The observations 
must also meet the assumptions of normality and homosce-
dasticity (constant variance), and they cannot show auto-
correlation characteristics. However, Montgomery (2004), 
Montgomery and Runger (2003) and Claro et al. (2007) 
emphasize that although the independence among the obser-
vations is the most important assumption, it is often violated 
in practice. This is due to the fact that, in general, manufac-
turing processes are governed by inertial elements, and when 
the interval between observations become small compared 
to these forces, they become correlated over time.

Failure to meet these assumptions when applying control 
charts can result in a significant increase in false alarms, an 
unwanted factor that not only increases control costs but also 
leads to wrong conclusions and causes the operator to lose 
credibility as a consequence (Costa et al. 2004; Del Castillo 
2002). So, the alternative used in an autocorrelated process 
is to fit an ARIMA model and use the residues produced 
for this model to evaluate the process (Veiga et al. 2016; 
Kalavani et al. 2019).

However, it should be noted that the residuals produced 
by the models must be approximately normal and independ-
ent with zero mean and constant variance, fully satisfying 
the assumptions on the proper use of control charts. This 
procedure is one of the major alternatives to avoid problems 
caused by the violation of assumptions of no correlation 
among the observations (Del Castillo 2002).

The aim of this research is to use the statistical process 
control (SPC) technique applied to univariate time series in 
order to determine the efficiency of control charts for indi-
vidual observations (CCIO) and the exponentially weighted 
moving average (EWMA) chart to detect outliers in autocor-
related processes (Miranda 2001; Santos and Barreto 2018). 
The charts will be applied in residuals originated from an 
autoregressive (AR) or moving average (MA) process. In 
addition to demonstrating the influence of the autocorre-
lation strength of the process, this study also verified the 
detection power of the charts in relation to the magnitude of 
the anomalous observation.

It is evident that the detection of outliers and their treat-
ment is important to obtain a better fit and a smaller pre-
diction error, because the forecast models are based on 
the assumption of outliers pretreatment (Veiga et al. 2010; 
Bashiri and Moslemi 2013; Puchalski et al. 2018). Ghomi 
and Sogandi (2018) showed that many actual production 
processes are contaminated by a continuos stream in cor-
related data. So, it is important to distinguish trends, sea-
sonalities and outliers.

These outliers can often go unnoticed in residual control 
charts which originate in autocorrelated processes, because, 
according to Chang (1982), the mathematical model used 
to remove the serial correlation can incorporate the behav-
iour of the outlier in its structure, reducing its effect in the 
residual series and thus hindering outlier detection. It should 
also be noted that the presence of outliers enhances the con-
trol limits because the variability of the process is increased.

Outliers and structural changes are often found in time 
series analysis, and they may be associated with unexpected 
or uncontrollable events. Such different observations may 
compromise the usual methods of time series analysis 
(Miranda 2001). The presence of an outlier can seriously 
bias the least squares estimates of the parameters of an 
ARMA model. Palma (1999), and Rounaghi and Zadeh 
(2016) explain that studies on outliers in time series are rela-
tively scarce when compared to studies in the field of linear 
regression. This is due to the multiplicity of the ARIMA 
models—AR(p), MA(q), ARMA(p, q), ARIMA(p, d, q)—
which requires various detection mechanisms (Palma (1999).

This research proposes a methodology to join the sta-
tistical process control and engineering process to identify 
outliers in autocorrelated data, using control charts applied 
to residuals from an autoregressive and moving average 
models.
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Methodology

The methodological steps suggested below were used to test 
the efficiency of residual control charts in outlier detection in 
autocorrelated processes, as well as the variables that influ-
ence such efficiency, represented in this research by outlier 
range and the autocorrelation coefficient.

Database

To accomplish the main purpose of this research, autoregres-
sive (AR) and moving average (MA) processes are generated 
under the following restrictions, and eight autocorrelation 
parameters (± 0.5, ± 0.6, ± 0.7 and ± 0.8) and eight outlier 
ranges were combined in each model. They were inserted at 
position 100th of the series of simulated data, considering 
the following ranges of deviations (1σ; 1.5σ; 2σ; 2.5σ; 3σ; 
3.5σ; 4σ; and 4.5σ), yielding a total of 64 possible com-
binations. In total, 10,000 series were simulated for each 
combination of autocorrelation parameters and outlier range 
in order to make the performance of the control chart more 
robust and, thus, determine the percentage of outlier detec-
tion. Hence, 640,000 series were simulated for each model—
AR(1) and MA(1).

