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Abstract The reconfigurable vibrating screen (RVS)

machine is an innovative beneficiation machine designed

for screening different mineral particles of varying sizes

and volumes required by the customers’ through the geo-

metric transformation of its screen structure. The success-

ful RVS machine upkeep requires its continuous,

availability, reliability and maintainability. The RVS

machine downtime, which could erupt from its breakdown

and repair, must also be reduced to the barest minimum.

This means, there is a need to design and develop a

maintenance system model that could be used to effectively

maintain the RVS machine when utilized in surface and

underground mines. In view of this, this paper aims to

develop a maintenance system model that could be used to

effectively maintain the RVS machine when used in sur-

face and underground mines. The maintenance system

model unfolds the predictive (i.e. diagnosis and prognosis)

algorithms, the e-maintenance strategic tools as well as the

dynamic maintenance strategic algorithms required to

effectively maintain the RVS machine. Four different case

studies were presented in this paper to illustrate the

applicability of this maintenance system model in main-

taining and managing the RVS machine when utilized in

the mining industries.

Keywords Reconfigurable vibrating screen � Reliability �
Dynamic maintenance � Maintainability � LABVIEW�

Introduction

Fluctuation in mineral concentrates demand and vacillation

in productivity rates of beneficiation machines owing to

machine breakdown and maintenance (which result into

downtime) has called for the design of a RVS machine,

capable of amassing the beneficiation productivity rates of

this machine in meeting customers demand as well as

marking-up the production that might be lost during its

breakdown and repair operations (Makinde et al.

2015, 2016a). According to Ramatsetse (2014), a RVS

machine is a customized-transformable screening machine

designed to separate mineral particles into different sizes

(e.g. 10 lm, 10 and 30 mm mineral particle sizes) and

volumes (i.e. screening of 30, 45 or 60 tons/h based on

customers demand) through the geometric transformation

of its structure (Fig. 1).

This machine solution (Fig. 2) has the potential of

meeting the stochastic and dynamic customer demands in a

cost effective manner as well as recovering the production

loss that emanates during the maintenance of the machine.

In order to ensure optimal functionality of this machine

when used in surface and underground mines, there is a

need to develop a maintenance system capable of: (1)

ascertaining the exact time of failure of the different

& O. A. Makinde

olasumbomakinde@gmail.com

K. Mpofu

mpofuk@tut.ac.za

B. I. Ramatsetse

ramatsetsebi@tut.ac.za

M. K. Adeyeri

adeyerimichaeltut@gmail.com

S. P. Ayodeji

ayodejisesan@yahoo.comm

1 Department of Industrial Engineering, Tshwane University of

Technology (TUT), Pretoria, South Africa

2 Department of Mechanical Engineering, Federal University

of Technology, Akure (FUTA), Akure, Nigeria

123

J Ind Eng Int (2018) 14:521–535

https://doi.org/10.1007/s40092-017-0241-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0241-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-017-0241-7&amp;domain=pdf
https://doi.org/10.1007/s40092-017-0241-7


subsystems of this machine, (2) predicting when the

machine subsystems will fail for effective RVS machine

subsystem spare part management, and (3) ascertaining the

time to configure the RVS machine to a new machine

configuration in meeting new customers demand or

recovering production loss that could emanate during the

maintenance of this machine. To solve this problem, dif-

ferent maintenance management systems serves as poten-

tial solutions to be adopted in optimally maintaining the

RVS machine when utilized in both surface and under-

ground mines. These includes corrective maintenance i.e.

‘‘break and repair’’ maintenance techniques (Salonen and

Deleryd 2011); a preventive maintenance system i.e. ‘‘fix it

before it fail’’ maintenance strategy (Sheu and Kuo 2006),

and an opportunistic maintenance system i.e. ‘‘fix if you are

opportune to identify the fault’’ maintenance strategy (Cui

and Li 2006). Other systems, on the one hand, include a

predictive maintenance system i.e. ‘‘systematically guess

when a subsystem will fail’’ maintenance strategy (Shrotri

and Khandagale 2012) and a total productive maintenance

(TPM) system i.e. ‘‘investigate, find and proffer solutions

to the cause of machine failure and production loss’’

maintenance strategy (Rajput and Jayaswal 2012). On the

other hand, it includes a dynamic maintenance system i.e.

‘‘customer-driven’’ maintenance oriented strategy (Adeyeri

and Kareem 2012) and an e-maintenance system i.e. ‘‘an

electronic-oriented diagnosis, prognosis, maintenance

planning and inventory’’ strategy (Muller et al. 2008).

However, there is a need to ascertain which of these

aforementioned strategies will be suitable in maintaining

the RVS machine and as well as to map out the strategic

procedures or processes required to achieve effective

maintenance of the RVS machine. In view of this, the

current paper proposes a maintenance management system

model that could be adopted to maintain the RVS machine

when utilized in the mining industries. To this effect, the

first section of this paper extensively reviews the different

maintenance management systems used for maintaining the

different machines used in manufacturing industries. The

purpose of this will be to ascertain the best maintenance

practices suitable for managing the RVS machine when

used in surface and underground mines. The second section

presents a holistic assessment of the RVS machine using an

IDEF0 diagram, with a view to ascertain the necessary

subsystems which need to be maintained on the machine.

The last section presents a suitable maintenance manage-

ment system model that could be adopted to effectively

maintain the RVS machine.

