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Abstract
Heinz Isler as the most famous contemporary shell designer has widely employed physical pre-modelling techniques for 
construction of many concrete shell structures. Through the physical approach to optimal form finding, Isler accomplished 
shell structures with robust performance. It would be interesting and beneficial to re-assess Isler’s shells, hence, this arti-
cle attempts to study the structural performance of eight notable shells of Isler. Through reverse engineering and by the 
assistance of Rhino, MATLAB and Grasshopper, the precise geometry of Isler’s selected shells were modelled for the finite 
element analysis under their self-weight. The structural analysis was performed, with the parallel use of finite element soft-
ware SAP2000 and Abaqus. The identical results of the two packages, further confirmed the accuracy of the analysis. The 
essential properties of various forms of the shells and their differences in behaviour were pinpointed and discussed within the 
calculations and the results were compared with the data of the genuine published references on Isler’s works. The internal 
forces, the amount of von Mises stresses, support reactions and the buckling loads of the shells are explored. The analyses 
revealed that, despite of their major membrane action, all the shells had negligible amount of bending moments, especially 
near the supports. However, in general, all the shells exhibited an appropriate performance under the applied actions. But, 
at the same time, they exhibited different buckling behaviour as a probable source of instability in them.
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Introduction

This section gives a brief account of some general aspects 
of shells and reviews some historically significant break-
throughs in calculation of shell structures. Insertion of a 
curvature in a plate ( = a flat shell) under transverse loads, 
reduces its flexural actions and increases its normal actions, 
where the amount of reduction in flexural action is directly 
related to the nature and “magnitude” of its curvature. The 
height-to-span ratio is a simple measure of the curvature 
of shells which reflects the structural and economic perfor-
mance of a shell as well. The optimal range of this ratio for 
the arches is [0.25, 0.30], (Heristchian et al. 2014). This ratio 
remains unchanged for various situations, furthermore, it has 

intrinsic relation with the material properties of the arch, and 
with its internal forces i.e., shear (V), bending moment (M) 
and normal force (F). Calculating of pressure line for an arch 
under a specific applied load on its axis and reducing the 
eccentricity ( e = M∕F ) of its typical sections to zero is ideal 
for the concrete arches that are weak in tension. For this 
reason, the central coordinate of the economical and favour-
able concrete arches matches its pressure line (Akhavan 
and Tahooni 1996). At the same time, that is also, the main 
parameter in optimization of arches and shells. Finding the 
pressure area of shells is a challenging problem because of 
simultaneous interaction of its form with the loads and pos-
sible support locations in 3D space. Due to the complexity 
of the shell geometries, historically, the trials were usually 
restricted to the exactly calculated simple shapes such as the 
shapes proposed by Timoshenko and Woinowsky-Krieger 
(1959), etc. Some methods of calculation of shells, such as 
differential methods and the methods practiced by Isler are 
discussed in the section devoted to Isler’s work.

However, few structural engineers consider mathematical 
points in working on more accurate geometries towards more 
optimal shells like hyperbolic paraboloid shapes designed by 
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Felix Candela (Sprague 2013). In their studies, the type of 
the shell and its symmetries were usually the most important 
factors in calculations. However, the shell designers usually 
have a poetic overtone look for free forms that are unachiev-
able with the exact feasible calculations. On the other hand, 
another practical method for finding the shell forms without 
intensive calculations is the method of mimicking natural 
shapes which have found its place in a wide range of usages. 
Mimicking natural structural shapes has two advantageous 
reasons which encouraged the designers to follow this sim-
ple method: (1) selection of the shape by hanging and find-
ing its geometry according to the effect of weight and gravity 
which forms a shape under pure tension. (2) The behaviour 
of these structures can be scaled down independent of their 
actual and final size. This means that making and testing 
small physical models can be a quick and practical method. 
Under prescribed boundary conditions, once flexible struc-
tural shell form gets inverted, due to its self-weight it attains 
the optimal and economic shape under pure tension. A form 
obtained in such a way, under the reverse loading will be in 
pure compression. In this method, the rigidity of the mate-
rial under test, plays an important role. The Galileo Galilei’s 
(1564–1642) concept of “square-cube law” states that the 
area increases with the square of the scale factor, and the 
volume (hence the mass) increases with the cube of the scale 
factor. Simon Stevin (1548–1620) was one of the earliest 
developers of the force vectors based on the mathematical 
representation. Byvough, in 1586, published “The Princi-
ples of the Art of Weighing”, which described the parallelo-
gram of forces based on the models of funicular (2D, 3D) 
shapes. Later, Robert Hooke (1635–1703) with Christopher 
Wren (1632–1723) designed a Cathedral in London using 
the inverted catenary models. Christopher Wren sketched 
a 33-m diameter dome, showing usage of suspended chain 
method in design of buildings. That is one of the well-known 
and satisfactory methods of employing physical models to 
obtain structures resistant to compression, which increased 
Hooke and Wren’s confidence in this method . In evalua-
tion of 100-year-old, 50-m diameter dome, Giovanni Poleni 
(1683–1761) employed Hooke’s method in Rome, however, 
minor cracks formed in the dome (Adriaenssens et al. 2014). 
Considering Galileo’s law of size effect, construction of a 
50 m dome should have presented a challenging construction 
problem, for its time.