Methodological steps

Figure 2 clearly shows a flow chart comprising the twelve 
steps that were followed in this research and the decisions 
that were taken.

The following (Chart 1) are the twelve steps (S1–S12):

Chart 1  Twelve steps (S1–S12)

S1 Simulate a time series with 200 
observations with μ_0 = 0 and 
constant variance, through a 
data generating process, such as 
AR(1) or MA(1). The param-
eters (φ or θ) must have positive 
and negative autocorrelations, 
with a magnitude of 0.5, 0.6, 0.7 
and 0.8

S2 The series through autoregres-
sive AR(1) and MA(1) are 
fitted using the Box and Jenkins 
(1970) methodology to obtain 
i.i.d. residuals, and achieve 
the assumptions of normality, 
homoscedasticity (constant 
variance) and do not show auto-
correlation (Morettin and Toloi 
2004; Enders 2003; Hamilton 
1994; Veiga et al. 2014)

S3 The residual are checked whether 
they meet the assumptions 
required to be used by control 
charts through diagnostic tests 
(Box et al. 1994; Werner and 
Ribeiro 2003)

S4 The residuals will be validated 
by means of a control chart for 
individual observations (CCIO) 
and a moving range (MR) chart 
(Montgomery 2004; Montgom-
ery and Runger 2003; Claro 
et al. 2007; Costa et al. 2004), 
using residuals obtained from 
the AR and MA processes. If 
the residual series does not have 
any points outside the control 
limits, or if no particular pattern 
is identified, the simulated series 
will be considered stable and 
used for research purposes. If 
the residuals are not statistically 
under control, the simulated 
series will be discarded and con-
sidered not valid for the study

S5 After validation step, an outlier 
was introduced at position 100th 
of the simulated data series. 
The outlier range should vary in 
the following magnitudes: 1σ; 
1.5σ; 2σ; 2.5σ; 3σ; 3.5σ; 4σ; 4.5σ 
where σ represents the standard 
deviation obtained from the 
original data series. To avoid 
a biased analysis, it should be 
noted that if the outlier has a 
positive value in the observa-
tion of the original series to 
be introduced, the value of the 
outlier to be inserted should be 
also positive, keeping the same 
movement of the series. If the 
original observation is negative, 
the outlier to be introduced will 
be also negative

S6 Introduced the outlier, the series 
again will be fitted in order to 
eliminate the autocorrelation 
effect (Fava 2000) and obtain the 
residuals that meet the condi-
tions to apply control charts



S123Journal of Industrial Engineering International (2019) 15 (Suppl 1):S119–S130 

1 3

S7 Construct CCIO and EWMA con-
trol charts with the residuals of 
the original series contaminated 
by the outlier. In the EWMA 
chart, parameters λ = 0.2 and 
L = 2.86 must be used because, 
according to Montgomery 
(2004), these parameters repre-
sent values of average run length 
(ARL) equal to 370, a similar 
value to the ARL of the CCIO 
chart. Thus, an effective compar-
ison can be made between the 
two types of control charts; Box 
and Luceño (1997) also suggest 
such parameters

S8 Check whether the observation 
marked with the outlier is out-
side the control limits, which is 
detected by the control charts

S9 Record outlier detection by the 
control chart in order to compute 
the detection rate

S10 Develop steps S1 to S9 until 
10,000 series are obtained for 
each combination of autocor-
relation parameter (φ or θ) and 
outlier range

S11 After obtaining the 10,000 series 
for each combination, determine 
the detection rates and present 
the results for each control chart.

S12 Answer the following questions 
based on the simulations and the 
detection rate of the charts

 (i) What residual control chart—
CCIO or EWMA—is more 
efficient in detecting an outlier 
with variable range?

 (ii) Is there a significant differ-
ence between positive and nega-
tive autocorrelation parameters 
for each chart?

 (iii) Is there any significant influ-
ence of the autocorrelation value 
on the detection power of the 
charts for each outlier range?

The series were simulated by means of free statistical 
software R-Project from steps S1 to S10, and the filters 
AR(p) and MA(q) were fitted by the Statistica 7.0 package 
as well as the CC and nonparametric tests.

Results and discussion

This section is divided into two subsections: the first one will 
discuss the autoregressive models and the second subsection 
will introduce the moving average model, for both models.