State of the art in machine maintenance

management system

Machine maintenance is vital for optimal functionality,

reliability and maintainability of different subsystems of a

machine. According to Wan et al. (2014), maintenance is a

sequence of operations that is carried out on an item or a

machine. Through this process, specific tools, technologies

and procedures are used to keep a system in its functional

state or transform its current state into a new state which

conforms to the machine system manufacturer’s designed

performance. According to Hashemian (2011), different

maintenance strategies systems have evolved over the past

couple of years. These embrace the corrective maintenance

(CM) system, preventive maintenance (PM) system,

opportunistic maintenance (OM) system, predictive main-

tenance (PrM) system, total productive maintenance (TPM)

system, dynamic maintenance (DM) system and e-main-

tenance (e-M). A substantial number of machine mainte-

nance solutions have been developed by different

Fig. 1 Different RVS machine

at configuration capacities of

2500 mm 9 1500 mm,

3500 mm 9 2000 mm and

4700 mm 9 2500 mm

Fig. 2 RVS machine
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researchers using these maintenance strategies. For exam-

ple, Kenne et al. (2003) formulated a computational algo-

rithm required to solve a corrective maintenance problem.

This helped to control the production rates in a manufac-

turing system made up of several identical machines during

the machine breakdown and maintenance process. It also

assisted in minimizing the cost of surplus and repair

activities. Iyoob et al. (2003) highlighted the significance

of the corrective models such as renewal, minimal, Kijima

I, Kijima II and quasi renewal models e.t.c. in determining

the availability, reliability and functionality of machines

used in different manufacturing industries.

Carlo et al. (2004) developed a Bayesian model that was

used to determine the right corrective measure required to

increase the shelf life of different machines when aging

sets in. Quitana et al. (2009) further developed a rule-based

corrective maintenance system that could be used in a

dynamic manufacturing environment without adding

reconfiguration costs to the maintenance cost of the

machines used in this environment. Adolfsson and Dahl-

strom (2011) developed a model that could be used to

evaluate the efficiency of the maintenance carried out on

various subsystems of a machine. The model was tested

using machine performance data, observed information and

information obtained from machine experts. Wang et al.

(2014) developed a corrective maintenance scheme, which

unfolds an extended failure mode effect and critical anal-

ysis (FMECA) as well as failure propagation graphical

(FPG) synthesis and diagnosis in determining when to

replace the different subsystems of a machine. In driving

the use of the PM strategy for the maintenance of machi-

nes, (Oyedepo and Fagbenle 2011) assessed the potential of

implementing preventive maintenance strategies in order to

boost the performance of the Egbin 1320 MW thermal

power plant in Nigeria. Afefy (2012) developed a com-

puter-aided preventive maintenance framework that could

maintain a machine. Osman et al. (2015) also developed a

computerized preventive maintenance software tool to

implement a risk-oriented prioritization of machines nee-

ded to be maintained in different Haematology departments

of hospitals.

Ireland and Dale (2001) also drove the use of the TPM

strategy for the maintenance of machines used in manu-

facturing industries. This was achieved through the uti-

lization of the TPM strategy in three companies facing

business difficulties using the Nakajima’s seven steps of

achieving autonomous maintenance. Singh et al. (2013)

further implemented all the seven pillars of TPM mainte-

nance strategy to improve the overall equipment effec-

tiveness (OEE) of CNC machines of different capacities

used in a machine workshop. The seven pillars, Lean

concepts of Just-In-Time and Kanban were implemented in

a small scale polymer manufacturing industry with a view

to increase the productivity rate and quality of work done

in this environment (Muruganantham et al. 2014).

In expediting the use of OM maintenance strategy for

the maintenance of machines used in manufacturing

industries, Mohamed-Salah et al. (1999) developed an

opportunistic maintenance simulation model that could be

used to maintain a production line consisting of k non-

identical processors (which does not exhibit intermediary

stocks). Samhouri et al. (2011) developed an intelligent

opportunistic maintenance algorithm that could be used to

effectively repair or replace complex machines in a cost

effective manner. In the same vein, Tambe and Kulkarni

(2013) developed an opportunistic maintenance decision

model that could be used to ascertain when to replace or

repair different subsystems of a die casting machine using

genetic algorithms. In motivating the use of a PrM strategy

for the maintenance of machines in manufacturing indus-

tries, Li et al. (2005) developed a web agent-based pre-

dictive maintenance system model that could be used for

diagnosing and prognosing when to repair or replace dif-

ferent subsystems of a machine. Gross et al. (2005)

developed a machine learning (ML) system known as

ranker for open-auto maintenance scheduling (ROAMS)

that could be used to rank the failure-susceptibility of about

1000 energy distribution feeder cables that supply elec-

tricity to different locations in New York City. Muni-

rathinam and Ramadoss (2016), using WEKA tool and R

languages, constructed a predictive model that could be

used to detect when any subsystem of a machine used in

semi-conductor industries will fail or become faulty during

the wafer fabrication process. Furthermore, in driving the

use of a DM strategy for the maintenance of machines used

in manufacturing industries, Bouillaut et al. (2008) devel-

oped a dynamic maintenance model that could be used to

ascertain rail degradation rates and the behavior of various

actors involved in machine defect detection. They applied

Bayesian Networks, in order to determine the optimal

maintenance parameters for effective functionality of rails.