Michelangelo (1475–1564) as an architect and engi-
neer reduced the weight of the structure using the method 
of double skin shell, suggested by Filippo Brunelleschi 
(1377–1446). Later in 1580s, to decrease the outward 
thrusts, Giambattista Della Porta (1535–1615) added the 
height-to-span ratio of the domes by extending their lower 
parts. This was followed by 2- and 3-dimensional arches 
used by Friedrich Goesling (1837–1899) in a number of 
models in the 1890s. The method was further developed 

by Antoni Gaudi (1852–1926) who employed suspended 
bags from strings of the models of several masonry shells 
(González et al. 2018). Frei Otto (1925–2015) an army pilot 
looking for a shelter started using models made by cable 
networks and other membrane elements to determine the 
tension in cable networks, during the times that practical use 
of computers for this purpose was rather unfeasible (Chil-
ton and Chuang 2017). Finally, Heinz Isler (1926–2009) as 
the most famous concrete shell builder, in twentieth cen-
tury, designed and built several complex and stable shells in 
Europe by the method similar to Hooke’s method. In one of 
his techniques, Isler created the forms by free hanging of the 
soaked fabric, then, to increase the stiffness of the shell, he 
folded its edges based on his own experience. Furthermore, 
he hardened the models, either by freezing them outdoors 
in cold weather or by adding cement mixture. Finally, he 
scaled them up and reproduced their funicular geometry 
(Brew and Lewis 2007). Isler also used simple calculations, 
based on the assumption that there is no bending moment, to 
estimate the amount of forces, however a negligible flexural 
action exists near the supports. Additionally, he presented 
the buckling equation in a colloquium in 1982 (Chilton and 
Isler 2000).

Isler’s models and analysis

The exceptional performance of Isler’s shells within 4–5 
decades, and the importance of his approach to modelling, 
has encouraged many designers to re-evaluate his shells and 
get inspired by them.

As an example, the Naturtheater Groetzingen shell (1977) 
with 42 m by 28 m span and 10 m height, covering an area 
of approximately 650m2 and with 220 Tons of reinforced 
concrete, was simulated in SAP2000 four decades after its 
construction time, at Princeton University (Maurer et al. 
2013). According to the results of analysis, the maximum 
tensile force was 1152 kN/m, which occurred mainly in the 
supports and near the edges of the shell, and it was less 
than the half of maximum compressive force amounting to 
2785 kN/m. The evaluation model of the structure in Nor-
wich Sports Park used 3D scans of pre-models and simulated 
it within the finite element software called NURBS (Borgart 
and Eigenraam 2012). This model confirmed that along the 
curvature, the distribution of the bending moment changes 
and increases between the top part and the long edges of the 
shell, which shows the effect of edge stiffeners. The numeri-
cal studies continued by working on the Deitingen Service 
Station, Coop Distribution Centre, Buergi Garden Centre 
and on other Isler’s shells (Brew and Lewis 2007; Ramm and 
Mehlhorn 1991; Neuhäuser 2014; Emami 2015). Despite 
of the above-mentioned case studies, Isler’s shells deserve 
further study to clarify the influence of the utilized method 
of form finding on the structural characteristics of the shells, 
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and to evaluate their structural and buckling features com-
prehensively and compare with each other.