Autoregressive model AR(1)

The series with different magnitudes of outliers inserted 
in each predetermined position were fitted again, and the 
residuals coming from the model were evaluated applying 
the control charts. Thus, the residual series analysis of the 
model verified whether the charts were effective in detecting 
the outliers previously inserted in the original series.

Table 1 shows the rate of outlier detection in an AR(1) 
process by the CCIO control chart. The values were arranged 
as a function of the variation of the autocorrelation param-
eter φ and the outlier range. The data in Table 1 indicate, 
for example, that for a parameter whose autocorrelation is 
0.5 and an outlier with range of 1σ, the detection power is 
0.0449; that is, the outlier was detected in 449 of the 10,000 
simulated series for the control chart—CCIO, in this case.

Data visual analysis on Table 1 shows that the autocor-
relation has affected the detection of the outlier for the CCIO 
control chart except for small outlier ranges, 1σ and 1.5σ, 
where the detection rate did not have significant variation 
with the autocorrelation magnitude. The reduction in detec-
tion power as the autocorrelation parameter value increases 
is best viewed in Fig. 3, which displays a chart of detection 
efficiency as a function of the autocorrelation parameter for 
each outlier range.

For moderate positive autocorrelation whose order is 
φ = 0.5, CCIO charts were observed to have a higher detec-
tion efficiency, with a decrease in value as the autocorrela-
tion changed from moderate to strong. The same occurred 
in negative autocorrelations, where for moderate values 
(φ = − 0.5), efficiency was higher in comparison with the 
value of φ = − 0.8, which represents a strong autocorrelation.

This behaviour can be explained by the fact that, after the 
outlier is inserted in the simulated series, it is fitted again 
to obtain the residuals. Thus, the residual corresponds to 
the difference between the original observation and the past 
observation multiplied by the autocorrelation parameter. 
The larger the parameter of autocorrelation, the smaller the 
difference and consequently the smaller the residual, with 
a residual of lesser magnitude being hardly detected by the 
control charts.

Comparing the detection rate between the positive and 
negative autocorrelations, it can be seen that the CCIO chart 
is more efficient for positive autocorrelation values, since the 
detection rates in these cases are slightly higher compared to 
the negative parameters for each outlier range.

Table  2 shows outlier detection rate in an AR(1) 
process by the EWMA control chart, with parameters 
λ = 0.2/L = 2.86. The values were arranged as a function of 
the variation of the autocorrelation parameter φ and the out-
lier range. The data in Table 2, with λ = 0.2 and L = 2.86, are 
illustrated in Fig. 4, where an efficiency detection chart was 
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designed for each range as a function of the autocorrelation 
parameter.

Figure 4 shows a distinct behaviour in outlier detection by 
the EWMA control chart, when the parameters of positive 
and negative autocorrelations are compared. It can be seen 
that for small outlier ranges, 1σ and 1.5σ, the detection rate 

is not significant in relation to the magnitude of the autocor-
relation. This behaviour is similar to what happened in the 
CCIO chart. For the other ranges with positive autocorrela-
tions, an increased detection power is observed as the corre-
lation changes from moderate to strong. This behaviour does 

Fig. 2  Flow chart of the meth-
odological steps of the study
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not occur in the CCIO chart, as seen previously. Moreover, 
the behaviour is reversed for negative autocorrelations; that 
is, as the strength of the autocorrelation increases, the detec-
tion power decreases.

The data in Table 4 and the scales of the charts dis-
played in Fig. 4 show a great difference in the detection rate 
between the positive and negative parameters for the same 
range of differences. The same effect was seen in the CCIO 
chart, but the magnitude of the difference had a much lower 
value.

Moving average model: MA(1)

The methodological steps used in the moving average model 
are similar to those used in the autoregressive models to 
obtain the detection rates of the CCIO and EWMA con-
trol charts, when varying the autocorrelation parameter and 
the outlier range. Table 3 displays outlier detection rate in 
MA(1) processes by the control chart CCIO. The values 
were arranged as a function of the variation of the auto-
correlation parameter and the outlier range. We can see in 
Table 3 that for an autocorrelation parameter of 0.5 and an 
outlier with range of 1σ, the detection power was 0.0407; 
that is, the outlier was detected by the control charts in 407 
of the 10,000 simulated series.