Also, Adeyeri et al. (2011), proposed a dynamic mainte-

nance model that could be used to ascertain when and at

what point in time a maintenance strategy or maintenance

technique mix needed to be used. The purpose of this was

to reduce material wastage subsequent to poor machine

performance and machine break down, which results in

machine downtime. Also, in expediting the use of an e-M

strategy for the maintenance of machines used in manu-

facturing industries, Lee et al. (2006) proposed the relevant

diagnostic and prognostic tools required for up-to-date

assessment and prediction of the performance of machines

used in manufacturing industries. Haider and Koronios

(2006) presented a holistic scheme needed to carry out

effective machine diagnosis using radio frequency identi-

fication (RFID) technology. This enabled proactive
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determination of the maintenance requirements of different

subsystems of a machine wirelessly without human inter-

vention. Juricic et al. (2013) also proposed a low cost

online diagnostic and prognostic system that could be used

to effectively maintain a machine, when the operating

conditions are not fully accessible, measurable and

incomplete.

Makinde et al. (2016b) also discussed an IEAPMS (in-

telligent e-assessment and prognosis management system)

e-maintenance framework and an e-machine temperature

monitoring algorithms that could be used in optimally

maintaining and preserving the functionality of different

machines used in a manufacturing industry. Adeyeri et al.

(2016) investigated the potential of using temperature and

vibration models to monitor the performance of conven-

tional machines, in which their functionalities are ham-

pered by abnormal changes in temperature and vibration

values. The study established that increment in the oper-

ating temperature and vibration of different subsystems of

a machine results in a rapid decline in machine reliability.

Mortazavi et al. (2017) evaluated the mean time between

failure (MTBF) of a 2-out-of-3 repairable redundant system

using a combination of the alpha-factor and capacity flow

models in order to appraise the common causes of machine

failures. Based on this holistic assessment of different

maintenance strategies and systems, rhetorical question

such as ‘‘which maintenance strategy(ies) are required in

optimally maintaining the RVS machine when used in the

mining industries?’’ need to be answered. To answer this

question, a deep understanding of which different compo-

nents need to be maintained on the RVS machine and other

maintenance requirements required for its optimal func-

tionality must be carefully investigated.

Reconfigurable vibrating screen

In order for the RVS machine, to be utilized in both surface

and underground mines, optimal stability and functioning

of different subsystems of the machine will be required

(such as screen panels, vibrating motor, screen deck frame,

springs, bolts, side plates, torsion bar, clamps, hydraulic

cylinders and torsion bar brackets e.t.c.). These are high-

lighted in the RVS machine functionality IDEF0 (ICAM

definition for function modeling, where ‘ICAM’ is an

acronym for integrated computer aided manufacturing)

diagram depicted in Fig. 3. These subsystems in the IDEF0

diagram ensures the effective screening of mineral particles

at the different configurations that the machine is adjusted

to, in meeting sporadic customers demand. The RVS

machine functionality IDEF0 diagram highlights the

functional transition states of the RVS machine vis-à-vis

the activities or actions that must be carried out by the

maintenance managers of the machine for its effectively

maintenance.

To this effect, a hybrid maintenance system which

mixes the predictive (i.e. diagnostic and prognostic

approaches), e-maintenance and dynamic maintenance

management strategies will be suitable for optimally

maintaining the RVS machine. The next section of this

paper therefore presents a maintenance management sys-

tem framework for the RVS machine. This unfolds the

maintenance strategies that could be used to ensure just-in-

time, effective, safe and customer-demand driven mainte-

nance of the RVS machine when utilized in both surface

and underground mining environments.

Maintenance system framework for effective RVS

machine management

The maintenance management system framework which

highlights the maintenance strategies and tools and is

required to effectively maintain the RVS machine when

used in surface and underground mines is depicted in

Fig. 4. In this figure, the major maintenance strategies

required in maintaining the RVS machine include the

predictive, e-maintenance and dynamic maintenance

strategic systems.

RVS machine predictive maintenance system

The predictive maintenance system for the RVS machine

maintenance process can be classified into diagnosing and

prognosing systems.

RVS machine diagnosis system model

A machine diagnosis system entails developing a system

that can be used to monitor in real-time and detect faults

present in different subsystems of a machine. This uses

some intelligent rule-based machine fault detection algo-

rithms developed by experts of such machine systems.

Given this, the RVS machine diagnosis system involves the

utilization of sensors such as thermocouples, strain gauges,

accelerometers, oil level sensors and smart bolt wireless

sensors to measure in real-time the temperature at which

the vibrating motor powering the RVS machine is running.

The sensors must measure the real-time stress and defor-

mation that the RVS subsystems such as screen panels,

screen deck frame, side plates, side liner plates, back

plates, torsion bar, torsion bar brackets and M-16 bolts

e.t.c. of the machine are subjected to. They must ascertain

real-time vibrations generated by the vibrating motor. They

must monitor the lubricating oil level of the oil compart-

ment of vibrating motor. The oil is responsible for the

lubrication of shaft and bearing powering the vibrating
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motor. The measured values obtained from these sensors

are then compared with the rule-based RVS subsystems

performance algorithms developed by RVS machine

manufacturer. This will alert the users and maintenance

managers of this machine when over-heating and knocking

of the vibrating motor occurs and when deformation,

degradation and wear of the aforementioned subsystems of

the RVS machine sets in. It will reveal when the shaft,

bearing and half-circular spinning discs (responsible for the

machine vibration) inside the vibrating motor deform,

break and wear.