Reconstruction of shells

Software and material

This paper has modelled and studied Isler’s eight shells in 
the finite element software, Abaqus, as a homogeneous sec-
tion together with a composite layer to allow for assignment 
of re-bars of the reinforced concrete material. The Static 
General method of analysis was employed. The models 
have been evaluated without using Interaction modulus 
under their self-load. In parallel to Abaqus modelling, also, 
SAP2000 was used with the same linear material properties 
and definitions. The mechanical properties of the concrete 
material of Isler’s shell constructions are not identical and 
different references have mentioned different values for it. 
The typical concrete mixture of Isler’s shells constitutes of 
cement percentage of maximum ( 325 kg∕m3 ), gravel stone 
with a maximum dimension of (15 mm) (Christian and 
David 2012) for the concrete of 28 MPa (C-28) compres-
sion strength. Since, the aim of this study is to compare 
the structural performance of various shells with each other, 
thus, in all of the shells, the same strength and material prop-
erties for concrete is assumed . The ratio of steel to concrete 
material by weight is ( 15

220
 ), (Maurer et al. 2013). The mesh 

of steel reinforcement is arranged symmetrically on both 
sides of the shell Fig. 1. The mechanical properties of the 
re-bars are assumed to be according to the standard ASTM 
A992 (with yield and ultimate stresses Fy = 35153.5 and 
Fu = 45,700 t∕m2 ) as the most available steel types. None-
theless, other considerations and addition of structural ele-
ments, utilized by Isler in reducing the tension and increas-
ing the buckling factor, such as using post-tensioned strands 
between the supports, influence the structural performance 
of the shells, however, since the focus of the current study is 
just on a comparison between the forms of the shells, these 
details were not considered here.

The Swiss engineer Heinz Isler succeeded in realizing 
almost 1400 shell structures with his method (Kotnik and 
Schwartz 2011). Eight most known shell structures with dif-
ferent geometries that were built and reused by him in the 
majority of his shell structures were selected and remod-
elled for finite element analysis. Table 1 briefly introduces 
these structures. Isler used four different physical methods 
for modelling and form finding of shells which can be cat-
egorized as:

1.	 Rubber membrane method—in this method, inspired by 
the pillow, a rubber membrane was put under internal 
pressure, and consequently the shape of the membrane 
under pressure represented the desired shell. The shell 
1 of Table 1 is obtained by this method.

2.	 Hanging textile method—in this method, soft materials 
like fabrics that have not any resistance against compres-
sion, bending, shear and torsion find their forms under 
different loads, such as their self-weight, only by their 
tensile resistance. This feature produces tension only 
forces in the form attained by fabric, that is converted 
to ’all compression’ state under inverse configuration, 
which is the most suitable force for the masonry and 
concrete materials. Hence, Isler selected this technique 
using the shape of hanged soaked textile, formed under 
their self-weight (shell 4, 5).

3.	 Foam flow method—this method is inspired by observ-
ing the foam growth. The shells 6 and 7 are acquired by 
this approach (Isler 2002).

4.	 Shaking method—in the later years of his life, Isler 
was looking for a method of finding forms by shaking 
them; however, this method was not well illustrated and 
applied to form finding of any shell structure.

In addition to the data publicly available in the references on 
Isler’s work, the geometric dimensions of the models were 
acquired either from the scan reports of the existing minia-
ture shell structures found in his workshop, or from the data 
of a number of existing blue print drawings of shells (Fig. 2) 
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Fig. 1   Shells mesh-rebar pattern
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Table 1   Selected Isler’s shell structures, unit: m 

1-Coop Distribution Center
(Ramm and Schunck 2002)

Solothurn, Switzerland Year:1960 No: 3

2-Badi brugg (Isler 2009) Argovia, Switzerland Year:1981 No: 2

3-Bruehl Sports Center Solothurn, Switzerland Year:1982 No: 5

4-Deitingen Service Station Solothurn, Switzerland Year:1968 No: 3

5-Naturtheater Groetzingen Baden Wuerttemberg, Ger-
many

Year:1977 No: 4

6-Buergi Garden Center Camorino, Switzerland Year:1973 No: 2

Villeparisis, France Year:1977 No: 4

8-Wyss Garden Center Solothurn, Switzerland Year:1961 No: 4

(Ramm and Schunck 2002)

(Ramm and Schunck 2002)

