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Abstract
This paper proposes an innovative procedure of finding efficient facility location–allocation (FLA) schemes, integrating 
data envelopment analysis (DEA) and a multi-objective programming (MOP) model methodology. FLA decisions provide 
a basic foundation for designing efficient supply chain network in many practical applications. The procedure proposed 
in this paper would be applied to the FLA problems where various conflicting performance measures are considered. The 
procedure requires that conflicting performance measures classified as inputs to be minimized, or outputs to be maximized. 
Solving an MOP problem generates diverse alternative FLA schemes along with multi-objective values. DEA evaluates these 
schemes to generate a relative efficiency score for each scheme. Then, using stratification DEA, all of these FLA schemes are 
stratified into several levels, from the most efficient to the most inefficient levels. A case study is presented to demonstrate 
the effectiveness and efficiency of the proposed integrating method. We observe that the combined approach in this paper 
performs well and would provide many insights to academians as well as practitioners and researchers.

Keywords Facility location–allocation · Data envelopment analysis · Multi-objective programming · Performance 
measures · Relative efficiency score

Abbreviations
AAS  Average attractiveness score
CDE  Covered demands in case of emergency
DEA  Data envelopment analysis
DMU  Decision-making unit
DRC  Disaster recovery center
ES  Efficiency score
ENDS  Expected number of non-disrupted supplies
FLA  Facility location–allocation
FE  Fully efficient
MCD  Maximum coverage distance
MONLP  Multi-objective nonlinear programming
MOP  Multi-objective programming
MDWCD  Maximum demand-weighted coverage 

distance

nCDE  Non-covered demand in case of emergency
PM  Performance measure
TLC  Total logistics cost

Introduction

The facility location–allocation (FLA) decision is often 
considered the most important factor leading to the success 
of a private- or public-sector organization. Daskin (2013) 
emphasizes the importance of facility location problems by 
asserting in his recent book that in short, the success or 
failure of both private and public-sector facilities depends 
in part on the locations chosen for those facilities. Since the 
design of efficient supply chain networks starts from efficient 
FLA decisions (see Olivares-Benitez et al. 2012), the FLA 
models have been widely used in practical life as well as in 
many academic disciplines. Consequently, the topic of FLA 
problem has received considerable attention in the literature.

The basic issues of FLA are where to locate and how to 
size facilities, and how to meet demands from the facilities. 
FLA decisions inherently consist of two kinds of decision 
plans. One is a strategic decision plan on the facility loca-
tion, while the other one is an operational decision plan on 
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the facility allocation. The goal of FLA decision is to locate 
the facilities in a way that satisfies/covers the demand points 
most efficiently. In fact, various types of FLA models have 
been developed to answer questions such as how many facili-
ties to locate, where to locate facilities, and how to distrib-
ute the items to the customers concerning different location 
criteria.

Many references cited in Farahani et al. (2010) demon-
strate that the FLA problems are inherently multi-objective, 
where those objectives sometimes conflict with each other in 
nature (see Lee et al. 1981). The traditional FLA models deal 
with the objective of cost minimization, whereas demand-
oriented objectives focus on measuring the ‘proximity or 
closeness’ of the facilities. The profit maximization objec-
tive may be achieved by either cost minimization or maxi-
mization of demand satisfied/covered, or both. They (2010) 
emphasize the importance of multi-objective facility loca-
tion–allocation (MOFLA) problems after observing the sub-
stantial growth of the literature on MOFLA problems. Thus, 
the growing attention and interest in these problems are due 
to the recognition of the need to consider more objectives/
criteria to achieve closer solutions to reality.

Multi-objective programming (MOP) technique provides 
an analytical framework where a variety of objectives can 
be focused on simultaneously so that a decision maker can 
use to provide optimal solutions. But most of the MOP 
techniques require decision-makers’ judgment to provide 
weights to the deviational variables in the objective func-
tion to appropriately reflect the importance and desirability 
of deviations from the various target values. As the number 
of performance measures increases, solving the MOP model 
will yield a great number of alternative options. The reason 
is that each different weight factor set for performance meas-
ures may generate a different option. As Ragsdale (2015) 
states, no standard procedure is available to assign values 
to the weight factors in a way that guarantees the decision-
makers find the most desirable solution. Evaluating alterna-
tives generated by solving the MOP model can be viewed 
as a multiple-criteria decision-making (MCDM) problem, 
requiring a systematic solution evaluation system.

In this paper, we utilize data envelopment analysis (DEA) 
technique for such a systematic solution evaluation system. 
DEA yields relative efficiency of comparable units, which 
are called decision-making units (DMUs) in DEA parlance, 
that employ multiple outputs and inputs. To denote the rela-
tive efficiency for each DMU, DEA produces an efficiency 
score that is defined as the ratio of the sum of weighted 
outputs to the sum of weighted inputs.

The objective of this paper is to present and demonstrate 
how to combine DEA and MOP techniques for the efficient 
FLA decisions and patterns to help practitioners as well as 
decision-makers who are responsible for the strategic and 
operational decision plans. To combine DEA and MOP, we 

classify all performance measures into inputs or outputs to 
formulate the FLA problem as an MOP model. Then we 
solve the model for various values of weights given to the 
performance measures. Considering each generated alterna-
tive option for a given set of weight as a DMU, we evaluate 
all alternative options by utilizing DEA technique to find the 
efficiency of each alternative option and identify the most 
efficient FLA schemes. In this way, decision-makers evaluate 
and identify efficient and robust FLA decisions without any 
subjective judgment. Furthermore, once decision-makers 
identify efficient FLA patterns through the proposed pro-
cedure, they can modify their operational decisions without 
sacrificing the efficiency heavily under unexpected disrup-
tions. We demonstrate our procedure through a case study.

This paper is organized as follows. After the literature 
review of FLA with DEA, we provide a brief introduction 
to general FLA models with MOP with the minimax objec-
tive approach and DEA. The proposed method of combining 
an MOFLA model and DEA is discussed. Next, we dem-
onstrate our proposed method by MOFLA formulation and 
DEA evaluation through a case study using actual data in 
South Carolina, followed by conclusions.