The real-time machine performance monitoring system

to be used for the RVS machine diagnosis is the national

instrument real-time system. This utilizes the LABVIEW�

software which codes the rule-based RVS machine sub-

systems performance algorithms. The system also gener-

ates a user interface or front panel for RVS machine

maintenance managers and compatible sensor data acqui-

sition modules. This interface with the afore discussed

sensors was used to analyze the real-time RVS machine

subsystems performance data using statistical tools such as

the fast fourier transform (FFT), Morlet wavelet filtering

(MWF) and autoregressive algorithms and a real-time

Compat RIO module. The RVS machine subsystems con-

ditions are presented in real-time to the RVS machine users

on the user interface. This is achieved by comparing the

analysed measured results obtained from the data acquisi-

tion modules against the rule-based RVS machine main-

tenance algorithms coded on the block diagram of the

LABVIEW� software. A rule-based machine maintenance

algorithm is depicted in Table 1. The algorithm is formu-

lated by ascertaining the maximum or critical operating

conditions of RVS machine subsystems at which these

subsystems will fail through a dynamic simulation of the

machine configured to beneficiate run-off iron ore and coal

mineral particles using ANSYS� software. This algorithm

ascertains the RVS machine subsystem functional condi-

tions in real-time, when the RVS machine is configured to

a production capacity of 600 mm by 1200 mm for

screening coal particles of bulk density 960 kg/m3 and iron

ore particles of bulk density 2595 kg/m3; as obtained by

the RVS machine maintainability designers.

Also, a typical user interface (front panel) and block

diagram that was coded and developed for real-time

monitoring of the temperature of the vibrating motor of the

RVS machine is depicted in Figs. 5 and 6. The relevant

functions palette and diagnostic statistical tools used to

develop the front panel and the block diagram of this RVS

machine diagnosis system were obtained from the module

library of LABVIEW� software.
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The major steps required for developing the aforemen-

tioned user interface and block diagram responsible for the

vibrating motor monitoring on the RVS machine is high-

lighted as follows.

i. Open the LABVIEW software by double clicking

on the LABVIEW icon on your desktop.

ii. Double click the blank project to open a new

virtual instrument ‘‘VI’’ front panel.

iii. Open the functions palette on the front panel of

the VI and drag three numeric controls.

iv. Rename these numeric controls as current tem-

perature, maximum temperature and minimum

temperature by double clicking their default labels

and editing them.

v. Drag one string indicator from the functions

palette on the front panel of the VI and rename

it as ‘‘warning text’’.

vi. Drag one boolean indicator from the functions

palette on the front panel of the VI and rename it

as ‘‘warning’’.

vii. Open the block diagram.

viii. Drag the thermometer sub-VI into the block

diagram. The thermometer has been coded and

developed to acquire and analyze the raw real-

time temperature data from the thermocouple

connected to the RVS machine using statistical

tools such as FFT, MWF and autoregressive

algorithm. Next, drag the bundle by name function

into the block diagram. This bundles the real-time

readings of the current, maximum and minimum

temperature for comparison in order to ascertain

the current condition of the machine.

ix. Wire the input and output nodes of all the

functions that appear on the block diagram.
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x. Connect the thermocouple to a port or channel,

where temperature measurement will be taken on

or around the vibrating motor powering the RVS

machine.

xi. Connect the cables of the thermocouple to the data

acquisition module of the real-time monitoring

system.

xii. Configure the module to synchronize with the

LABVIEW code.

xiii. Run the VI front panel by pressing the run button

in order to ascertain the real-time temperature

condition of the vibrating motor.

RVS machine prognosis system model

The reliability model used for predicting when each sub-

system of the RVS machine will fail is modelled using the

Markov algorithm. In light of this, a reliability and func-

tional transition diagram used to model the RVS machine

subsystems prognosis algorithms is depicted in Fig. 5. The

assumptions used for this model are as follows:

a. Failure rates and repair rates of all the subsystems of

the RVS machine vary from one particular period to

another.

Table 1 RVS machine subsystems rule-based condition monitoring algorithm

Rule Triggering Context

rtorsion bar \ 21.2 MPa, rside plate \ 7.5 MPa, rrosta suspension \ 4.3 MPa,

rback plate \ 15.4 MPa and rscreen deck frame \ 15.3 MPa when RVS machine is used for

screening iron ore particles

No warning—RVS subsystems are in healthy

conditions

rtorsion bar C 21.2 MPa, rside plate C 7.5 MPa, rrosta suspension C 4.3 MPa,

rback plate C 15.4 MPa and rscreen deck frame C 15.3 MPa when RVS machine is used for

screening iron ore particles

Heat stroke warning—RVS subsystems are in

faulty conditions

rtorsion bar \ 20.6 MPa, rside plate \ 7.4 MPa, rrosta suspension \ 4.2 MPa,

rback plate \ 16.8 MPa and rscreen deck frame \ 12.7 MPa when RVS machine is used for

screening coal particles

No warning—RVS subsystems are in healthy

conditions

rtorsion bar C 20.6 MPa, rside plate C 7.4 MPa, rrosta suspension C 4.2 MPa,

rback plate C 16.8 MPa and rscreen deck frame C 12.7 MPa when RVS machine is used for

screening coal particles

Heat stroke warning—RVS subsystems are in

faulty conditions

Vibration speed of the RVS machine\ 0.283 m/s Freeze warning—RVS machine is under-

functioning

Vibration speed of the RVS machine = 0.283 m/s No warning—RVS machine is functioning at

normal operating conditions

Vibration speed of the RVS machine[ 0.283 m/s Heat stroke warning—RVS machine is

functioning abnormally

Outward temperature of the RVS machine B 80 �C No warning—RVS machine is functioning at

normal operating conditions

Outward temperature of the RVS machine C 80 �C Heat stroke warning—RVS machine is

functioning abnormally

Fig. 5 User interface of the

host computer of the national

instrument real-time monitoring

system
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b. The time between failure (TBF) and time to repair

(TTR) data for RVS machine subsystems when utilized

in the mining industries are expected to be exponen-

tially distributed.

c. The probability that more than one subsystem of the

RVS machine will breakdown is equal to zero.

d. The different subsystems of the RVS machine return

back to their functional state when they are repaired

and these subsystems are only repaired when any of

them fails.

e. RVS machine subsystems are expected to exhibit only

operating and non-operating states.

f. The algebraic sum of the operating and non-operating

transition states of each RVS machine subsystem is

equal to zero.

g. The probabilities associated with the operating and

non-operating transition states of each RVS machine

subsystem are constant over a particular period of time.

