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Abstract
Span lengths of newly constructed cable-stayed railway bridges continue to show increases relative to those of older bridges. 
Accompanying such increases is the importance of ensuring that vibrations of long-span cable-stayed bridges satisfy both 
safety and serviceability requirements, particularly for bridges that support train passages. In contrast to modern design of 
bridges that support roadway vehicles, current methods for analyzing cable-stayed railway bridges do not yet typically account 
for coupling effects that may occur between cables and the surrounding bridge structure during train passages. This paper 
presents a computational framework for the nonlinear dynamic analysis of railway bridges based on a coupled train–bridge 
analytical model and investigates the significance of accounting for cable-related coupling effects. A case study is then 
carried out, where coupled dynamic responses of cables, towers, and girders of an in-service railway bridge are computed 
and compared to those obtained using an uncoupled approach. These comparisons demonstrate the merits of accounting for 
coupling phenomena when computing dynamic characteristics of cable-stayed railway bridges and highlight benefits of the 
coupled analysis approach in bridge design applications.

Keywords  Cable-stayed railway bridges · Long-span bridges · Geometric nonlinearity · Transient dynamic analysis · 
Coupled vibration analysis

Introduction

Considerations for the vibrations of long-span cable-stayed 
bridges that are produced during train passages are increas-
ingly recognized as important components of modern design 
practice. For example, most of the long-span bridges con-
structed after the year 2000 have been evaluated through 
vehicle–bridge coupled vibration analysis (Zhai et al. 2013). 
The increased importance attributed to train-induced vibra-
tions has been prompted by increases in constructed span 
lengths, train passage speeds, and train axle loads.

Characterization of dynamic behaviors that arise dur-
ing train passages across long-span cable-stayed bridges is 
essential to upholding design constraints for safety and econ-
omy. Accordingly, many previous analytical studies have 
been carried out to quantify dynamic responses of cable-
stayed bridges to vehicular loads. The effects of traffic, ran-
dom track irregularities (Au et al. 2001a, b), vehicle veloc-
ity, girder depth, cable arrangements (Zaman et al. 1996) 
have all been previously investigated. Further, numerous 
mechanical models and specialized (numerical) elements 
have been developed to describe principle components of 
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train and cable-stayed bridge systems. Relevant examples 
include networks of discrete spring–mass elements to rep-
resent trains (Yau and Yang 2004); specialized truss ele-
ments for bridge stay cables (Li et al. 2015a); and nonlinear 
beam–column elements for bridge decks and pylons (Yau 
and Yang 2004).

The importance of accounting for local vibrations as con-
tributors to global dynamic response of cable-stayed bridges 
has been consistently recognized in previous studies (Abdel-
Ghaffar and Khalifa 1991; Warnitchai et al. 1995; Caetano 
et al. 2008; Zárate and Caicedo 2015). Even so, motions 
arising along cables are often neglected in design applica-
tions. Instead, stiffness contributions of cables to global 
structural behavior are typically taken into account by treat-
ing each cable as a “one element cable system” (OECS) with 
Ernst (1965) equivalent modulus (Caetano et al. 1996; Yau 
and Yang 2004; Bruno 2008). Consequently, the effects of 
cable vibrations on bridge deck and pylon responses (e.g., 
nonlinearities associated with beam–column effects; the 
initial equilibrium state; and large-displacement kinematics 
effects) are neglected (Cai and Aref 2014).

Objectives

The objectives of this study are to: (a) present a com-
putational framework for calculating nonlinear dynamic 
responses of long-span cable-stayed bridges subjected to 
moving trains, where train–bridge coupled vibrations—
including those of the cables—are taken into account; and 
(b) identify advantages of the proposed approach relative 
to the OECS model. In achieving these objectives, results 
obtained from use of the proposed framework and OECS 
model are compared as part of a case study of heavy-haul 
train passages along an in-service long-span cable-stayed 
bridge. Such comparisons demonstrate the merit of consid-
ering cable local vibrations in computing system response 
during high-speed rail passage events.

Coupled analysis of train passages 
on cable‑stayed bridges

A computational framework is presented for conducting 
nonlinear dynamic analysis of coupled cable-stayed bridge 
response and combines several previously established FE 
formulations and analysis techniques. Organization of 
these computational tools (Fig. 1) extends the previously 
validated framework from Zhu et al. (2017). Further, the 
extended framework enables the current investigation into 
mechanisms of interaction between the “local” and “global” 
vibrations of coupled train–bridge–cable systems.