Literature review

The FLA problem is widely used in practical life. The 
pioneering work of Weber (1929) on the location theory 
prompted the formulation of various mathematical pro-
gramming models. After Cooper (1963) initially proposes 
an FLA problem by presenting a heuristic method, Hakimi 
(1964, 1965) applies the FLA problem to network design as 
a powerful tool. Several heuristic methods have been devel-
oped for the traditional FLA problem. Recently, Mesa et al. 
(2017) applied Cuckoo search via Levy flights (CS-LF) to 
uncapacitated FLA problem, claiming that applying CS-LF 
yields better facility locations compared to particle swarm 
optimization and other existing algorithms. Traditionally, 
minimizing cost/time/distance has been the primal objec-
tive. Some authors (Askin et al. 2014; Manatkar et al. 2016) 
consider also maintaining desired service level in addition 
to reducing the costs. Recently, contrary to the most single-
period FLA problem, Manzini and Gebennini (2008) and 
Manatkar et al. (2016) apply mixed integer programming 
optimization models to design and manage multi-period, 
multi-stage and multi-commodity FLA problem. Hotelling 
(1929) introduces an influential competitive facility loca-
tion model where each of two players selects a location in 
a linear segment, and a continuum of uniformly-distributed 
consumers along that segment select the closest facility. 
Hakimi (1983), Aboolian et al. (2007), Zhang et al. (2016a, 
b), and Bagherinejad and Niknam (2017) are a few of them 
who study and develop various algorithms and procedures 
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for the competitive facility location problems. Balcik and 
Beamon (2008) consider facility location decisions for a 
humanitarian relief chain responding to quick-on-set dis-
asters. Habib et al. (2016) conduct an up-to-date survey of 
mathematical models developed in humanitarian supply 
chain area and highlight the potential research areas which 
require the attention of the researchers. Recently, Fereiduni 
and Shahanaghi (2017) present a robust network design 
model for humanitarian logistics which will assist in location 
and allocation decision for multiple disaster periods. They 
(2017) also use the Monte Carlo simulation for generating 
related random numbers and different scenarios and utilize 
the p-robust approach to formulate the new network.

As shown in Farahani et al. (2010), various research-
ers have worked on multi-objective/criteria facility loca-
tion–allocation (MOFLA) problems, such as Blake and 
Carter (2002), Drezner et al. (2006), Yang et al. (2007), Ho 
et al. (2008), Farahani et al. (2010), Hong et al. (2015), Fara-
hani et al. (2015), Fang and Li (2015), and Manatkar et al. 
(2016). Khalili-Damghani et al. (2015) propose a bi-objec-
tive mixed integer mathematical programming for locations 
of warehouses and routing of vehicles to reduce the total cost 
of the supply chain and to balance the workload of distribu-
tion centers while the due dates of delivery of perishable 
product are met, concurrently. To solve their model, they use 
an evolutionary algorithm called Non-Dominated Sorting 
Generic Algorithm-II. Oddoye et al. (2009), Beheshtifar and 
Alimoahmmadi (2015), Zhang et al. (2016a, b) and Ahmadi-
Javid et al. (2017) apply MOFLA models to solving health-
care related facility location–allocation problems.

DEA has been a widely used mathematical program-
ming technique that evaluates the performance of a set of 
homogenous DMUs. Hafezalkotob et al. (2015) propose a 
robust DEA (RDEA) to investigate the efficiencies of DMU 
where there are discrete input and output data. Khalili-
Damghani et al. (2016), also pointing out that the observed 
values of the input and output data in real-world problems 
are sometimes imprecise or vague, present a comprehensive 
fuzzy DEA framework for solving performance evaluation 
problems with coexisting desirable input and undesirable 
output data in the presence of simultaneous input–output 
projection. In conventional DEA, DMUs are represented as 
black boxes where only the initial inputs and final outputs 
are considered to measure their efficiency, neglecting inter-
vening processes, i.e., different series or parallel function. A 
new DEA model called network DEA (NDEA) accounts for 
divisional efficiencies as well as the overall efficiency (see 
Cook et al. 2010). Saniee-Monfared and Safi (2013) propose 
a set of performance indicators to enable efficiency-analysis 
of academic activities and apply NDEA structure to account 
for sub-functional efficiencies such as teaching quality, 
research productivity, as well as overall efficiency. Tavana 
et al. (2016) apply NDEA to evaluate the performance of 

three-level supply chains and shows the applicability and 
efficiency of the proposed framework, insisting that the pro-
posed method can be easily implemented in any multi-level 
supply chain.

Thomas et al. (2002) propose the combined obnoxious-
facility location/DEA model, assuming that the number 
of facilities to be opened is predetermined. Klimberg and 
Ratick (2008) develop and test location modeling formula-
tions by utilizing DEA to find optimal and efficient FLA 
patterns. Following Klimberg and Ratick (2008), Fang and 
Li (2015) propose a combined DEA and goal programming 
(GP) approach. But these two approaches assume both 
inputs and outputs are given to model DEA for the efficient 
FLA decision, whereas our paper generates all inputs and 
outputs from solving the MOP model. Klimberg et al. (2011) 
extend Klimberg and Ratick (2008) to consider the more 
realistic situation in which the units of products from the 
facilities are decision variables. Another example using the 
combining DEA and MOP approach is found in Ghoushchi 
et al. (2017) who develop the DEA model using imprecise 
data based on GP to evaluate and select sustainable suppliers 
in the supply chain.

This paper is motivated by Klimberg and Ratick (2008), 
Klimberg et al. (2011) and Fang and Li (2015). All of them 
develop and test location modeling formulations by utilizing 
DEA to find optimal and efficient FLA patterns. Klimberg 
and Ratick (2008) and Klimberg et al. (2011) postulate that 
locating facilities at different potential sites may affect the 
performance of the facility’s ability to transform inputs into 
usable outputs. Their model formulation simultaneously 
considers the interaction of spatial efficiencies of differ-
ent location patterns through the use of least cost objective 
and the facility efficiencies at those sites through the use of 
DEA objective. Their models (2008 and 2011) require the 
huge amount of the predetermined input and output data 
and consequently the huge number of the constraints for 
their combined location and simultaneous DEA model, as 
the numbers of facilities and their potential sites increase. In 
addition to those huge data and constraints required by their 
models, it would be not only difficult to quantify all inputs 
and outputs for a facility to be located to cover the allocated 
sites, but also very subjective for a decision maker to decide 
these magnitudes of such inputs and outputs. In addition, 
they apply the results obtained by DEA as one goal/objec-
tive for their MOP models. That is not the way that DEA has 
been developed and applied in many researches on the topic 
of DEA. For example, suppose that one of the performance 
measures is the total cost. The total cost should be used as 
an input to apply DEA method. In other words, the decision 
of locating a facility at a site incurs a part of the total cost 
and will affect the relative efficiency of FLA scheme when 
DEA is applied. That is the way that DEA has been invented 
and applied to find the efficiency of DMUs.
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In this paper, we propose a more reasonable and practical 
approach to finding efficient FLA decisions by generating 
the inputs and outputs directly through formulating and solv-
ing the MOP model and by applying DEA for those inputs 
and outputs generated by the MOP model. No literature on 
our innovative approach to FLA decisions has been known.