Table 1  Outlier detection rate in 
autoregressive processes AR(1) 
through the control chart for 
individual observations (CCIO)

Autocorrelation 
parameter

Outlier range

1σ 1.5σ 2σ 2.5σ 3σ 3.5σ 4σ 4.5σ

− 0.8 0.0389 0.1124 0.2587 0.4563 0.6654 0.8406 0.9381 0.9822
− 0.7 0.0398 0.1183 0.266 0.4819 0.7143 0.8851 0.9638 0.9916
− 0.6 0.038 0.1212 0.2787 0.5103 0.7601 0.9156 0.9797 0.9967
− 0.5 0.0397 0.1197 0.2826 0.5315 0.7944 0.9439 0.9896 0.9992
0.5 0.0449 0.1324 0.2925 0.5531 0.8124 0.9533 0.9932 0.9996
0.6 0.043 0.1213 0.2851 0.4563 0.7778 0.9221 0.9826 0.9979
0.7 0.0452 0.1256 0.2786 0.504 0.7315 0.8925 0.9671 0.9957
0.8 0.0386 0.116 0.2622 0.4641 0.6891 0.8557 0.95 0.9861

Fig. 3  Efficiency of detection, 
on the y axis, as a function of 
the autocorrelation parameter, 
on the x axis, for data coming 
from an AR(1) process using 
the CCIO control chart
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Table 2  Outlier detection rate in 
autoregressive processes AR(1) 
through the EWMA control 
chart with parameters λ = 0.2 
and L = 2.86

Autocorrelation 
parameter

Outlier range

1σ 1.5σ 2σ 2.5σ 3σ 3.5σ 4σ 4.5σ

− 0.8 0.0113 0.0262 0.0442 0.0819 0.1272 0.1918 0.2739 0.3598
− 0.7 0.0143 0.0275 0.0475 0.0813 0.1338 0.2006 0.2867 0.3703
− 0.6 0.012 0.0274 0.0512 0.0929 0.1429 0.2151 0.3044 0.4084
− 0.5 0.0124 0.0295 0.0554 0.0959 0.1521 0.2293 0.3166 0.4303
0.5 0.0186 0.0397 0.0731 0.138 0.2359 0.3526 0.504 0.6313
0.6 0.0187 0.0412 0.0789 0.1463 0.2407 0.3673 0.5153 0.6614
0.7 0.0212 0.0405 0.0826 0.1521 0.2488 0.3711 0.5272 0.6851
0.8 0.0192 0.0449 0.0819 0.1559 0.2497 0.3805 0.5366 0.6985
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Table 3 shows that the autocorrelation affects the out-
lier degree detection by the CCIO control chart, except 
for small outlier ranges (1σ and 1,5σ), where the detection 
rate shows hardly any variation with the magnitude of the 
autocorrelation.

For moderate positive autocorrelation whose order is 
θ = 0.5, CCIO charts are considered to be more efficient in 
the detection when the outlier range varies between 2.5σ 
and 4.5σ, with a reduction in its value as the strength of 
the autocorrelation increases. The same occurs in negative 
autocorrelations, where for moderate values (θ = − 0.5), 
efficiency is higher in comparison with the value θ = − 0.8, 
which represents a strongly negative autocorrelated process. 
This behaviour is shown in Fig. 5, which illustrates a chart 
of detection efficiency as a function of the autocorrelation 
parameter for each outlier range.

The comparison of the detection rate between the posi-
tive and negative autocorrelations discloses that the CCIO 
chart is slightly more efficient for positive autocorrelation 
values, except for the range of 1σ. In this magnitude, a sig-
nificant difference in the detection rate between the positive 
and negative autocorrelations cannot be said to exist without 
a detailed statistical analysis.

Table 4 displays outlier detection rate in MA(1) pro-
cesses by the EWMA control chart, with parameters 

λ = 0.2/L = 2.86. The values were arranged as a function of 
the variation of the autocorrelation parameter θ and the out-
lier range.

The data in Table 4 are displayed in Fig. 6, where an effi-
ciency detection chart was designed for each outlier range, as 
a function of the autocorrelation parameter. The analysis of 
Fig. 6 shows that for the positive autocorrelations there is not 
a clear trend of the detection rate behaviour as the strength 
of the autocorrelation is increased. As mentioned above for 
the AR model, a possible cause may be the heterogeneity of 
the residuals, which affects the design of the EWMA control 
chart. For all the outlier ranges, the detection percentage for 
the negative autocorrelations had a decline when the auto-
correlation ranged from − 0.5 to − 0.8.

The observation of the data in Table 4 and the scales of 
the charts in Fig. 6 enable the perception of a great differ-
ence in the detection rate between the positive and negative 
autocorrelation parameters for the same ranges of differ-
ences. The same effect was seen in the CCIO chart, but the 
magnitude of the difference had a much lower value.