The computational framework begins (Fig. 1, upper left) 
with the formation of a train model; track–bridge (including 

cables) FE model; and analytical wheel–rail contact model, 
where each model component is discussed later. Track–bridge 
FE model components are utilized in static, and ultimately, 
transient dynamic analyses. Consequently, the need to deter-
mine a sufficient number of vibration modes for analysis is 
avoided, especially those modes related to inclusion of the 
track structure (Guo et al. 2012). Geometric nonlinearities—
including cable sagging, beam–column effects, and large-
displacement kinematics—are considered in the track–bridge 
FE model, along with accurate (yet efficient) representations 
of cables. Necessarily then, an updated Lagrangian formula-
tion is employed, and the initial static equilibrium state of the 
track–bridge FE model is obtained prior to conducting time 
history analysis.

The computational approach validated in Zhu et al. 
(2017) is employed in coupling the analytical wheel–rail 
contact algorithm and bridge FE model, where train and 
wheel–rail contact model components were adopted from 
Chen and Zhai (2004). Furthermore, track random irregu-
larities (vertical and lateral directions) are incorporated 
into both the analytical model and rail geometry in the 
FE model.

The aforementioned framework components are next 
assembled and initialized within an equation of motion 
for the coupled train–track–bridge (Fig. 1, left center). 
Subsequently, a nonlinear dynamic (time history) analysis 
is carried out. For each time step, the train motion (posi-
tion) is considered relative to the track–bridge motion to 
establish wheel–rail interaction forces (Fig. 1, left center). 
Interaction forces are then used to compute the updated 
train position while an iterative tangent stiffness proce-
dure is utilized (“Entry A” in Fig. 1) to converge upon an 
equilibrium state for the track–bridge system.

Upon reaching convergence of the tangent stiffness 
procedure (“Entry A”), positions of the track–bridge FE 
model nodes are updated (Fig. 1, left bottom). Mutual 
convergence of the train system and track–bridge system 
is then assessed. If mutual convergence is not achieved, 
then the wheel–rail interaction forces are updated (Fig. 1, 
left center) based on the train and rail–bridge FE model 
positions determined as part of the current iteration. An 
additional iteration is then carried out to update train 
and track–bridge motions. Otherwise, if convergence 
of the train position, wheel–rail interaction forces, and 
track–bridge FE nodal positions is achieved (Fig. 1, left 
bottom), the time step is incremented (t = t + dt). The time 
stepping is continued until mutual system convergence is 
achieved for the final time step (Fig. 1, left bottom). Sub-
systems making up the computational framework (Fig. 1) 
are discussed immediately below.



273International Journal of Advanced Structural Engineering (2019) 11:271–283	

1 3

Modeling of train and bridge

Train

Each vehicle of the train usually consists of one car body, 
four wheel sets, two bogies, primary suspension systems 
connecting the wheel sets to the bogies, and secondary sus-
pension systems connecting the bogies to the car body. Vehi-
cle models of varying complexity, from moving load models 
(Bruno 2008) to those consisting of dozens of degrees of 
freedom (DOFs), have been previously developed (Au et al. 
2001a, b; Zhang et al. 2008; Li et al. 2015b). In this study, 
it is assumed that train passages occur at constant speed, 
and train longitudinal DOFs are ignored. Each car body and 
bogie possesses five DOFs: sway ( Y  ); rolling ( � ); yawing 
( � ); floating ( Z ); and pitching ( � ), which are sufficient to 
capture motions of the vehicle components (Chen and Zhai 
2004).

Wheel-set DOFs are related to the wheel–rail interaction 
model adopted in this study. Namely, per (Chen and Zhai 

2004), wheel-set motions are defined by four DOFs: sway ( Y ); 
rolling ( � ); yawing ( � ); and floating ( Z ). In total, every vehicle 
(car body, bogie, wheel sets) is modeled using 31 independ-
ent DOFs. The collective DOFs (motions) for n vehicles are 
expressed as:

where MV, CV, and KV constitute vehicle mass, damping, and 
stiffness matrices, respectively; XV, ẊV , and ẌV are time-var-
ying displacement, velocity, and accelerations; and FV con-
tains forces that develop at each DOF of the train subsystem.