Notations used for RVS machine prognostic model

formulation are:

ki is the failure rate of the reconfigurable vibrating

screen subsystems (i = 1, 2,…0.8).

li is the repair rate of the reconfigurable vibrating screen
subsystems.

ls = repair rate of the RVS machine.

FinalMTBF = mean time between failures for final

period of investigation.

InitialMTBF = mean time between failures for the first

period of investigation.

Fig. 6 Block diagram for the vibrating motor temperature measurement and warning system
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Lused = used life of the RVS machine.

Lr.v.s = life span or shelf life of the RVS machine.

Lremain = remaining effective useful life of the RVS

machine.

Mi(t) = predicted maintainability of the RVS machine

subsystems.

Mr:v:sðtÞ = predicted maintainability of the RVS

machine.

MTBF = mean time between failures.

MTBFr:v:s = mean time between failures of the RVS

machine.

MTTR = mean time to repair for each of the RVS

machine subsystems.

n is the number of subsystems that ensures the proper

functioning of the RVS machine.

PK0(t), represents the probability that the reconfigurable

vibrating screen is in the ‘operating state’ (S0) at time t.

PKi(t), represents the probability that the reconfigurable

vibrating screen subsystems are in the non-operating (Si)

state at time t. (= 1, 2,…6).

Ri(t) = predicted reliability of the RVS machine

subsystems.

Rr:v:sðtÞ = predicted reliability of the RVS machine.

TBF1;TBF2;TBF3;TBF4; . . .;TBFn = time between

failures for each of the RVS machine subsystems.

TTR1;TTR2;TTR3;TTR4; . . .;TTRn = time to repair

each of the RVS machine subsystems.

Model formulation

From the transition diagram presented in Fig. 7, the Mar-

kov’s equations can be derived.

The probability that the machine is in the operating state

after time interval dt i.e. at time (t ? dt) is given by:

PK0 t þ dtð Þ
¼ probability of being in operating state at time tð Þ½

AND probability of not failing between ðt þ dtÞð Þ�
þ probability of being in failed states at time tð Þ½
AND probability of being repaired betweentandðt þ dtÞð Þ�

ð1Þ

Probabilities of failure between t and dt are kidt and the

probabilities of not failing are (1 - kidt).
Similarly, the probabilities of repair are lidt. Using the

addition and multiplication rule for probabilities gives the

equation:

PK0 t þ dtð Þ ¼ PK0 tð Þ
X

1� kidtð Þ
h i

þ
X

lidtPKi tð Þ

ð2Þ

Simplifying Eq. (2) further gives Eqs. (3) and (4)

PK0 t þ dtð Þ�PK0 tð Þ ¼ PK0 tð Þ
X

1� kidtð Þ
h in

þ
X

lidtPKi tð Þ
o
� PK0 tð Þ

Reconfigurable 
Vibrating 

Screen (RVS) 

1 1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

Screen 
panel 

Hydraulic 
cylinders 

Deck 
Frame 

Vibration 
Motor 

Side 
Plates 

Helical 
springs 

Cross 
bar 

Lap 
panel 

Fig. 7 RVS machine functional

transition tree diagram

J Ind Eng Int (2018) 14:521–535 529

123



PK0 t þ dtð Þ�PM0 tð Þ ¼
X

�kidtð ÞPK0 tð Þ
þ
X

lidtPKi tð Þ ð3Þ

PK0 t þ dtð Þ � PK0 tð Þ
dt

Asdt ! 0

¼
X

�kið ÞPK0 tð Þ þ
X

lið ÞPKi tð Þ

dPK0ðtÞ
dt

¼ �PK0 tð Þ
X

ki þ
X

lið ÞPKi tð Þ

dPK0ðtÞ
dt

¼
X

lið ÞPKi tð Þ � PK0 tð Þ
X

ki ð4Þ

)PK0 tð Þ ¼ P0; PKi tð Þ ¼ Pi

Equating first order derivative of Eq. (3) to zero for a

steady state, i.e.
dPK0ðtÞ
dt

¼ 0
� �

, the Eq. (4) becomes Eq. (5)

as expressed below:

0 ¼
X

liPi�P0

X
ki

X
liPi ¼ P0

X
ki

Pi ¼
P0

P
kiP

li
ð5Þ

i.e. P1 ¼ P0k1
l1

; P2 ¼ P0k2
l2

� � �Pn ¼ p0ki
li

Recall that:

P0 þ P1 þ P2 þ � � �Pn ¼ 1 ð6Þ

Substituting the value of P1;P2 � � �Pn into Eq. (6), then the

steady state of any machine (P0) is found to be:

P0 ¼
1

1þ
P ki

li

 !
� 100% ¼ 1

1þ D

� �
� 100% ð7Þ

where, D ¼
P ki

li
:

While the steady state availabilities of each of the RVS

machine subsystems are depicted in Eq. (8).