FLA model with MOP with minimax 
objective approach

The following nomenclature is used:
Sets:

M  Index set of potential facility sites (j =1, 2, …, M and 
m =1, 2…M).

Parameters:

bj  Minimum number of sites that facility j can cover
Bj  Maximum number of sites that facility j can cover
cjm  Cost of shipping one unit of demand per mile from 

facility j to site\demand point m
Cmax  Maximum number of facilities can be built
CAPmax

j
  Capacity of facility located at site j

djm  Distance between facility located at site j and site 
m

Dm  Demand of site m
hj  Holding cost per item per time unit at facility 

located at site j
Fj  Fixed cost for constructing and operating facility 

located at site j
Lj  Replenishment lead time for facility located at site 

j
Sj  Ordering cost for facility at site j to place an order
β  Desired service level
�m  Standard deviation of demand at site m

Decision variables:

Cj  Binary variable deciding whether a facility is located 
at site j

yjm  Binary variable deciding whether site m is covered by 
facility located at site j

In above nomenclature, we assume ajm and djm equal to 
zero if j = m.

Let I and O denote the index set of performance metrics 
for inputs (i = 1, 2, …, p) and outputs ( r = 1, 2, …, s). Let the 
nonnegative deviation variables, ( �+

1
, �+

2
, … �+

p
 ) and ( �−

1
, 

�−
2
, … �−

s
 ), denote the amounts by which each value of per-

formance metrics deviates from the minimum and maximum 

values, respectively, which are called overachievement and 
underachievement deviation n variables. Then, the deviation 
variables are expressed as

and

where TGV+
i

 and TGV−
r

 represent the target value of perfor-
mance metric, I+ and O− , respectively. Now, the minimax 
objective can be expressed as

where �+
i
 and �−

r
 are relative importance weights attached to 

the overachievement and underachievement deviation varia-
bles and the sum of all weights equals one for the purpose of 
analysis. Now, set Q equal to the maximum variable, such as

The formulation of MOFLA model with MOP with the 
minimax objective is given as follows:

subject to

Constraints (5) make certain that each site is covered by 
a facility. Constraints (6) define the maximum number of 

�+
i
= X+

i
− TGV+

i

�−
r
= TGV−

r
− X−

r
,

Minimize the maximum of
{
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1
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�+
p
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p
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1
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1
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s

�−
s
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s
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,

(1)
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.

(2)Minimize Q in (1)

(3)
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1
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≤ Q,… , �+
p

�+
p
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p

≤ Q, �−
1
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1

≤ Q,… , �−
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(4)
X+
1
− �+

1
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1
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− �+
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p
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1
+ �−

1
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s
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,

(5)
∑

j∈M

yjm = 1, ∀m ∈ M

(6)
∑

j∈M

Cj ≤ Cmax,

(7)yjm ≤ Cj, ∀j and ∀m ∈ M

(8)Cj ⋅ bj ≤
∑

m∈M

yjm ≤ Cj ⋅ Bj, ∀j ∈ M

(9)
∑

m∈M

Dmyjm ≤ CAPmax
j

, ∀j ∈ M.
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facilities to be built. Constraints (7) ensure that each site can 
only be covered by a selected facility. Constraints (8) make 
sure that the facility j must cover at most Bj and at least bj 
sites. Constraints (9) show the capacity of the facility j.

Data envelopment analysis (DEA) models

Among many performance evaluation methods, data envel-
opment analysis (DEA) has been widely used to evaluate 
the relative efficiency of a set of peer organizations called 
decision-making units (DMUs) that have multiple inputs 
and outputs. The main reason might be that DEA mod-
els need not recourse to the exact behavior function of 
those organizations regarding the transformation of mul-
tiple inputs to outputs. DEA defines relative efficiency as 
the ratio of the sum of weighted outputs to the sum of 
weighted inputs. The mathematical model of DEA (see 
Cooper et al. 2011) may be stated as:

subject to

where n number of DMUs being compared in the DEA anal-
ysis, � efficiency rating of the DMUo being evaluated by 
DEA, Or amount of output r generated by DMU, Ii amount 
of input i used by DMU, p number of inputs used by the 
DMUs, s number of outputs generated by the DMUs, ur coef-
ficient or weight assigned by DEA to output r, vi coefficient 
or weight assigned by DEA to input i, ε non-Archimedean.

Let φ* denote the optimal value of the objective func-
tion corresponding to the optimal solution (u*, v*). 
DMUo is said to be efficient if φ* = 1. DEA models can be 
either input-oriented or output-oriented, depending upon 
the rationale for conducting DEA. The model given by 
(10)–(12) is called an input-oriented CCR model, which 
was initially proposed by Charnes et al. (1978), and φ* is 
called constant returns to scale (CRS) efficient score (ES).

(10)max� =

s∑

r=1

urOro,

(11)
p∑

i=1

viIio = 1,

(12)

s∑

r=1

urOr� −

p∑

i=1

viIi� ≤ 0, � = 1,… , n,

ur, vi ≥ �, r = 1… , s; i = 1… , p

Now, the dual program of (10)–(12), which is called 
input-oriented envelopment DEA model (e-DEA), is 
formulated:

subject to

In the above dual model given by (13)–(15), � is the effi-
cient score (ES) and DMUo is said to be efficient if �∗ = 1 
and �� is the dual variable, used to indicate benchmark infor-
mation. �+

r
 and �−

i
 are slack variables used to calculate the 

target input and output variables for an inefficient DMU. 
For �∗ = 1 , the performance of DMUo is fully efficient if and 
only if all slacks �+∗

r
= �−∗

i
= 0 , otherwise is weakly efficient. 

See Cooper et al. (2011) for details. If the performance of 
a DMU is weakly efficient, it implies that the DMU is on 
the best-practice frontier, but the performance can be still 
improved by reducing input(s) or increasing output(s). Thus, 
weakly efficient DMUS are not classified as really efficient. 
By solving the above model, we can obtain the efficiency 
score of each DMU and check if the performance of the 
target DMU is fully efficient or weakly efficient.