Bridge

In the proposed framework (recall Fig. 1), spatial vibration 
responses of bridges are estimated using 3D FE models. 
Accordingly, the bridge equation of motion is:

(1)MVẌV + CVẊV + KVXV = FV

(2)MBẌB + CBẊB + KBXB = FB

Train model Wheel-rail 
contact model

Track-bridge model

Track 
irregularities

Form train-track-bridge coupled system equation of motion

Initial static equilibrium 
state analysis

Initialize track-bridge subsystem motion, t=0

Increment time: t = t + dt

Train motion set to 
previous time step

Track-bridge motion set to 
previous time step

Wheel-rail interaction force

Train motion ENTRY A

Form the tangent stiffness matrix

Solve for displacement increment

Update element force

Calculate the residual force R

Update track-bridge response 

Has R converged?
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N
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Fig. 1   Computational framework for coupled nonlinear dynamic analysis of cable-stayed bridges subjected to high-speed rail passages
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where MB, CB, and KB are the (consistent) mass, damping, 
and stiffness matrices of the track–bridge subsystem. Note 
that a consistent mass matrix formulation is required to cap-
ture torsional moments that arise in non-cable portions of 
the FE model during train passages, where such moments 
may induce unreasonable angular accelerations if a lumped 
mass formulation were to be adopted (Stolarski et al. 2007). 
Displacement, velocity, and acceleration vectors are denoted 
as XB, ẊB , and ẌB , respectively; and FB is the external force 
vector of the track–bridge subsystem.

Wheel–rail contact model and system equation 
of motion

Several methods have been proposed in literature for mod-
eling both normal and tangential contact forces (as well as 
creep phenomena) that arise at the wheel–rail interface during 
train passages (Li et al. 2015b; Zhai et al. 2009). The spatial 
wheel–rail contact model proposed by Zhai (Chen and Zhai 
2004) is adopted in the current study, which involves use of the 
contact trace curve method. In particular, Hertzian (nonlinear 
elastic) contact theory is utilized in computing normal contact 
forces between the wheel and rail:

where G is the Hertzian wheel–rail contact constant 
( m∕N2∕3 ); �ZN(t) is the normal direction “overlap” at the 
wheel–rail contact point (m).

As an additional facet of the Chen and Zhai (2004) contact 
model, wheel–rail creep forces are calculated per Kalker linear 
creep theory. Nonlinearities that may arise in creep forces are 
considered by applying Shen–Hedrick–Elkins theory (Zhai 
et al. 1996). As a result, tangential wheel–rail contact forces 
can be expressed as:

where Fx and Fy are, respectively, the longitudinal and lateral 
creep forces, with f11 (longitudinal) and f22 (lateral) creep 
factors; Mz is the rolling creep moment, with f23 as the rota-
tional/lateral displacement creep factor and f33 as the rolling 
creep factor; � is the relative velocity difference between the 
wheel surface and rail surface. Subscripts x , y , and sp indi-
cate longitudinal, lateral, and rolling directions, respectively; 
and � is a correcting factor.

(3)Nz(t) =

{[
1

G
𝛿ZN(t)

]3∕2
, 𝛿ZN(t) > 0

0, 𝛿ZN(t) ≤ 0

(4)Fx = −� ⋅ f11�x

(5)Fy = −� ⋅ f22�y − � ⋅ f23�sp

(6)Mz = � ⋅ f23�y − � ⋅ f33�sp

Coupling of subsystem equations of motion

The train subsystem equation of motion, Eq.  (1), and 
track–bridge subsystem equation of motion, Eq. (2), are cou-
pled by the interacting force vectors FV and FB [i.e., the right-
hand sides of Eqs. (1) and (2), respectively]. Consequently, two 
force vectors depend on the relative displacement, velocity, 
and acceleration between wheels and rail at the contact points, 
Eqs. (3)–(6). The two subsystems (train and track–bridge) are 
separately integrated using the Newmark-β method, and inter-
face compatibility is achieved through iteration (Zhang et al. 
2008).

Modeling the cables

In the current study, the effects of utilizing more sophisti-
cated modeling techniques for cables (relative to the OECS 
approach, Caetano et al. 1996) are investigated. The approach 
presented herein builds upon the “Multiple Element Cable 
System” (MECS) approach proposed by Caetano et al. (1996). 
Most importantly, kinematic nonlinearities such as cable sag 
are considered, which directly affect cable tension levels, and 
(in turn) influence global behaviors for progressively larger 
displacements.

Three modeling approaches that can—at varying levels—
account for cable sagging are: (1) modified modulus method; 
(2) elastic catenary cable elements method; and (3) multiple-
short truss elements method (Zárate and Caicedo 2015). The 
modified modulus method, which reproduces only bridge deck 
motions, neglects local cable transversal motion. The elastic 
catenary cable elements method and the multiple-short truss 
elements method converge toward identical responses as cable 
members are discretized into increasing numbers of straight 
truss elements (Warnitchai et al. 1995). However, the multiple-
short truss elements method is more computationally feasible, 
especially when the cables are re-tensioned during construc-
tion, which often occurs in long-span cable-stayed bridges 
(Jie et al. 2015). Therefore, the multiple-short truss elements 
method is chosen herein to simulate both cable sag effects and 
cable local vibrations.