P1 ¼
k1
l1

1

1þ D

� �

P2 ¼
k2
l2

1

1þ D

� �

Pn ¼
kn
ln

1

1þ D

� �

9
>>>>>>=

>>>>>>;

ð8Þ

Therefore, the reliability of RVS machine (Rr.v.s(t)) and

each of its subsystems (Ri(t)) can be obtained in real-time

using Eqs. (9) and (10) while the maintainability of the

RVS machine (Mr.v.s(t)) and each of the subsystem of the

RVS machine Mi tð Þð Þ can be determined using Eqs. (11)

and (12).

Rr:v:s tð Þ ¼ e�
P

ki t � 100% ð9Þ

where
P

ki ¼ k1 þ k2 þ k3 þ k4 þ k5 þ � � � þ kn:

Ri tð Þ ¼ e�ki t � 100% ð10Þ

Mr:v:s tð Þ ¼ ð1� e�lstÞ � 100% ð11Þ

where, ls ¼ 1

MTBFr:v:s�D
and MTBFr:v:s ¼ 1P

ki

Mi tð Þ ¼ 1� e�litð Þ ð12Þ

Equations (7)–(12) depict the steady state availability or

functionality, reliability and maintainability of the RVS

machine and each of its subsystems which can be obtained

by assessing the failure rate and repair rate of each of the

subsystems of the RVS machine over a certain period of

usage of this machine. The failure rate and repair rate is

calculated via Eqs. (13) and (14) using RVS machine

subsystems historical failure dates and repair rates accessed

from the database failure records or kit of the machine

diagnosing system.

ki ¼
1

MTBF
ð13Þ

where, MTBF ¼ TBF1þTBF2þTBF3þ���þTBFn
n

li ¼
1

MTTR
ð14Þ

where, MTTR = TTR1þTTR2þTTR3þ���þTTRn

n
:

Also, the remaining effective useful life of the RVS

machine is determined using the steady state availability of

this machine, and its corresponding value is obtained using

Eq. (15). The Reconfigurable vibrating screen machine

reliability decline growth rate (RVSMRDGR), which

indicates the effectiveness of the maintenance strategies

used in maintaining the RVS machine, can be calculated

using Eq. (16).

Lremain ¼ P0 � Lr:v:s�Lusedð Þ ð15Þ

RVSMRDGR ¼ InitialMTBF

FinalMTBF
ð16Þ

RVS machine e-maintenance tools

The predictive algorithms discussed in the previous section

of this paper could be embedded using Information and

communication and technology (ICT) tools in order to

enable the real-time RVS machine subsystems’ perfor-

mance prediction as well as enable the extrapolation of

RVS machine subsystems real-time degradation and wear

rates. The predicted RVS machine algorithms depicted in

Eqs. (8)–(15) can be coded and embedded to develop an

e-prognosis system for this machine using ICT tools and

accessories such as PHP (Hypertext Pre-processor), Java-

Script, Google graph, application programming interface

(API), jQuery, MySQL database and canvg-JavaScript

SVG parser and renderer on canvas. The function of these
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ICT tools in developing the RVS machine e-prognostic

system is highlighted as follows:

1. PHP—the server side scripting programming language

that is used for interfacing the RVS machine predictive

algorithm codes with the internet services in order to

access other e-accessories used for analysing and

interpreting the offline RVS machine performance

data.

2. JavaScript—the client side scripting programming

language that is used for coding the RVS machine

predictive algorithms.

3. Google Graph API—this is used for plotting the

reliability and maintainability graphs of the RVS

machine and its subsystems in real-time.

4. jQuery—this tool reduces the complexity of code in

JavaScript.

5. MySQL database—this tool is used for saving the

results obtained from the RVS machine performance

data processing.

6. canvg—Javascript SVG parser and renderer on canvas:

this tool is used for saving the reliability and

maintainability graphs of the RVS machine and its

subsystems.

RVS machine dynamic maintenance model

Anothermaintenance strategy required to ensure optimal use

of the RVS machine despite odd conditions such as unfore-

seen machine breakdown and repair processes as well as

fluctuating and sporadic customer demands that could

emanate during RVS machine utilization in the mining

industry is the dynamic maintenance system. The dynamic

maintenance strategy in this context, involves geometrically

transforming or switching the RVS machine from one con-

figuration to another configuration feasible within the RVS

machine structure in order to mark-up the production loss

that could emanate from the RVS machine breakdown and

repair processes or increase the screening productivity rates

of the machine as a yardstick to expedite production runs in

meeting sporadic customer demands. The dynamic mainte-

nance model formulations considered to keep the RVS

machine at a new machine configuration in order to recover

the production loss, that emanates when a machine break

down and need to be repaired before the next cycle of usage is

illustrated in Eqs. (17) and (18) while the dynamic mainte-

nance formulations considered to keep the RVSmachine at a

new machine configuration in order to meet new customer

demands are highlighted in Eqs. (19) and (20).

Pgain ¼ PnthConf � PinitConf ð17Þ

where, n is the order of configuration (i.e. between 2 and 5)

that the maintenance manager of the machine can recon-

figure the machine to. PnthConf = productivity rate of the

RVS machine at nth configuration per hour PinitConf = -

productivity rate of the RVS machine at the initial con-

figuration per hour Pgain = productivity gain or surplus due

to RVS machine reconfiguration per hour

Rt1 ¼
Total production loss during a certain period

Pgain

ð18Þ

Pexpected�hike ¼ Pnewdemand � Pinitialdemand ð19Þ

where, Pexpected-hike = additional or supplemental volume

of mineral concentrates required to be produced in meeting

new customers demand.Therefore,

Rt2 ¼
Pexpected�hike

Pgain

ð20Þ

In light of this, it can be affirmed that the time required

to keep the RVS machine at a new machine configuration

in order to recover the production loss (Rt1 ) can be obtained

using Eq. (18) while the time required to keep the RVS

machine at a new machine configuration in order to meet

the new customer’s demand (Rt2 ) can be obtained using

Eq. (20). In light of these discussions, holistic and sys-

tematic development and implementation of these diag-

nostic, prognostic, dynamic and e-driven maintenance

strategies for RVS machine maintenance processes and

operations in mining industries, will reduce drastically to

the barest minimum, the downtime experienced by this

machine, ensure Just-In-Time (JIT) maintenance of this

machine and ensure lean production of mineral concen-

trates demanded by the customers in a cost-effective

manner.