(https://www.b-tu.de/great-engineers-
lexikon/ingenieure/isler-heinz-
1926-2009/projekte)

(Ramm and Schunck 2002)

(Ramm and Schunck 2002)

(Isler 1980)

No: is the minimum number of all different arches required for re-modeling process. Each of the arches, which are embedded in the shells, might 
be repeated in a shell with changing dimentions
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(Stefan 2001). These data include the thickness, the span and 
the height dimensions of shells and plenty of pictures from 
different angles (Isler 2009). For the shell 7, different heights 
were mentioned in the references, the most probable height 
was assumed for it. The thicknesses of the shells varied and 
the assumed values here are based on the most probable 
ranges found in the relevant references, for instance for shell 
1 thickness (t) varied in the range ( 15 ≤ t ≤ 19cm) (Christian 
and David 2012), for shell 5 ( 8 ≤ t ≤ 15 cm) (Abtin Bagh-
dadi 2013), for shell 3 ( t ∼ 9cm) (Isler 2002), shell 8 ( ≤ 6

cm) (Chilton 2010). However, for the analysis , the thickness 
of all shells t = 15 cm is assumed for the reason of com-
parison. Obviously, in an individual assessment, the thick-
ness of shell must be considered exactly or similar to the 
original structure. These thicknesses vary through the shell 
and have a direct relation with the vertical-distribution of 
these geometries. Essentially, under gravity loads, the forces 
increase from top to down of the shells, on the other hand, 
the forces above any level, are in balance with the forces 
below it which are obtained by multiplying the level forces 
with the perimeter and the thickness of the shell. Hence, 
in the absence of horizontal loads, the optimal design of 
shells, inherently demands for a variation of thickness with 
the height of the shell, which in turn leads to accurate and 
exact data for non-prismatic geometries. On the other side, 
however, assuming a uniform thickness inspired from real 
geometries to acquire a general account of force and stress 
distribution, is unavoidable.

The pictures taken straightly at frontal angles of all the 
arches enabled the deduction of extra geometrical data. 
Consequently, a large number of arch lines could be recon-
structed, in their exact locations and angles. Hence, the arch 
frames were reconstructed for the entire shells, and finally, 
the surfaces located between the arches restored the full 
shape of the shells.

The main steps for modelling of shell structures are as 
follows:

1.	 Frontal straight angle pictures (2–6) from each arch of 
the shell were sent to AutoCAD, and their spans were 
rescaled as required.

2.	 Depending on the size of the arch, adequate number of 
nodal points was selected on a hypothetical curve which 
assisted finding the coordinates of the points for the next 
stage.

3.	 To draw the shape of the model, the xyz-coordinates of 
its grid points in plan or 3D space were transferred from 
AutoCAD to MATLAB.

4.	 Then, in MATLAB, the data were interpolated and a 
unique function was defined for each arch, and the height 
of the arches were rescaled which resulted in smoothed 
new xyz-coordinates for each arch with a symmetric 
smooth shape. At this step, a number of trigonometric 

functions were used to find out similarities between the 
arches.

5.	 The data of the curves were transferred to the Excel. 
Later, in Rhino, with the help of Grasshopper these 
nodes were converted into arches.

6.	 In Rhino, the bundle of all essential arches of each 
shell are replaced with their corresponding plan and the 
related angle.

7.	 Finally, the interconnection pattern is produced in 
Rhino, which readily could be conveyed into finite ele-
ment software.

Discussion

Evaluation of geometrical properties of shells

The bar charts of Fig. 3 show the amount of surface areas 
of the shells together with the projected flat areas covered 
by them. The ratio of the “ � = surface-to-covered area” of 
a shell intriguingly is related to its “ � = rise-to-span” ratio. 
The ratio � has the most influential role in optimizing the 
force flow in the shell. However, since a single “rise-to-
span” ratio could not represent the spatial characteristics 
of a shell, consequently, such a relationship could not be 
defined simply.