Cable element stiffness and mass formulations

In the local coordinate system of each two-node cable element, 
the original length of the element is L0 ; the initial tension force 
is P0 ; and the displacements in three directions ( x∗, y∗, z∗ ) are 
( ui, vi,wi, ) in node i and ( uj, vj,wj, ) in node j. The equilibrium 
equation of the element is (Wu et al. 2006):

(7)
P

�

[
−� −w � v w −v

]T
= {F}e
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where � = L0 + u ; � = L0 + e ; {F}e =
{
−R −S −T R S T

}
 

is the load vector, applicable to both node i and 
node j ;  P = P0 + EcAc∕L0 × e is the basic force; 
e =

√(
L0 + u

)2
+ v2 + w2 − L0 is the extension length; and 

u = uj − ui , v = vj − vi , w = wj − wi are the relative displace-
ments between node i and node j. Ec and Ac are Young’s 
modulus and cross-sectional area, respectively.

By transforming partial basic forces into partial intermedi-
ate forces and partial intermediate displacements (Broughton 
and Ndumbaro 1995), the following equations are obtained:

where [K]e is the element stiffness matrix in the local coor-
dinate system; {�X}e =

{
�ui �vi �wi �uj �vj �wj

}T is the 
incremental displacements for node i and node j; and {�F}e 
is the corresponding incremental force.

A lumped mass matrix, [M]e , is used for the cable elements:

where �c is mass density and [I] is the unit matrix.

(8)[K]e{�X}e = {�F}e

(9)

[K]e =
EcAc

L0�
2

⎡⎢⎢⎢⎢⎢⎢⎣

�2 �v �w −�2 −�v −�w

v2 vw −�v −v2 −vw

w2 −�w −vw −w2

�2 �v �w

sym v2 vw

w2

⎤⎥⎥⎥⎥⎥⎥⎦

+
P

�3

⎡⎢⎢⎢⎢⎢⎢⎣

v2 + w2 −�v −�w −v2 − w2 �v �w

�2 + w2 −vw �v −�2 − w2 vw

�2 + v2 �w vw −�2 − v2

v2 + w2 −�v −�w

sym �2 + w2 −vw

�2 + v2

⎤⎥⎥⎥⎥⎥⎥⎦

(10)[M]e =
�cAcL0

2
[I]6×6

Case study

A long-span, cable-stayed bridge was modeled and ana-
lyzed using the proposed computational framework (recall 
Fig. 1). For this case study, the Dongting Lake Railway 
Cable-Stayed Bridge (DRCB) was selected as the structural 
configuration, discussed below, promotes comparisons of 
computed responses obtained from comparing OECS and 
extended MECS approaches to modeling cable stays. Also, 
the influence of lateral vibration on dynamic cable response 
was investigated.

Description of the DRCB

The DRCB belongs to the West Inner Mongolia–Central 
China Railway and is the first triple-tower cable-stayed rail-
way bridge in the world. The bridge overall length is 1288 m 
with the two main spans measured at 406 m and the two 
side spans at 98 m and 140 m, respectively (Fig. 2). The full 
height of the towers is 157 m, and the height of the towers 
above the deck is 113.5 m. The superstructure consists of a 
box truss composite structure (Fig. 2), with members made 
of Q370qE grade steel.

The superstructure is also fitted with 156 stay cables 
(excluding stabilizing cables) forming a multiple double-
plane system that supports the bridge deck at 14-m intervals. 

Fig. 2   Elevation schematic of Dongting Lake Railway Bridge (units: m)
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Because of the slender towers, eight longitudinal stabilizing 
cables with lengths of up to 465 m are used to connect the 
top of the central tower diagonally to the deck near the side 
towers. The stabilizing cables provide restraint for the cen-
tral tower from traffic and vertical wind loading. The 164 
bridge cables are divided into eight groups, ranging from 
241 to 409 galvanized steel wires per cable, with wire diam-
eters of 7 mm and tensile strengths of 1860 MPa. The cables 
are not grouted, but are covered with polyethylene tubes. 
The lengths of the shortest and longest cables are 77.5 m 
and 419 m, respectively.