Performance evaluation or measurement often depends 
upon by the context. One could ask “what is the relative 
attractiveness of a particular DMU when compared to oth-
ers?” Following this vein, Seiford and Zhu (2003) pro-
pose the stratification/context-dependent DEA method to 
measure the attractiveness score and progress of DMUs 
with respect to a given evaluation context. For this, 
they stratify DMUs into different efficiency levels. Let 
J1 =

{
DMU� , � = 1, 2,… , n

}
 be the whole set of n number 

of DMUs and iteratively define J�+1 = J� − E� , until J�+1 
becomes null. E� consists of all the efficient DMUs on the 
� th level, that is, E� =

{
DMUk ∈ J�|�∗(�, k) = 1

}
, and 

�∗(�, k) is the optimal value to the following CRS model 
when DMUk is under evaluation.

(13)min� − �

{
p∑

i=1

�−
i
+

s∑

r=1

�+
r

}

(14)
n∑

�=1

��Ii� − �Iio + �−
i
= 0, i = 1,… , p,

(15)

n∑

�=1

��Or� − Oro − �+
r
= 0, r = 1,… , s,

�−
i
, �+

r
, �� ≥ 0, � = 1,… n.

(16)�∗(�, k) = min
�� ,�(�, k)

�(�, k)
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Subject to

where � ∈ F
(
J�
)
 means DMU��J

� , i.e., F(⋅) represents the 
correspondence from a DMU set to the corresponding sub-
script index set. In fact, all DMUs in E� are equivalent from 
the traditional DEA perspective. The DEA stratification 
model given by (16)–(18) partitions the set of DMUs into 
different frontier levels characterized by E� . The attractive-
ness score for each DMU in the � th level ( E� ) is computed 
against DMUs in the (� + 1) th and lower levels as the evalu-
ation context (see Zhu 2014). For an example, to find an 
attractiveness score for DMUq =

(
Iq,Oq

)
 from a specific 

level, E�o ,�o ∈ {1, 2, … L − 1} , we solve the following 
model:

Subject to

H∗
q
(d) is called d-degree attractiveness of DMUq from a 

specific level E�o . In this way, the stratification/context- 
dependent DEA can have more discriminating power on 
each stratification level. In this paper, we adopt the DEA-
based stratification concept for the FLA problem. First, we 
stratify DMUs into efficiency level, such as E1,E2,E3,…EL , 
using (16)–(18). Then we compute the attractiveness score 
(AS) for each DMU in the first level E1 against the DMUs in 
each lower level, such as E2,E3,…EL , using (19)–(21) after 
setting �o = 1. Then, we compute the average attractiveness 
score (AAS) for DMUq in E1 , AASq , which is defined as

Note that all DMUs in the first level E1 are same in 
terms of efficiency score φ* = 1 in (10) or �∗ = 1 in (13). 

(17)
K∑

�∈F(J�)

��Ii� − �(�, k)Iik ≤ 0, i = 1,… , p,

(18)

K∑

�∈F(J�)

��Or� − Ork ≥ 0, r = 1,… , s,

�� ≥ 0, � = 1,… n,

(19)H∗
q
(d) = minHq(d), d = 1,…L − �o

(20)
K∑

�∈F(E�o+d)

��I� − Hq(d)Iq ≤ 0

(21)

K∑

�∈F(E�o+d)

��O� − Oq ≥ 0,

�� ≥ 0, � ∈ F
(
E�o+d

)
.

(22)AASq =

∑L−1

d=1
H∗

q
(d)

L − 1
.

We can identify the most efficient DMUs which have the 
highest value of AAS.

Now, we propose the following formal procedure of 
combining DEA and MOP model for the efficient FLA 
decision:

Step 1 (MOFLA formulation and pre-stratification)

(1) Define objectives/goals for performance measures 
(PMs) to be considered. Then, classify PMs into p 
inputs and r outputs.

(2) Formulate MOFLA problem as MOP model shown in 
Eqs. (1)–(9).

(3) Set the value of weight for each PM, where each weight 
changes between 0 and 1 with an increment of Δ, where 
0 ≤ Δ ≤ 1.

(4) For each set of weights, solve the MOP model and call 
each solution as DMU� , � = 1, 2, … , n.

Step 2 (Stratification DEA)

(1) Set � = 1 and construct E� by evaluating each DMU in 
J�.

(2) Set J�+1 = J� − E� . If J�+1 = � , go to (3) after setting 
� = L. Otherwise, repeat (2) after setting � = � + 1.

(3) Setting �o = 1, compute H∗
q
(d), d = 1, 2,… , L − 1 , and 

compute AASq , given in (22), for DMUq in J�o.

Step 3 Rank the DMUs in J�o based on the value of AAS, 
from highest to lowest.

Case study in South Carolina

Historic flooding tore through South Carolina (SC) in Octo-
ber 2015 when numerous rivers burst their banks, washing 
away roads, bridges, vehicles, and homes. Hundreds of peo-
ple required rescue and the state’s emergency management 
department urged everyone in the state not to travel. The 
Federal Emergency Management Agency (FEMA) opened 
disaster recovery centers (DRCs) in several SC counties to 
help SC flood survivors. We use the problem of locating 
DRCs in SC as our case study. We assume that each DRC 
follows an (s, Q) policy to maintain its inventory and carries 
a safety stock to maintain the desired service level of β. To 
follow Step 1 in the formal procedure, we define objectives 
for PMs for our case study.

Objective 1: Minimize the total logistics cost (TLC)

Minimizing TLC has been the traditional objective of most 
FLA models. Given this problem setting, the TLC consists of 
the fixed cost of locating DRCs, the transportation/shipping 
cost from DRCs to the demand points, cycle stock cost, and 
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safe stock cost to maintain the desired service level of β, and 
is given in Eq. (23):

Objective 2: Minimize the maximum coverage 
distance (MCD)

Ideally, each DRC should be located near the affected sites or 
demand points. Our assumption is that the shorter distance 
is, the shorter delivery time is. The second PM is the maxi-
mum coverage distance (MCD) to be minimized so that each 
demand point is covered by one of the DRCs within the endog-
enously determined distance. In other words, the objective for 
the second PM is equivalent to attempting to minimize the 
longest delivery distance between DRCs and the affected sites. 
If MCD is too large, it will cause inefficiency to the resulting 
FLA scheme, since it will take an excessive time for a DRC 
to deliver to a remotely located site. Now, MCD is given by

Objective 3: Minimize the maximum 
demand‑weighted coverage distance (MDWCD)

MCD does not consider demand associated with each site but 
the longest distance only. Thus, it would be important to con-
sider not only MCD but also the demand-weighted distance. 
The next PM is the maximum demand-weighted coverage dis-
tance (MDWCD) to be minimized, which is given by

Objective 4: Maximize the covered demands in case 
of emergency (CDE)

Deckle et al. (2005) studied the problem of minimizing the 
total number of DRCs in Alachua County, Florida, subject 
to each county resident being close to a DRC must be less 
than a given threshold. In fact, each location should be within 
a certain distance of the nearest DRCs to be served in case 
of emergency. In addition, there may be some environmental 
constraints or difficulties such as road damage and weather 
issues, which may limit the maximum coverage distance given 
by MCD in (24). Thus, the maximum effective coverage dis-
tance (MECD), denoted by Dc , may be shorter than MCD. 