Shell 1 covers the largest area and shell 4 covers the 
smallest area, while the shapes of shells 7 and 4 are attained 
by the flow and hanging method and have the maximum and 
the minimum ratios � , respectively. The source of differ-
ence in � is the amount of the curvature of the shell’s infla-
tion. Figure 4 pictures the height of the shells together with 
their longest span, additionally, by considering both spans 
of the shells, the ratio � can be extrapolated and deduced. 
Shell 1 numerically has the largest span, which is placed on 
stiff boundary beams and columns, and is not structurally 
comparable with other shells. As a result, the shells 3 and 
4, with their unique shapes are genuine longest and high-
est shells, respectively, which have been found by second 
physical method. The ratio � for these shells on the average 
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Fig. 3   Shells’ area
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is around 0.25, while for the optimal arches, this ratio must 
be [0.25, 0.3] . Thus, this parameter was satisfied for the 
shells, however, for shell 1, which is obtained by the rubber 
membrane method this ratio is not fulfilled.

Thickness and height-to-span ratio are the most impor-
tant parameters in optimizing shell’s geometry, which is 
not uniform in these shells and the assumed values in this 
study are based on the ranges documented in references. 
In Isler’s shells the average thickness is 10 cm. But this 
is not always the case, and is related to his form finding 
method, in which the ratio � correlates with less thick-
ness. For example, if the distance between lowest starting 
point and crown of each shell be the considered as its 
height (Table 1), shell 4 has the highest ratio � and lowest 
thickness while the contrary is true for shell number 1.

Distribution of form in plan area is the matter of dis-
cussion in form finding, which can be compared with the 
Area Moments of Inertia (MOI) in which the thickness 
of the shells is not considered. Hence, to find the criteria, 
the distribution is divided by the area of the shells, and 
thus:

According to this formula, the symmetry of shells 2 and 6 
with respect to x and y axis, shows the same amount of (MOI/
Area) in Fig. 5. There is an exception in shell 1, for which 
the average value of this factor is 75 m2(30 ≤ Ix,y ≤ 161) ) 
while in z direction it is about 140 m2 . However, when the 
goal of optimization of shells is their performance under 
self-weight and pure compression, this factor cannot indi-
cate any specific structural character, unless determination of 
their rigidities under vertical loads and assigning a specific 
number to them. Disability in dedicating a specific number 
to define the form is the biggest obstacle in form finding.

(1)Ix = ∫ (y2 + z2)dA and Iy = ∫ (z2 + x2)dA.

Deformation of the shells

Figure 6 shows the result of deformation of shell 6, under its 
own weight which is obtained using the software SAP2000 
and Abaqus. The maximum negative displacement (towards 
gravitational forces) is − 1.76 cm which occurs at the middle 
of four edges. The displacement contours which are in the 
same direction as the gravitational loads somehow are meas-
ure of the stiffness of the shell in the gravitational direction 
as well. Figure 7 shows the deformations of shells 1, 2, 4 
and 8 under their self-weights, where their extreme negative 
downwards displacements (towards gravity) are −0.82 cm, 
−4.3 cm, −18 cm, and −0.43 cm, respectively. Within small 
regions near the supports of the shells positive (upwards) 
displacements (orange to red regions of Fig. 7) appear, but 
for shell 1, whose supports are continuous over the bounda-
ries, the positive displacements occupy more sizeable area.

For the shells 1, 2, and 8, the largest negative deformation 
occurs in the inner (blue) regions of the surface; nonetheless, 
for shell 4, it occurs at the middle of the free edge of the 
shell. The deformations of Figs. 6 and 7, reveal that in gen-
eral, Isler’s shells have high rigidity, to elaborate further, the 
deformations of these shells vary in the range of [−18,+10] 
cm, where these belong to shell 4, and thus it has the least 
stiffness among all eight shells. On the contrary, the shell 8 
has the most robust geometry. However, in shell 8, the loca-
tion and magnitude of the largest displacement will alter 
drastically due to change in the stiffness of its supports; in 
other words, the deformations of this shell are highly sensi-
tive to its support conditions. Broadly, the shell structures 
found by hanging method have lowest stiffness in compari-
son to the other methods of form finding.