The superstructure is also fitted with 156 stay cables 
(excluding stabilizing cables) forming a multiple double-
plane system that supports the bridge deck at 14-m intervals. 
Because of the slender towers, eight longitudinal stabilizing 
cables with lengths of up to 465 m are used to connect the 
top of the central tower diagonally to the deck near the side 
towers. The stabilizing cables provide restraint for the cen-
tral tower from traffic and vertical wind loading. The 164 
bridge cables are divided into eight groups, ranging from 
241 to 409 galvanized steel wires per cable, with wire diam-
eters of 7 mm and tensile strengths of 1860 MPa. The cables 
are not grouted, but are covered with polyethylene tubes. 
The lengths of the shortest and longest cables are 77.5 m 
and 419 m, respectively.

The bridge towers are Y-shaped, containing upper, mid-
dle, and lower tower columns and lower beams. Each tower 
consists of three cross sections at different heights. The con-
crete for these towers has a compressive strength of 50 MPa. 
The cables are numbered sequentially from the side to main 

span as shown in Fig. 2. The deck is 21 m in width and 
2.34 m in height, including two longitudinal steel box gird-
ers along the deck edges with steel cross girders at 3.5 m 
intervals. Under the deck, longitudinal U-shaped stiffeners 
are used to strengthen sections and prevent buckling prob-
lems from the flat steel box girder.

FE modeling

The 3D, dynamic FE model of the DRCB (Fig. 3) was devel-
oped in ANSYS (2014). In this model, the towers and steel 
trusses were modeled using BEAM188 element and were 
based on the actual cross-sectional properties. Tower bases 
were fixed in all degrees of freedom. The geometric dis-
tances between cable ends and the cross-sectional centroids 
of the towers were represented by rigid bars.

An OECS model and a MECS model of the DRCB were 
developed (Fig. 3). For the MECS model, each longitudinal 
stabilizing cable was divided into 20 elements, and each 
main stay cable was modeled by 10 elements. Because the 
cables exhibited geometric nonlinearity due to sagging, there 
is no need to consider the equivalent modulus that allows for 
sagging. In comparison, a single-cable element was used to 
simulate a stay cable in the OECS model.

As a measure of modeling efficiency, an equivalent 
orthotropic material modeling method (Zhang et al. 2013) 
was used to model the orthotropic steel bridge deck details 
with multiple complicated stiffeners. This resulted in the 
same longitudinal and lateral stiffness in the unit width 
and shear stiffness in the shell plane when compared 

Fig. 3   Finite element model of 
Dongting Lake Railway Bridge

Deck, sleeper, and rail modeling 

details provided in Zhu et al. (2018)
X Y

Z

Central pylon

Single element used for each stay cable in OECS

Multiple elements used for each stay cable in MECS

Northwest pylon

Southeast pylon

Stay cables

Deck and rails

Truss

Stay cables

Piers 1-2

Piers 3-4
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to the original configuration. In the “fish-bone” model 
(Asgari et al. 2013), the equivalent orthotropic shell ele-
ment model has better structural details and was a better 
simulation for stiffness and mass distribution in the bridge 
deck sections.

A two-layer track model, presented in Zhu et al. (2018), 
was selected for modeling rails and sleepers. Of note, 
because these components have one dominant dimen-
sion, they were approximated by beam elements. The 
non-structural mass of the ballast bed was distributed 
uniformly across the girders. The rail pads and ballast are 
represented by distributed uniaxial tension–compression 
spring–dashpot elements acting in three directions. Esti-
mating the coefficients of these representative springs and 
dampers, along with their validation, has been published 
previously (Jesus et al. 2014). All input data used to simu-
late the support of the ballast and rail pad are summarized 
in Table 1.

Global modes and cable local modes

Self‑weight analysis

The response of the cable-stayed bridge under self-weight 
loading provides important geometric data, base distribu-
tions of stresses, pretension forces in the cables, and it is a 
necessary precursor to investigating dynamic behaviors. The 
zero displacement method (Wang et al. 1993) was adopted 
to determine the initial shape of the DRCB. In this analysis, 
all nonlinearities (including cable sag, beam–column effects, 
and large displacements) were taken into account.

The initial shapes of the DRCB and the displacement of 
key points obtained by the OECS and MECS models are 
shown in Fig. 4. The overall deflection obtained by the 
MECS model is comparatively larger than that obtained by 
the OECS model. Furthermore, the multiple cable elements 
in the MECS model can effectively simulate the local deflec-
tion of each stay cable, whereas the OECS model is unable 
to capture motions along the cables. Cable stresses present 
in the OECS and MECS models under self-weight loading 
are presented in Fig. 5. Differences in prestress levels are 
within 5% except for the stabilizing cable, which can have 
a maximum difference of 17%. This indicates that using the 
OECS model to calculate prestress of super-long cable may 
lead to incorrect attribution of cable prestress levels.