(23)

TLC = fixed cost for facilities + shipping cost + cycle stock cost + safe stock cost

=
∑

j∈M

fjCj +
∑

j∈M

∑

m∈M

Dmdjmyjmcjm

+
∑

j∈M

Cj

[√
2Sjhj

∑

m∈M

Dmyjm + hjz�

√
∑

m∈M

Lj�
2
m
yjm

]
.

(24)MCD = max
{
djmyjm

}
, ∀j and m.

(25)MDWCD = max
{
Dmdjmyjm

}
, ∀i, j, and m.

However, while minimizing MCD, it is desirable to maximize 
the covered demands within Dc . The fourth PM is the covered 

demands in case of emergency (CDE) to be maximized, which 
is expressed as

where binary parameters, �jm , are

Objective 5: Maximize the covered demands in case 
of emergency (ENDS)

To enhance DRC’s resilience, it would be important to locate 
DRCs at the safest areas if possible, so that the chances of 
DRCs’ being disrupted are minimized. We assume that if a 
DRC is disrupted, it can’t handle the supplies being delivered 
to the affected site. Now, our fifth PM is the expected number 
of non-disrupted supplies (ENDS) to be maximized, which is 
given by

where pj denotes the risk probability of  DRCj’s being dis-
rupted. Note that both Cj and yjm in (28) are decision vari-
able, thus Eq. (28) is no more a linear combination. To lin-
earize it, we define Zjm = Cj ∗ yjm and rewrite (28) as

where

Now, among the above five PMs, the first three PMs, 
TLC, MCD, and MDWCD, to be minimized would be clas-
sified as inputs, I = {TLC, MCD, MDWCD} , whereas the 
other two, CDE and ENDS, to be maximized as outputs, 
O = {CDE,ENDS}. Let the nonnegative deviation variables, {
�+
TLC

,�+
MCD

,�+
MDWCD

,�−
CDE

,�−
ENDS

}
 denote the amounts by 

which each value of TLC, MCD, MDWCD, CDE, and ENDS 

(26)CDE =
∑

m∈M

∑

j∈J

Dm�jmyjm,

(27)�jm =

{
1, if djm ≤ Dc

0, otherwise.

(28)ENDS =
∑

j∈M

Cj

(
1 − pj

) ∑

m∈M

(
yjmDm

)
,

(29)ENDS =
∑

j∈M

(
1 − pj

) ∑

m∈M

DmZjm,

max
{
0,Cj + yjm − 1

}
≤ Zjm ≤

Cj + yjm

2
.
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deviates from each target value, the minimax variable from 
Eq. (1), Q, is expressed as

Then, we formulate a multi-objective nonlinear program-
ming (MONLP) model with the minimax objective as follows:

subject to

(30)

Q = max

{
�+
1

�+
TLC

TLCmin

, �+
2

�+
MCD

MCDmin

, �+
3

�+
MDWCD

MDWCDmin

, �−
1

�−
CDE

CDEmax

, �−
2

�−
ENDS

ENDSmax

}
.

(31)min Q in (30)

(32)�+
1

�+
TLC

TLCmin

≤ Q,

(33)�+
2

�+
MCD

MCDmin

≤ Q,

(34)�+
3

�+
MDWCD

MDWCDmin

≤ Q,

(35)�−
1

�−
CDE

CDEmax

≤ Q,

(36)�−
2

�−
ENDS

ENDSmax

≤ Q,

This competes (1) and (2) in Step 1.

Solving MONLP and applying DEA

As Hong et al. (2015) use major disaster declaration records 
in South Carolina (SC) from FEMA database, we use the 
same data. Forty-six counties in SC are clustered based on 
proximity and populations into twenty counties. Then, one 
city from each clustered county based on a centroid approach 
is chosen, assuming that all population within the clustered 
county exists in that city. The distance between these cit-
ies is considered to be the distance between counties. We 
assume that when a major disaster is declared, the DRC in 

(37)TLC in (23) − �+
TLC

= TLCmin,

(38)MCD in (24) − �+
MCD

= MCDmin,

(39)MDWCD in (25) − �+
MDWCD

= MDWCDmin,

(40)CDE in (26) + �−
CDE

= CDEmax,

(41)ENDS in (29) + �−
ENDS

= ENDSmax,

(42)
3∑

g=1

�+
g
+

2∑

g=1

�−
g
= 1, and

Constraints (5) − (9).

Table 1  Data for locations of 
DRCs

No. City County POP, Dm (K) pi Fi (K)

1 Aiken Aiken/Barnwell 184 0.313 700
2 Anderson Anderson/Oconee/Pickens 373 0.125 500
3 Beaufort Beaufort/Jasper 187 0.063 400
4 Bennettsville Marlboro/Darlington/Chesterfield 96 0.375 700
5 Charleston Charleston 350 0.25 600
6 Columbia Richland/Fairfield/Kershaw 461 0.375 700
7 Conway Horry 269 0.375 700
8 Florence Florence/Dillon/Marion 203 0.438 800
9 Georgetown Georgetown/Williamsburg 93 0.438 800
10 Greenville Greenville/Laurens 521 0.125 500
11 Greenwood Greenwood/Abbeville 92 0.125 550
12 Hampton Hampton/Allendale 33 0.188 500
13 Lexington Lexington/Newberry/Saluda 318 0.313 650
14 McCormick McCormick/Edgefield 35 0.25 600
15 Moncks Corner Berkeley 178 0.313 650
16 Orangeburg Orangeburg/Bamberg/Calhoun 123 0.375 700
17 Rock Hill York/Chester/Lancaster 321 0.313 700
18 Spartanburg Spartanburg/Cherokee/Union 367 0.313 650
19 Sumter Sumter/Clarendon/Lee 157 0.375 700
20 Walterboro Colleton/Dorchester 135 0.25 600
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that county can’t function due to the damaged facility and 
supply items and closed or unsafe roads and highways. The 
FEMA database provides a list of counties where a major 
disaster was declared. Based on the historical record avail-
able in the FEMA database and the assumption, the risk 
probability for each site (a county or a clustered county) is 
calculated in Table 1. For example, the probability that a 
facility in Walterboro will suffer from a major disaster and 
will be shut down is 25%. For the case study, we hypotheti-
cally pre-determine and list the input parameters in Table 2.