Case study I: RVS machine diagnosis system model

testing

The state or current functional condition of the vibrating

motor powering the RVS machine can be obtained by

comparing and assessing the critical or maximum temper-

ature of the vibrating motor as highlighted in the RVS

machine rule-based condition monitoring algorithms,

depicted in Table 1 with the current functional temperature

at which the vibrating motor is vibrating the RVS machine

during mineral particle beneficiation. As illustrated in

Fig. 6, if the outward temperature measurement of the

vibrating motor, obtained by a thermocouple fitted to a port

around the vibrating motor is 29.9375 �C and the maxi-

mum critical temperature before vibrating motor can fail

(which could results in bearing and weight failures of the

vibrating motor) is 80 �C, therefore it could be ascertained

through the sequential processing of the codes depicted in
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Fig. 8 that the vibrating motor is in a healthy condition.

However, if the outward temperature obtained from the

thermocouple fitted to a port around a vibrating motor is

[ 80 �C, it could be ascertained through sequential pro-

cessing of the codes depicted in Fig. 8 that the vibrating

motor is in a faulty or failing condition.

Case study II: RVS machine prognosis system model

testing

To test the RVS machine prognosis model, historical data

of the failure and repair records of the vibrating motor

powering a conventional vibrating screen for the past

5 years in mining company XYZ; obtained from Makinde

(2014) was used (Table 2). The conventional vibrating

screen has a similar functional mechanism and subcom-

ponents as the RVS machine.Using the information high-

lighted in Table 2, the key prognosis metrics required to

make decision on when to repair or replace the vibrating

motor was determined. From Table 2, the time between

failures (TBF) for the vibrating motor are calculated as

follows:

TBF1 ¼ 9:03:2009� 28:02:2008 ¼ 1 year 19 days

¼ 9213 h

TBF2 ¼ 27:03:2009� 19:03:2009 ¼ 8 days ¼ 192 h

TBF3 ¼ 15:04:2009� 27:03:2009 ¼ 18 days ¼ 432 h

TBF4 ¼ 02:08:2010�15:04:2009
¼ 1 year3 months 17 days ¼ 11334 h

TBF5 ¼ 20:04:2011� 02:08:2010 ¼ 8 months 18 days

¼ 6192 h

TBF6 ¼ 27:04:2011� 20:04:2011 ¼ 7 days ¼ 168 h

TBF7 ¼ 02:06:2011� 20:04:2011 ¼ 1 month 5 days

¼ 840 h

Subsequently, the mean time between failures (MTBF)

and the mean time to repair (MTTR) were calculated using

the TBFs and the repair times illustrated in Table 2.

MTBF ¼ 9213þ 192þ 432þ 11334þ 6192þ 168þ 840þ 13038

8

¼ 5176:13

MTTR ¼ 4þ 6:67þ 9þ 9þ 4þ 27þ 5þ 5þ 2

9
¼ 7:96

The failure rate (a) and repair rate (h) for the vibrating

motor was obtained using Eqs. (13) and (14) as depicted

below:

k ¼ 1

5176:13
¼ 0:00019

l ¼ 1

7:96
¼ 0:13

The steady state availability of the vibrating motor,

which pinpoints the level of usability and functionality of

this vibrating screen subsystem is, determined using

Eq. (7) as highlighted below:

P0 ¼
1

1þ
P ai

hi

 !
� 100%

P0 ¼ 1
1þ0:00019

0:13

� �
� 100% ¼ 99:85%

Also, the predicted time to repair or replace the vibrating

motor (depending on the severity of faults associated with

the motor) can be calculated using Eq. (10) at a reliability

value of 49% (i.e. the state at which the motor will be

subjected to continuous and abrupt abnormal conditions):

Ri tð Þ ¼ e�amt � 100%

0:49 ¼ e�0:00019t

Therefore, t (i.e. the predicted time to repair or replace

the vibrating motor) is 3736.84 h.

The degree or severity of maintenance required during

the vibrating motor maintenance at the predicted time

Fig. 8 A user interface reporting the current measurement and

functional condition of the vibrating motor powering the RVS

machine

Table 2 Failure and repair history of vibrating motor used in pow-

ering a conventional vibrating screen in mining company XYZ

Date of failure Repair time (h)

28:02:2008 4.00

19:03:2009 6.67

27:03:2009 9.00

15:04:2009 9.00

02:08:2010 4.00

20:04:2011 27.00

27:04:2011 5.00

02:06:2011 5.00

30:11:2012 2.00
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3736.84 h can be ascertained using the maintainability

parameter obtained from Eq. (12) as highlighted below:

Mi tð Þ ¼ ð1� e�hntÞ � 100%

Mi tð Þ ¼ 1� e�0:13 3736:84ð Þ
� �

� 100% ¼ 100%

This implies that there is 100% probability that the

vibrating motor can be maintained at a reasonable or low

cost and at the predicted time of failure, 3736.84 h.