Modal study

Building upon computed results from the deformed con-
figuration under self-weight loading, modal analysis was 
performed to investigate dynamic behaviors of the DRCB 

Table 1   Ballast and rail pad parameters

Parameter Notation Units Rail pad Ballast

Density �b kg N/A 1800
Lateral stiffness ky MN/m 280 120
Lateral damping cy kN s/m 50 70
Longitudinal stiffness kx MN/m 50 40
Longitudinal damping cx kN s/m 10 52
Vertical stiffness kz MN/m 50 40
Vertical damping cz kN s/m 10 52

(85.16, 0.04, 48.09)

(29.82, 0.24, 14.25)

(39.14, -0.67, -27.48)
(a)

(1168.59, -22.96, 4353.63)

(19.74, 0.24, 14.31)

(87.50, 0.04, 49.15) (37.10, -0.57, -49.71)

(b)

Fig. 4   Initial displacements (x, y, z; in mm) captured by a one element cable system; b multi-element cable system
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when modeled using the OECS and MECS approaches. Fre-
quencies and mode shapes of the first 14 modes of the OECS 
model and first 1000 modes of the MECS model were found 
by the subspace method. As expected, the MECS model 
revealed global, local, and coupled modes of the bridge, 
whereas the OECS model only yielded the global modes.

Table 2 shows the first 14 natural frequencies of the 
global modes by the OECS and MECS model. The differ-
ence between the two models is no more than 1.5%. This 
means that, in assessing the global dynamic behavior of the 
bridge, the effect of the model for cables is insignificant. 
Although the OECS model can reasonably simulate global 
motions, it fails to capture the mode shape of each individual 
stay cable or the interaction between the stay cables and the 
deck–tower system, since each stay cable is modeled with a 
single-cable element.

In contrast, the MECS model can effectively simulate the 
local and coupled motions. The natural frequencies of the 

first predominantly lateral, vertical, and torsional modes of 
the DRCB in the MECS model were 0.274 Hz, 0.432 Hz, 
and 1.158 Hz, respectively. Mode shapes with lateral (as 
opposed to vertical) vibration components are associated 
with relatively lower frequency levels. This phenomenon can 
be attributed to the relatively low span ratios of the DRCB 
and the relatively high vertical direction (as opposed to lat-
eral direction) stiffness of the steel truss girder.

Among those modes captured by the MECS model, 
85% were pure local cable vibration modes and coupled 
modes of cables, girder, and towers. The first eight pre-
dominantly global modes by the MECS model are shown 
in Fig. 6. The modal analysis revealed two features of the 
bridge. First, more than 1000 modes manifest at frequen-
cies less than 1.5 Hz. This indicates that the bridge has 
many closely spaced vibration modes with low frequen-
cies. Some closely spaced modes manifest with similar 
modal shapes in the deck, but with differences in cable 

Fig. 5   Comparison of initial 
cable stresses due to self-weight 
loading
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Table 2   Comparison of natural 
frequencies (Hz) for the first 14 
global modes

OECS MECS Percent dif-
ference (%)

Description

Mode Frequency (Hz) Mode Frequency (Hz)

1 0.273 5 0.274 0.29 Asymmetrical lateral bending
2 0.320 10 0.320 − 0.03 Symmetrical lateral bending
3 0.439 11 0.432 − 1.57 Asymmetrical vertical bending
4 0.591 148 0.595 0.67 Symmetrical vertical bending
5 0.606 153 0.601 − 0.72 asymmetrical vertical bending
6 0.773 254 0.785 1.54 Asymmetrical lateral bending
7 0.786 255 0.789 0.47 Symmetrical lateral bending
8 0.829 272 0.839 1.25 Tower lateral bending
9 0.845 273 0.842 − 0.33 Asymmetrical lateral bending
10 0.894 294 0.894 0.01 Asymmetrical vertical bending
11 0.895 306 0.901 0.73 Symmetrical lateral bending
12 0.942 356 0.950 0.86 Symmetrical vertical bending
13 1.069 429 1.076 0.73 Symmetrical vertical bending
14 1.158 454 1.174 1.36 Torsion
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participation. The second feature of the bridge that was 
revealed by modal analysis was that modes based on the 
MECS model exhibited strong modal interaction between 
the deck, towers, and cables in some global modes. For 
example, Fig. 6 depicts the long cables vibrating with very 
large amplitude.