Stresses of shells

The criteria of von Mises stress that is based on the energy 
concept and incorporates the shear deformations as well 
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as various stress components is selected for the purpose of 
comparison of stresses in various shells, which is also the 
most common stress measure among different software. 
In Fig. 8, the stress distribution of shell 4, in software 
SAP2000 and Abaqus are plotted next to each other to 

show their close similarities. Several decades of satisfac-
tory performance of Isler’s shell structures signifies the 
fact that their stresses should not have exceeded the allow-
able limits of concrete C-28 having the nominal compres-
sive strength of 2800 t∕m2 except the support points where, 
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Fig. 6   Deformations of shell 6 (in metre, towards gravity), SAP2000 (left) and Abaqus (right)

Fig. 7   Deformations of shells 1 (top-left), 2 (top-right), 4 (bottom-left), and 8 (bottom-right), Abaqus (in metre, towards gravity)
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an increase of stress is observed and Isler increased their 
dimensions drastically. Figure 9, represents the von Mises 
stress distribution for shells 2, 3, 6 and 8, under their self-
weight. The large part of shell 2, has the low stress in 
the range of 34–198 t∕m2 , nevertheless, there are some 
small patches of stress in the range of 525 t∕m2 near the 
support lines, and finally in the tiny areas near the four 
corners the stress amounts to 2394 t∕m2 . The other shells 
have markedly lower stress concentrations near the sup-
port points, and their values do not exceed the limits 1511, 
1313 and 1623 t∕m2 , for the shells 3, 6, and 8, respectively. 
With the exception of the supports, it can be stated that 
the amount of stress in shells 1–8 are normally less than 
500 t∕m2 , and near the apex of the shells, it is about zero. 
Assessment of the stresses of shell 2 shows the average 
stress of 334 t∕m2 along the diametrical curves connect-
ing the opposite supports, while the numerical modelling 
and Isler’s simple calculations give rise to a stress lower 

than the concrete nominal strength for that (Chilton and 
Isler 2000), but both of them are lower than the concrete 
nominal strength (2800 t∕m2).

A comparison reveals that shells 1 and 8 have the first and 
second highest strength, and then with the exception of the 
supporting legs there are shells 6 and 4, respectively. Shell 
4 can be considered as the most optimal shell because of 
its optimal use of material, and shell 1 is the least optimal. 
The high strength indicates that these two shells among all 
eight shells have minimum strain energy (or deformation) 
regarding the span and areas covered by them, while the 
most optimum shell is more flexible, along with having the 
least eccentricity (e). It can be stated that the shell forms 
found by the physical hanging method have low deviations 
from the optimal performance. Another interesting point 
about Isler’s shells is their plastic behaviour during yield-
ing of reinforced concrete. By increasing the loads, within 
the Riks analysis in Abaqus, in most of them plastic hinges 
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initiate from the lowest levels and then spread and move 
up to the top parts of the shells, to elaborate further, plastic 
hinges forms at sections of the same level without collapsing 
sideways or locally (increasing the membrane stress), and 
this phenomenon is a notable point in the ultimate behaviour 
of shells.

Buckling and frequency analysis

This section evaluates the resistance of Isler’s shells to buck-
ling. The buckling and frequency analysis of shells require 
modelling of exact support details, however, only for the 
purpose of a comparative evaluation of shells, identical sup-
port conditions are assumed for them. Under these assump-
tions, shells number 1, 7 and 8 had acceptable buckling 
loads, whereas in other shells, particularly in shells obtained 
by the hanging method, such as shell 3, this type of failure 
was probable. Additionally, the buckling is calculated for 
(uniformly distributed) dead load only, however, by adding 
snow or wind loads, due to their anti-symmetrical nature, the 
shells will be more susceptible to buckling. In some shells 
such as shell number 1, which is surrounded by supports all 
around, and has a relatively higher thickness to span ratio, 
buckling is not a prime concern. The buckling failure was 
Isler’s major concern in design of shells that is why in some 
projects he added extra elements such as cables near the 

supports as a source of pre-stressing and restraining the sup-
ports from moving and highly strengthened them. In addi-
tion to buckling, the modal analysis was performed for the 
shells, which indicated that the highest eigenvalue and the 
lowest period time belong to shells 1, 7, 8 and 6, respec-
tively. The analysis also shows a sequence of symmetrical 
mode shapes in almost all of the shells. Figure 10, shows 
different modal behaviour of shells 2, 3, 5 and 8.