As shown in the MONLP model given by Eqs. (30)–(42), 
it is necessary to find the target value for each PM. These 
values can be obtained by setting the corresponding weight 
equal to 1 and solving the model. For example, setting α = (0, 
1, 0, 0, 0) and solving the MONLP model yield the target 
value of MCD, MCDmin. Now, we solve and summarize the 
target values of five PMs, TLCmin,MCDmin,MDWCDmin , 
CDEmax , and ENDSmax in Table 3. Using these target values 
in Table 3, the MONLP model is solved for various values 
of α, where each weight changes between 0 and 1 with an 
increment of 0.1. There are 1001 configurations arising out 
of the combinations of the setting of α under the condition 
given in Eq. (42). After solving the model, we reduce 1001 
configurations into 542 consolidated configurations, based 
upon the values of the five performance measures. To apply 
DEA, we consider each of 542 configurations as a DMU. In 
fact, each configuration or DMU denotes an FLA scheme.

There are two important issues in carrying out an effi-
ciency study using DEA. One is the homogeneity of DMUs, 
and the other one is the isotonicity property. Since all DMUs 
are generated by the same MONLP model under different 
weights, the homogeneity of DMUs is satisfied to generate 

meaningful DEA results. DEA requires that there be an iso-
tonic (order preserving) relation between inputs and outputs, 
i.e., an increase in any input should not result in a decrease in 
any output (see Golany and Roll 1989). We use the correla-
tion analysis between all inputs and outputs to test this rela-
tionship. We find that the correlation coefficients (ρ) between 
TLC versus CDE and between MDWCD and CDE are nega-
tive, such as ρ(TLC vs. CDE) = − 0.6623 and ρ(MDWCD vs. 
CDE) = − 0.5467, whereas all other correlation coefficients 
are positive. Negative correlation coefficients would indicate 
that CDE should not be treated as an output to apply DEA. 
As Charnes et al. (1984) invert the values of some factors 
before they are entered into the analysis, we define nCDE 
as the non-covered demand in case of emergency, which 
is obtained by subtracting CDE from the total demand of 
4,496 K as seen from Table 1. Before applying DEA, we 
delete CDE from the set of outputs and add nCDE as a new 
input, which results in I = {TLC,MCD,MDWCD, nCDE} 
and O = {ENDS} . Now, the correlation coefficient between 
nCDE and ENDS is positive, ρ(nCDE vs. ENDS) = 0.1844. 
In fact, all correlation coefficients between all inputs and an 
output become positive, which implies that the isotonicity 
property would not be violated to implement DEA for the 
case study. This completes (3) and (4) in Step 1.

Now, using the stratification DEA method explained in 
Step 2, we stratify 542 DMUs into 24 levels, E1,E2,…E24 , 
and identify DMUs in each level. To rank DMUs in Level 1, 
E1, we compute 23 attractiveness scores and then the AAS 
given in Eq. (22). By excluding the weakly efficient DMUs 
in E1 , we find that there are thirty-one (31) fully efficient 
DMUs (FEDMUs). Based upon the AASs, we rank all 31 
FEDMUs. This completes Step 3. Each DMU represents 

Table 2  Input data used for the 
case study

Symbol Meaning Value

bj A minimum number of sites that DRC j can cover 2, ∀j
Bj A maximum number of sites that DRC j can cover 7, ∀j
cjm Cost of shipping one unit of demand per mile from DRC j to site m $0.10, ∀j and m

Cmax Maximum number of DRCs to be built 5
CAPmax

j
Capacity of DRC j 1500, ∀j

hj Holding cost per item per unit time at DRC j $5.00, ∀j
Lj Replenishment lead time at DRC j 0.01, ∀j
Sj Ordering cost for DRC j to place an order $500.00, ∀j
β Desired service level for all DRCs 0.95
�c Maximum effective coverage distance in case of emergency 35 miles
�m Standard deviation of demand per unit time at site m 5 K, ∀m

Table 3  The target values of 
five performance measures

PM TLCmin MCDmin MDWCDmin CDEmax ENDSmax

α = (�+
1
 , �+

2
 , �+

3
 , �−

1
 , �−

2
) (1, 0, 0, 0, 0) (0, 1, 0, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 0, 0, 1)

Target value $24,188 (K) 65.93 miles 13,150 K 3158 K 4027 K
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the optimal location of DRCs and their allocation scheme. 
In Table 4, we present all FEDMUs in E1 , as well as the 
least efficient DMUs in the last two levels, E23 and E24 . We 

also present the combination of weights, the value of each 
PM, CRS efficient score (ES), and AAS and its ranking. For 
example, we see that DMU4 generated by solving MONLP 

Table 5  DRC location and allocation for some efficient and inefficient DMUs

Level AAS
(Rank)

DMU # DRC Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

1 1.4545
(1)

494 Charleston Beaufort Georgetown Hampton Moncks Corner Orangeburg Walterboro
Conway Florence
Greenville Anderson Greenwood McCormick Spartanburg
Lexington Aiken Columbia Sumter
Rock Hill Bennettsville

1 1.4518
(2)

539 Charleston Beaufort Georgetown Hampton Moncks Corner Walterboro
Conway Florence
Greenville Anderson Greenwood McCormick Spartanburg
Lexington Aiken Columbia Orangeburg Sumter
Rock Hill Bennettsville

1 1.4452
(3)

463 Charleston Beaufort Georgetown Moncks Corner Orangeburg Walterboro
Conway Florence
Greenville Anderson Greenwood Hampton McCormick Spartanburg
Lexington Aiken Columbia Sumter
Rock Hill Bennettsville

1 1.4065
(4)

97 Charleston Beaufort Georgetown Hampton Moncks Corner Orangeburg Walterboro
Conway Bennettsville Florence
Greenville Anderson Greenwood McCormick Spartanburg
Lexington Aiken Columbia
Rock Hill Sumter

1 1.3987
(5)

96 Charleston Beaufort Hampton Moncks Corner Walterboro
Conway Bennettsville Florence Georgetown
Greenville Anderson Greenwood McCormick Spartanburg
Lexington Aiken Columbia Orangeburg
Rock Hill Sumter

1 1.3726
(6)