Global vibration and local cable vibration

To facilitate comparisons between the OECS and MECS 
approaches, the properties of local vibrations in the cables 
and global vibrations of the cable-stayed bridge were 
examined by using the train–bridge interaction model. 
Train–bridge coupled vibration analysis for the DRCB was 
conducted based on results of the self-weight and modal 
analyses. For all train–bridge analyses, track irregularities 
are assumed to be commensurate with a Class 5 track (per 
the U.S. Federal Railroad Administration).

The heavy-haul train used for train–bridge coupled 
vibration analysis consisted of one locomotive and up to 
30 wagons (totaling 420 m in length), with passage speeds 
of 120 km/h. The locomotive was a SS4, which is approxi-
mately 2 m in width and 15.2 m in length with eight axles 
(each carrying a load of 230 kN). The main train type tra-
versing the DRCB is the C80 freight wagon. Accordingly, 

wagons used in the analyses were of type C80, which is 
approximately 13 m in length and consisted of four axles 
with loads of up to 250 kN per axle.

Vibrations of the girders and towers

Maximum vertical acceleration of the main girder reached 
2.257 and 2.248 m/s2, respectively, for the OECS and MECS 
models. Maximum lateral acceleration reached 0.737 and 
0.743 m/s2, respectively (OECS vs. MECS), which was 
far below the prescribed code limits (CMR 2005) for track 
stability, i.e., 3.5 m/s2 (vertical) and 1.4 m/s2 (lateral) for 
bridges with ballasted tracks. Regardless of modeling 
approach, these results support that the design requirements 
for DRCB track stability were satisfied.

Figure 7 shows maximum accelerations of points along 
pylon 2, as determined by the OECS and MECS approaches. 
It was observed that the maximum acceleration and displace-
ment of the MECS model, especially components in the lon-
gitudinal direction, were greater than those of the OECS 
model. The percentage differences of maximum acceleration 
in the longitudinal direction at the top of pylon 2 were 15%. 
These differences are due to the influence of MECS cable 
vibrations on girder–tower response, where such cable vibra-
tions cannot be accounted for in the OECS model.

Fig. 6   Selected vibration modes of the cable-stayed bridge a 5th mode, f = 0.274 Hz; b 10th mode, f = 0.320 Hz; c 11th mode, f = 0.432 Hz; d 
148th mode, f = 0.595 Hz; e 153rd mode, f = 0.601 Hz; f 254th mode, f = 0.785 Hz
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Figure 8 shows MECS model deflection time histories 
for accelerations at the midpoints of span 1, 2, and 3 on the 
bridge deck. Vertical displacement magnitudes are positively 
correlated with span length, while vertical accelerations are 
negatively correlated. This indicated that the greater the 
bridge mass, the smaller the acceleration of the mid-span.

According to the peak values shown in Fig. 8, the cor-
responding deflection-to-span ratios of span 1 to 3 are 
1/4667; 1/4035; and 1/1442, respectively—further indicating 
the prominent vertical stiffness of the cable-stayed bridge. 
Impact factors of vertical displacement at the midpoint of 

span 1 to 3 (0.0005, 0.005, and 0.0003, respectively) indi-
cated that deflections were mainly induced by the train axle 
load, and the effect of track irregularities is insignificant.

Vibrations of the cables

Figure 9 gives the maximum response of the cable mid-
point under the moving train at a speed of 120 km/h, 
relative to the initial value (under self-weight). Cable 
responses induced by the moving train consisted mainly 
of in-plane vibrations (vertical and longitudinal direction), 
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Fig. 7   Computed maximum acceleration of pylon 2: a vertical; b lateral; c longitudinal
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Fig. 9   Maximum responses of 
midpoint of cables relative to 
the initial value under a moving 
train (V = 120 km/h): a displace-
ment; b acceleration
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whereas out-of-plane vibrations (lateral direction) were 
insignificant. Additionally, maximum displacements 
tended to be positively correlated with cable length nega-
tively correlated with maximum acceleration. In particular, 
the overall maximum displacement occurs in stabilizing 
cable C40 (with vertical and longitudinal components of 
550.33 mm and 147.57 mm, respectively). Note that these 
behaviors cannot be simulated by the OECS model.