Fig. 4  Detection efficiency, on 
the y axis, as a function of the 
autocorrelation parameter, on 
the x axis, for data coming from 
an AR(1) process using the 
EWMA control chart (λ = 0.2 
and L = 2.86)
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Table 3  Outlier detection rate 
in moving average MA(1) 
processes through the control 
chart for individual observations 
(CCIO)

Autocorrelation 
parameter

Outlier range

1σ 1.5σ 2σ 2.5σ 3σ 3.5σ 4σ 4.5σ

− 0.8 0.0383 0.108 0.2476 0.4611 0.7095 0.8795 0.9726 0.9950
− 0.7 0.0423 0.1148 0.2646 0.4924 0.7409 0.9126 0.9838 0.9980
− 0.6 0.0403 0.115 0.2729 0.5204 0.7728 0.9307 0.9888 0.9992
− 0.5 0.0419 0.1157 0.289 0.5395 0.8131 0.9568 0.9948 0.9996
0.5 0.0407 0.1234 0.2917 0.5543 0.8227 0.96 0.9948 0.9999
0.6 0.043 0.12 0.2877 0.5482 0.8013 0.9431 0.9907 0.9990
0.7 0.0403 0.1185 0.2856 0.5216 0.7787 0.9317 0.9857 0.9985
0.8 0.0426 0.1185 0.2792 0.5102 0.7576 0.9139 0.9821 0.9975
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Discussion

In this subsection, the data obtained in Tables 1, 2, 3 and 
4 will be analysed by means of nonparametric statistics in 
order to provide a statistical basis to answer the questions 
listed below and to prove some behaviours that were visually 
observed in the data tables. This analysis aims to answer the 
questions made in step S12, indicating which chart is more 
efficient considering all restrictions imposed in this study. To 

answer the questions asked in step S12, Table 5 shows the 
results of nonparametric statistical tests applied.

A comparison of the results obtained for the AR(1) and 
MA(1) models shows that the behaviour concerning the effi-
ciency in detecting an outlier previously inserted in these 
models is the same. When the CCIO and the EWMA charts 
were compared to check whether there is a significant differ-
ence in their detection power, the null hypothesis of equal-
ity between the two samples was rejected at a significance 
level of 5% in both models. Therefore, there is a significant 

Fig. 5  Detection efficiency, 
on the y axis, as a function of 
the autocorrelation parameter, 
on the x axis, for data coming 
from a MA(1) process using the 
CCIO control chart
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Table 4  Outlier detection rate 
in MA(1) processes through 
the EWMA control chart with 
parameters λ = 0.2 and L = 2.86

Autocorrelation 
parameter

Outlier range

1σ 1.5σ 2σ 2.5σ 3σ 3.5σ 4σ 4.5σ

− 0.8 0.0076 0.0135 0.0226 0.0413 0.0653 0.1101 0.1635 0.2489
− 0.7 0.0100 0.0185 0.0304 0.0572 0.0934 0.1444 0.2162 0.3165
− 0.6 0.0118 0.0226 0.0413 0.0691 0.1168 0.1829 0.2556 0.3557
− 0.5 0.0129 0.0233 0.0495 0.0825 0.1362 0.1975 0.2919 0.4066
0.5 0.0191 0.0391 0.0779 0.1376 0.2203 0.3332 0.4506 0.5764
0.6 0.0206 0.0379 0.0750 0.1369 0.2199 0.3254 0.4501 0.5677
0.7 0.0195 0.0339 0.0768 0.1303 0.2111 0.3247 0.4380 0.5550
0.8 0.0178 0.0405 0.0733 0.1231 0.2100 0.3069 0.4245 0.5394

Fig. 6  Detection efficiency, on 
the y axis, as a function of the 
autocorrelation parameter, on 
the x axis, for data coming from 
an MA(1) process using the 
EWMA control chart (λ = 0.2 
and L = 2.86)
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difference between the two charts regarding the power of 
outlier detection; the CCIO chart has greater efficiency than 
the EWMA chart.