Fig. 9   von Mises stress of shells 2, 3, 6 and 8 in Abaqus in t∕m2

Fig. 10   First mode shapes of shell 2 (top-left), 3 (top-right), 5 (bot-
tom-left) and 8 (bottom-right)
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Internal forces

Since, considering the forces gives a better overview about 
the behaviour of shells, therefore, in addition to von Mises 
stresses which were given in “Stresses of shells” section, 
this section deals with the forces in shells. To clarify the 
acts of the shells the axial load (F), shear (V) and bending 
moments (M) in all directions of each shell are presented. 
It is seen from Figs. 11 and 12 that the amount of bending 
moment, and shear force compared to axial load has a low 
value. This observation could be related to the pressure line 
theory, in which the assumed nodes of an arch (or shell) and 
their related eccentricity ( e = M∕F ), leads to the so called 
pressure line (or area). This means that the hypothetical form 
(arch or shell) complies with the Isler’s shell forms.

This type of force and ratio typically occurs in all the 
modelled shells and presents the same type of behav-
iour. For instance in shell 3(t, m) −95 ≤ F11,F22 ≤ 20 
while −3.0 ≤ M11,M22,V13,V23 ≤ 1 and for shell 4 

(2)
n∑

i

ei = |
Mi,Vi

Fi

| → 0

−110 ≤ F11,F22 ≤ 40 while −5 ≤ M11,M22,V13,V23 ≤ 2.2 . 
In all the shells, the maximum amount of shear and bending 
moments ( = eccentricity) belongs to the supports which are 
not in the scope of form finding process.

It can be shown that the average eccentricity in eight of 
mentioned shells is around 0.125, whereas in shell 1, which 
was achieved by Isler’s first method, it is limited to 0.015. 
The source of this deviation of eccentricity from zero might 
be the method of experiment and/or approximations in 
reverse engineering. The low eccentricity verifies again the 
accuracy of all steps of back engineering and analysis in 
this study.

This calculation also shows the accuracy of Isler’s method 
in form finding of shells, and his special ability and experi-
ence in optimal designing of shell structures.

Where, M11 and M22 are direct moments per unit length at 
element mid-surface on faces 1 and 2, respectively. V13 is the 
out of plane shear per unit length at element mid-surface on 
face 1 in direction 3, and V23 is the out of plane shear per unit 
length at element mid-surface on face 2 in direction 3. F11 
is the direct force per unit length at element mid-surface on 
face 1 and direction 1, F22 is the direct force per unit length 
at element mid-surface on face 2 and direction 2.
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Fig. 11   Shell 3 internal forces (bending moment) (M), shear (V) and axial load (F) for each mesh of shell (t, m)



501International Journal of Advanced Structural Engineering (2019) 11:491–502	

1 3

Concluding remarks

In this research eight of Heinz Isler’s shells as the last gen-
eration of designers mimicking the natural structural shell 
forms are back engineered and assessed. The required data 
for remodelling of structures is generated by gathering 
numeric and visual data from various references and pro-
cessing within several software packages. All care is taken 
to reconstruct the numerical models with a high degree of 
conformity to the Isler’s shells, however, the possibility of 
a degree of deviation from the real ‘as built’ shells of Isler, 
could not be ruled out. Therefore, in view of this fact, one 
might consider the analysed models as ’approximations to 
true Isler’s shells’, and hence, the conclusions should be 
observed with reservations. Optimal performance of Isler’s 
shells and their minimum eccentricity confirms his experi-
ence, special and gifted ability in form finding of shells. 
The vertical deformation of shells relative to their span is 
low, which is an indication of the fact that their load trans-
mission is in membrane rather than in flexural form. This 
feature is the outcome of appropriate sharing of axial force, 
as well as incorporating suitable eccentricity which can be 
utilized in form finding and shell optimization calculations. 
On the other hand, Isler’s shell structures exhibited bending 

moments, though not at a high degree compared to their 
axial loads, which applies to almost all practical approaches 
searching optimal forms. Regarding the buckling behaviour, 
Isler has stiffened the shells prone to instability and buck-
ling. However, by and large, the buckling behaviour of the 
shells is unsatisfactory as compared to their other structural 
aspects. The differences between Isler’s three form finding 
methods associated with the shell structures illustrates that 
the hanging method is superior to the other methods of shell 
optimal form finding with consideration to stiffness, con-
crete allowable stress and amount of material. With regards 
to these parameters the Deitingen service gas station (shell 
4) with its unique form can be considered as the most opti-
mal form whose architectural and structural features was 
not repeated by Isler in any structures even in decades since 
then.
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tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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Fig. 12   Shell 4 internal forces (bending moment) (M), shear (V) and axial load (F) for each mesh of shell (t, m)
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