When the train passed the cable support in the main 
girder, the evenly spaced train axle load induced periodic 
excitation in the cables. If the natural frequency of the cables 
aligns with the excitation frequency of the train axle load, 
then cable resonance could occur. For wagon C80, the train 
axle load interval was 13 m and the excitation frequency was 
2.56 Hz. This excitation frequency was closer to twice the 
1st frequency (1.29 Hz) of cables C11 to C14. Maximum 
accelerations of these cables were of larger magnitude than 
those of the other cables (recall Fig. 9b).

Figure 10 shows the displacement time histories of the 
cable midpoints and endpoints in the MECS model. Each 
nodal displacement can be separated into vertical, lateral, 
and longitudinal components. The suffixes “-G” and “-T” 
refer to the endpoint in the main girder and tower, respec-
tively. The dynamic response of a short cable was less than 
that of the endpoints at the main girder and tower. For sta-
bilizing cable C40, displacements were mainly induced by 

longitudinal vibrations in the pylon. Note, again, that such 
behaviors cannot be captured by the OECS model.

Tension of cables

Cable stress amplitudes obtained from the OECS and MECS 
models during train passage are shown in Fig. 11. The per-
centage differences of the stress amplitudes of most short 
cables were within 5%. The largest difference of the stress 
amplitudes was found in the stabilizing cable, reaching 16%. 
These comparisons indicate that although the OECS and 
MECS models can be used rationally to model the stresses in 
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Fig. 10   Vertical, lateral, and longitudinal displacement time histories of cable midpoints and endpoints: a cable 39; b cable 40
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relatively shorter cables, the MECS model was more suitable 
for analysis of stresses in relatively longer cables. Shown in 
Fig. 12 are train-induced stress time histories of selected 
cables (OECS vs. MECS). Time variations in cable tension 
are similar across both model types, where stress levels 
were significantly influenced by train location. Controlling 
stresses developed in cables C13, C14, and C39 for much 
of the train passage. However, during train passage across 
span 3, stresses in cable C1 increased significantly, while 
the stabilizing cable C40 underwent significant reductions 
in stress. In contrast, cable C27 maintained elevated stress 
levels as the train passed across span 3.

Conclusions

This study proposed a computational framework to analyze 
nonlinear dynamic responses of long-span cable-stayed 
bridges subjected to moving train loads, on the basis of a 
train–bridge coupled system. Two approaches for modeling 
cable stays were investigated: one element cable system 
(OECS) and multi-element cable system (MECS). The pro-
posed framework and modeling approaches were applied in 
a case study of the Dongting Lake Railway Cable-Stayed 
Bridge (DRCB) to compute local cable vibrations and global 
vibrations under train passages and thereby illustrate impor-
tant differences between the OECS and MECS approaches.

Based on the case study and train passage scenarios 
considered, the MECS approach is recommended for use 
in assessing the influence of cable vibration on nonlinear 
train-induced (dynamic) responses of long-span cable-stayed 
bridges. Nevertheless, influences of different train speeds 
and track irregularities need to be examined further when 
investigating the dynamic responses of bridge details, such 
as resonance speed and impact factor of orthotropic steel 
bridge decks.

Characteristics of computed vibrations of the DRCB 
bridge models are summarized as follows:

1.	 Compared to the OECS model, the MECS model can 
better capture local cable vibrations and the influence 

of these vibrations on nonlinear dynamic response of 
the cable-stayed bridge in the train–bridge coupled sys-
tem. This can lead to a more reliable estimation of the 
dynamic cable responses.

2.	 Results of the modal analysis indicated that OECS 
model is capable of capturing global bridge motions, 
but unable to capture the mode shapes of individual stay 
cables. Further, the OECS model does not account for 
interactions between the stay cables and the deck–tower 
system. On the other hand, the MECS model effectively 
simulated the local and coupled motions.

3.	 Nonlinear dynamic analysis results indicated that 
although the OECS model can rationally model the 
deformations and internal forces of the deck–tower sys-
tem and the internal forces of stay cables, it cannot simu-
late stay cable vibrations. On the other hand, the MECS 
model can capture both structural motions and internal 
forces of all bridge components, particularly those of the 
stay cables.

4.	 The dynamic responses of a long-span, cable-stayed 
bridge induced by a moving train are mainly in-plane 
vibrations (vertical and longitudinal direction). Out-
of-plane vibration (lateral direction) responses were 
insignificant during train passages on the DRCB model. 
Both the OCES and MECS approaches indicated that the 
DRCB satisfies code-prescribed limits for train-induced 
vibrations.
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Fig. 12   Cable stresses during 
train passages at 120 km/h: a 
one element cable system; b 
multi-element cable system
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