82 Charleston Beaufort Hampton Georgetown Moncks Corner Walterboro
Conway Bennettsville Florence
Greenville Anderson Greenwood McCormick Spartanburg
Lexington Aiken Columbia Orangeburg
Rock Hill Sumter

23 N/A 251 Anderson McCormick
Beaufort Charleston Florence Hampton Moncks Corner Orangeburg Walterboro
Conway Bennettsville Georgetown
Greenwood Aiken Columbia Lexington Sumter
Greenville Rock Hill Spartanburg

23 N/A 277 Beaufort Hampton Orangeburg Walterboro
Columbia Rock Hill
Greenwood Aiken Anderson Lexington Spartanburg Sumter
Moncks Corner Bennettsville Charleston Conway Florence Georgetown
Greenville McCormick

24 N/A 10 Anderson Lexington Sumter
Beaufort Bennettsville Columbia Charleston Georgetown Moncks Corner Walterboro
Greenwood Aiken Conway Florence Hampton Spartanburg
Greenville McCormick Orangeburg Rock Hill
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with either the combination of weights, (0.0, 0.0, 0.0, 0.7, 
0.3) or (0.0, 0.0, 0.0, 0.6, 0.4), yields ($36,842 K, 267 miles, 
44507 K miles, 3721 K, 1420 K) as the optimal values 
of TLC, MCD, MDWCD, nCDE, and ENDS. It obtains a 

complete and fully efficient score of 1.000, yields an AAS 
of 1.2587 with its ranking of 18. As shown in Table 4, all 
of FEDMUs in E1 possess a perfect ES of 1.000, whereas 
DMU10 in the last level, E24 , is considered as the least 

Fig. 1  Efficient facility location–allocation schemes for DMU494, DMU539, DMU463, DMU97, DMU96, and DMU82

Fig. 2  Inefficient facility location–allocation schemes for DMU251, DMU277, and DMU10
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efficient with ES of 0.5970. For the purpose of comparison 
with inefficient DMUs, the two DMUs in E23 , DMU251 and 
DMU277, are presented too. It appears that DMU494 in E1 
which has the highest AAS of 1.4545, yields the most effi-
cient FLA scheme.

In Table 5, we present the optimal DRC location–alloca-
tion schemes for top six DMUs in E1 and three DMUs in E23 
and E24 . All of the FLA schemes in Table 5 are depicted in 
Figs. 1 and 2. A notable observation from Table 5 and Fig. 1 
is that all six efficient DMUs in Level 1 select {Charleston, 
Conway, Greenville, Lexington, Rock Hill} as the optimal 
locations for DRCs, and their allocations show very simi-
lar patterns with just a few exceptions. For example, DRC 
Lexington covers {Aiken, Columbia, Sumter} in DMU494 
and DMU463, {Aiken, Columbia, Orangeburg} in DMU96 
and DMU82, {Aiken, Columbia, Orangeburg, Sumter} in 
DMU539, and {Aiken, Columbia} in DMU97. DRC Rock 
Hill covers {Sumter} in DMU90. We can observe the only 
difference in allocation for the two most efficient DMUs, 
DMU494 and DMU539, such that {Orangeburg} will be cov-
ered by DRC Charleston in DMU494 but by DRC Lexington 
in DMU539. Also, from Table 4, we see that DMU494 yields 
higher values of input, TLC, as well as of output, ENDS, than 
those of DMU539, while both DMUs yield the same values of 
other performance measures, MCD, MDWCD, and, nCDE. 
Note that the optimal location–allocation schemes of DRCs 
for the three DMUs in the two lowest levels, E23 and E24 , are 
quite different from the schemes for the four efficient DMUs 
in E1 . All of them commonly select {Beaufort, Greenwood, 
Greenville} as the optimal locations for DRCs and their allo-
cations are quite different, as shown in Fig. 2. From Table 4, 
we observe that their input values, as well as outputs, are 
higher than the DMUs in E1.

In Fig. 1, we observe that Hampton is covered by DRC 
Greenville in the scheme of DMU463, while it is covered 
by DRC Charleston in other efficient DMUs. Hampton is 
190 miles away from Greenville. From Table 4, we see that 
MCD for DMU463 is 190 miles, but MWDCD is the target 
(minimum) value of 13,150. The reason is that since Hamp-
ton has a small demand of 33 K from Table 1, a relatively 
high value of MCD does not affect MWDCD. The two DRC 
locations, Lexington and Charleston, have higher risk prob-
abilities, 0.313 and 0.25, respectively, than Greenville with 
0.125. In addition, Hampton is 84.25 and 78 miles away 
from Lexington and Charleston, which exceed the maxi-
mum effective coverage distance, Dc , of 35 miles. Thus, 
without sacrificing MWDCD and CDE, DRC Greenville for 
DMU463 covers Hampton to enhance ENDS at the sacrifice 
of MCD and TLC. Note that finding the location of DRC is 
a strategic decision plan. In an operational level, if neither 
DRC Charleston nor DRC Lexington is disrupted, it would 
enhance efficiency to let either Charleston or Lexington, 

instead of DRC Greenville, cover Hampton if it has enough 
capacity. In this way, practitioners and decision-makers can 
make flexible operational decisions once they have efficient 
and robust FLA schemes on their hands.

Figure 2 depicts the schemes of DMU251, DMU277, and 
DMU10, which generally yield high values of inputs and an 
output, as seen from Table 4. Note that the most inefficient 
scheme DMU10 with ES of 0.5937, which is generated with 
α = (0, 0, 0, 0, 1), dominates DMU251 and DMU277 regarding 
all inputs and an output. On the contrary to other schemes, 
the optimal number of DRCs generated by DMU10 is only 
four and all four DRCs, {Anderson, Beaufort, Greenwood, 
Greenville}, are located at the sites whose risk probabili-
ties are the lowest ones, such as 0.063, 0.125, 0.125, and 
0.125. In other words, DMU10 will guarantee the maximum 
expected demand covered/satisfied under the risk of disrup-
tions, at the sacrifice of all input performance measures. If 
satisfying demand under the high risk of disruptions has 
the highest priority, decision-makers will adopt the scheme 
of DMU10. Decision-makers may want to consider DMU251 
generated with α = (0.1, 0, 0, 0, 0.9) rather than DMU10, 
since they can observe that switching from DMU10 to 
DMU251 would reduce ENDS by 133 K (= 4027–3894 K) 
(3.3%), but all other inputs are significantly saved: TLC, 
MCD, MDWCD, and nCDE are reduced by $14,034  K 
(29%), 68 miles (31%), 28282 K miles (45%), 636 K (19%), 
respectively.