A comparison as to whether there is a difference between 
positive and negative autocorrelation parameters for both 
charts (CCIO and EWMA) and both models (AR and MA) 
shows that the behaviour between the positive and negative 
autocorrelation parameters is different in each chart, with the 
EWMA chart having a greater difference in detection. The 
value of weighting constant λ influences the performance of 
the CICO and EWMA chats, as greater as the value of the 
λ the chart is able to capture large discrepancies, and the 
EWMA chart behave as a CICO chart. Smaller values to 
the constantan λ are able to capture short discrepancies. So, 
a compromise between the number of standard deviations 
from the central line (L) and the weighting constant (λ) must 
be chosen as a way to compare the average runs length in 
the CICO and EWMA charts. When a comparison was made 
as to whether there is a difference in the detection power 
between the different autocorrelation values on both models 
and charts, the null hypothesis of equality of the samples was 
not rejected at a significance level of 5%. Thus, there is no 
difference in outlier detection when there is variation in the 
correlation parameter value.

Conclusions

This article aimed to evaluate the application of forecasting 
models along with the use of residual control charts to assess 
production processes whose samples have autocorrelation 
characteristics. The main objective was to determine the effi-
ciency of control charts for individual observations (CCIO) 
and exponentially weighted moving average (EWMA) charts 
when they are applied to residuals of models of AR(1) or 
MA(1) to detect outlier in autocorrelated processes. Results 
showed that for both the AR and MA models, the CCIO 

control chart is more efficient than the EWMA chart in the 
detection of outliers, even for low ranges. As shown by 
Montgomery (2004), the EWMA control chart is more effec-
tive in detecting small permanent process changes ranging 
from 1.5σ to 2σ, while the CCIO chart is more efficient in 
detecting major changes at the process level. However, as 
observed in this study, when the intention is to detect an 
outlier or make an abrupt change to a process (represented 
by the change of only a sample of such process), the CCIO 
chart is more efficient for small and large ranges. One pos-
sible reason for the poor performance of the EWMA chart 
in detecting an outlier by means of the residuals lies in the 
low weight given to the current residual by the weighting 
constant λ. Thus, the effect of the outlier is “masked” when 
developing EWMA statistics to be plotted on the control 
chart. A spike in the series of original data will result in a 
disruption in the EWMA statistics, but in the subsequent 
periods, the interference of the outlier disappears. However, 
when there is a change in the average of the process, the 
EWMA statistics tends to increase in the subsequent periods 
until it extrapolates the control limits. For this reason, the 
EWMA control chart is more appropriate to detect changes 
on average, but not recommended to detect outliers.

When an evaluation was made to check whether there is a 
significant difference in detection between autocorrelations 
with positive and negative parameters for models AR(1) 
and MA(1), both CCIO and EWMA control charts showed 
different behaviours when the parameters of positive and 
negative autocorrelations were different in each chart, and 
there is a greater difference in the EWMA chart, since its p 
value is closer to the rejection region of the null hypothesis 
of the test. Although the weights of the autocorrelations do 
not significantly affect detection rates, the visual analysis of 
the data enables the observation of a small variation in the 
CCIO charts and a more significant change in the EWMA 
charts. Another observed behaviour is related to the detec-
tion power of the EWMA chart, when positive parameters 

Table 5  Results of the nonparametric statistical tests

(+) Positive autocorrelations, (−) negative autocorrelations; the value in parentheses represents the p value. All the tests are significant for p 
value < 0.05

Comparison Used test Chart AR(1) MA(1)

Difference in the detection power between the CCIO and EWMA charts Mann–Whitney U test – Significant
(p < 0.05)

Significant
(p < 0.05)

Difference in the detection power between positive and negative autocorrela-
tion parameters

Mann–Whitney U test CCIO Not significant
(p > 0.05)

Not significant
(p > 0.05)

EWMA Not significant
(p > 0.05)

Not significant
(p > 0.05)

Difference in the detection power between the values of autocorrelation 
parameters

Kruskal–Wallis test CCIO Not significant
(p > 0.05)

Not significant
(p > 0.05)

EWMA Not significant
(p > 0.05)

Not significant
(p > 0.05)
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are used in AR(1) processes. In all the studied cases, for both 
positive and negative autocorrelations, detection decreases 
as the autocorrelation strength increases from 0.5 to 0.8. 
However, in the case mentioned, the behaviour is the oppo-
site, with an increase in the detection efficiency when the 
autocorrelation parameters vary from 0.5 to 0.8.

As suggestion for future research is adopting the mixed 
model, autoregressive integrated moving average (ARIMA) 
is used to extract the residuals of an autocorrelated pro-
cess and, thus, study the performance of the control charts 
applied in this research, and test whether heteroscedasticity 
can affect the design of the EWMA control chart.
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