Furthermore, the remaining effective useful life of the

vibrating motor, if the used life and the shelf life of this

vibrating screen component are 3 and 5 years respectively

is determined using Eq. (15) as highlighted below:

Lremain ¼ P0 � Lr:v:s�Lusedð Þ

Lremain ¼ 0:9985� 5� 3ð Þ ¼ 1:997 years.

Case study III: RVS machine dynamic maintenance

system model testing

Case study IIIA

In order to recover the production loss that emanated

during the maintenance of the vibrating motor on the 20th

of April, 2011, as depicted in Table 2, then the RVS

machine can be reconfigured from its 1st configuration

designed to operate at a dimension size and production

capacity of 2500 mm 9 1500 mm and 68.8 tons/h

respectively to its 5th configuration designed to operate at a

dimension size and production capacity of

4700 mm 9 2500 mm and 217.62 tons/h respectively. In

view of this, using Eqs. (17) and (18) of the dynamic

maintenance system model, the time required to set the

configuration capacity of the RVS machine at its 5th con-

figuration, in order to recover the production loss that

emanated during the repair and maintenance of the

vibrating screen motor on the 20th of April, 2011 is cal-

culated as follows:

Production loss of the vibrating motor on the 20th of

April; 2011 = 27 h.

Hence, total production loss in tons for the month of

April 2011

Total production loss ¼ 27� 68:82

Total production loss = 1858:14 tons:

The productivity gain of the RVS machine (Pgain) is

given by:

Pgain ¼ P5thConf � P1stConf

Pgain ¼ 217:62� 68:82

Pgain ¼ 148:8 tons

Therefore, the time required to keep the RVS machine at

its 5th configuration in order to mark-up or recover the

production loss that emanated during the maintenance of

the vibrating motor on the 20th of April in mining company

XYZ is given by Rt1 :

Rt1 ¼
Total production loss during the month

Pgain

Rt1 ¼
1858:14 tons

148:8 tons/h

Rt1 ¼ 12:4875 h

Rt1 ¼ 12h 29 min:

Case study IIIB

If the customers demand for limestone mineral concen-

trates in mining company XYZ increases from

49536–90,000 tons/month, owing to high needs for cement

products for housing purposes; then to solve this problem,

the mining company also needs to reconfigure their RVS

machine from its 1st configuration designed to operate at a

dimension size and production capacity of

2500 mm 9 1500 mm and 68.8 tons/h respectively to its

5th configuration designed to operate at a dimension size

and production capacity of 4700 mm 9 2500 mm and

217.62 tons/h respectively in order to meet the new cus-

tomers demand. In view of this, using Eqs. (17), (19) and

(20) of the dynamic maintenance system model, the time

required to set the configuration capacity of the RVS

machine at its 5th configuration, in order to beneficiate

90,000 tons of limestone concentrates is calculated as

follows:

The productivity gain expectant (Pexpected-hike) from the

RVS machine is given by

Pexpected�hike ¼ Pnewdemand � Pinitialdemand

Pexpected�hike ¼ 90000� 49536

Pexpected�hike ¼ 40464 tons

Therefore, the time required to keep the RVS machine at

its 5th configuration, in meeting the beneficiation of 90,000

tons of limestone concentrates in mining company XYZ is

given by Rt2 :

Rt2 ¼
Pexpected�hike

Pgain
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Rt2 ¼
40464

148:8

Rt2 ¼ 271:935 h

Rt2 ¼ 11 days 7 h 56 min:

Conclusion

A RVS machine has been vetted and proposed to the

mining industries as the next line of beneficiation machine

technology for screening mineral particles of varying sizes

and volume sporadically demanded by the customers.

However to ensure optimal functionality, usability, relia-

bility and maintainability of this machine when utilized in

the mining industry, a maintenance system model was

extensively discussed in this paper and proposed to the

potential users and the maintenance managers of this

machine. This paper unveils the diagnostic algorithms

using the national instrument (NI) real-time monitoring

system as well as the RVS machine subsystems condition

monitoring algorithms coded on the LABVIEW software

tool of the NI system. Prognostic algorithms, which model

and establish the maintenance parameters required in

determining the reliability and maintainability of the RVS

machine and its subsystems as well as ascertaining the

steady state availability of the RVS machine and its

remaining effective useful life was also unfolded.

E-maintenance tools such as PHP, JavaScript, Google

Graph API, jQuery, MySQL database and canvg—Java-

script SVG parser and renderer on canvas, required to

predict the functionality of the RVS machine subsystem in

real-time and ascertain when to reconfigure the RVS

machine in meeting new sporadic customer demands as

well as recover the inevitable machine downtime that could

emanate during RVS machine breakdown and repair pro-

cesses was extensively discussed in this paper. Four dif-

ferent case studies were used to test this maintenance

system model customized for maintaining the RVS

machine. These revealed how the different components of

the RVS machine can be diagnosed and prognosed and

how the RVS machine can be dynamically maintained in

recovering production loss that emanates during machine

maintenance as well as meeting new customers demand.

However, the experimentation of this maintenance system

model (embedded with algorithms, e-maintenance tools)

needs to be explored when the RVS machine is utilized in

both surface and underground mines. The development of a

predictive model capable of predicting the failure of two or

more subsystems that occur simultaneously need to be

explored in order to revoke the third limitation of the

Markov model used by the RVS machine prognosis

system. Further to this, the development of an expert sys-

tem capable of establishing the causes of RVS machine

subsystems failure should be explored, in order to com-

plement the decisions of the RVS machine diagnosis

system.
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