To identify robust locations of DRCs, we list, in Table 6, 
the locations for DRCs for all DMUs in E1 and list the DRC 
location sets with the frequencies (≥ 2) in descending order 
in Table 7. In Table 8, we also find the frequency of each 
DRC location and list the locations, frequencies along with 
the corresponding percentages in descending order. As 
shown in Tables 6 and 7, a set of five sites for the loca-
tion of DRCs, {Charleston, Conway, Greenville, Lexington, 
Rock Hill}, is selected 15 times out of 31 cases. As stated 
before and shown in Fig. 1, the six most efficient DMUs 
select these DRC locations. As expected, these five loca-
tions are ranked from 1st to 5th in terms of the frequency 
of DRC location as shown in Table 8. Identifying the robust 
locations of DRCs will be important for decision-makers 
to decide an alternative location when the risk of facility 
disruptions is very high. For example, from Tables 6 to 7, 
{Beaufort} can replace {Conway} or {Rock Hill} as a DRC 
location if either {Conway} or {Rock Hill} is disrupted. 
Similarly, {Aiken, Columbia} can replace {Lexington, 
Rock Hill} which is under the high risk of disruptions. In 
addition, decision-makers can exclude some sites from the 
candidate of DRC location. For example, the seven sites, 
{Bennettsville, Georgetown, McCormick, Moncks Corner, 
Orangeburg, Spartanburg, Sumter}, are never selected as a 
DRC location.
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Conclusions

In this study, we propose an innovative procedure of decid-
ing efficient facility location–allocation (FLA) by combin-
ing data envelopment analysis (DEA) methodology with 

Table 6  Locations selected for 
DRCs for all DMUs in Level 1

No. DMU DRC 1 DRC 2 DRC 3 DRC 4 DRC 5

1 4 Charleston Beaufort Greenville Lexington Rock Hill
2 13 Charleston Conway Greenville Lexington Rock Hill
3 14 Charleston Conway Greenville Lexington Rock Hill
4 15 Charleston Conway Greenville Lexington Rock Hill
6 59 Charleston Conway Greenville Lexington Rock Hill
7 61 Charleston Conway Greenville Lexington Rock Hill
7 82 Charleston Conway Greenville Lexington Rock Hill
8 96 Charleston Conway Greenville Lexington Rock Hill
9 97 Charleston Conway Greenville Lexington Rock Hill
10 104 Charleston Conway Greenville Lexington Beaufort
11 130 Charleston Conway Greenville Lexington Rock Hill
12 158 Charleston Conway Greenville Lexington Rock Hill
13 170 Charleston Conway Greenville Aiken Columbia
14 176 Charleston Conway Greenville Beaufort Columbia
15 188 Charleston Conway Greenville Lexington Rock Hill
16 225 Florence Greenwood Greenville Walterboro Columbia
17 234 Charleston Beaufort Florence Anderson Columbia
18 235 Walterboro Greenwood Florence Anderson Rock Hill
19 245 Charleston Beaufort Greenville Lexington Rock Hill
20 246 Charleston Beaufort Greenville Lexington Rock Hill
21 325 Charleston Conway Greenville Aiken Columbia
22 375 Charleston Conway Greenville Lexington Rock Hill
23 409 Greenwood Conway Greenville Walterboro Columbia
24 416 Charleston Anderson Hampton Florence Columbia
25 463 Charleston Conway Greenville Lexington Rock Hill
26 473 Charleston Conway Greenville Lexington Beaufort
27 485 Charleston Conway Greenville Lexington Rock Hill
27 494 Charleston Conway Greenville Lexington Rock Hill
29 536 Charleston Beaufort Greenville Lexington Florence
30 539 Charleston Conway Greenville Lexington Rock Hill
31 540 Charleston Conway Greenville Lexington Beaufort

Table 7  Frequency of robust DRC locations for the DMU in Level 1

No. DRC locations Frequency

1 {Charleston, Conway, Greenville, Lexington, Rock 
Hill}

15

2 {Charleston, Beaufort, Greenville, Lexington, Rock 
Hill}

3

3 {Charleston, Conway, Greenville, Lexington, 
Beaufort}

3

4 {Charleston, Conway, Greenville, Aiken, Colum-
bia}

2

Table 8  Frequency of locations selected for DRCs for the DMUs in 
Level 1

No. Location Frequency
(max of 31)

Percentage
(%)

1 Charleston 28 90.3
2 Greenville 28 90.3
3 Lexington 23 74.2
4 Conway 23 74.2
5 Rock Hill 20 64.5
6 Beaufort 9 29.0
7 Columbia 7 22.6
8 Florence 5 16.1
9 Walterboro 3 9.7
10 Anderson 3 9.7
11 Greenwood 3 9.7
12 Aiken 2 6.5
13 Hampton 1 3.2
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multi-objective programming model. We accomplish by 
first using a multiple objective nonlinear programming 
(MONLP) with the minimax objective approach, which 
would yield more balanced options, to generate all inputs 
and outputs for each configuration arising out of the com-
binations of the weight factor α. Each location–allocation 
scheme generated by solving MONLP for a given set of α is 
treated as a decision-making unit (DMU). For the generated 
DMUs, we apply DEA to identify efficient location–allo-
cation schemes, and then we use the context-dependent/
stratification DEA to rank the efficient schemes. The contri-
bution of this paper is that our procedure generates inputs 
and outputs directly from the multi-objective mathematical 
model, so that DEA would be more realistically applied to 
identify the efficient schemes. As stated before, the literature 
available so far has assumed that all inputs and outputs for 
locating a facility to a site are given or known unrealistically 
to apply DEA for their models.

Through case study using actual major disaster declara-
tion records in South Carolina, we demonstrate the appli-
cability of our procedure and observe that our combined 
approach with MONLP model and DEA for the FLA prob-
lem performs well. The MONLP model generates various 
FLA schemes based upon the weights given to each perfor-
mance measure which is classified as an input or output. Out 
of those FLA schemes, DEA identifies efficient schemes, and 
then context-dependent DEA ranks those efficient schemes 
and allows us to identify the most efficient FLA schemes. 
Our new approach to the MOFLA problems would provide 
many insights to academians as well as practitioners and 
researchers.

In this paper, we assume that if a facility becomes una-
vailable or shut down due to disruptions, all the demand for 
the sites assigned to the disrupted facility is lost. For future 
research, it would be interesting to consider the backup sup-
ply from the undisrupted facility, so that the demand for 
some sites would be satisfied.
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