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Abstract
Many structural engineering problems, e.g. parameter identification, optimal design and topology optimisation, involve 
the use of optimisation algorithms. Genetic algorithms (GA), in particular, have proved to be an effective framework for 
black-box problems and general enough to be applied to the most disparate problems of engineering practice. In this paper, 
the code TOSCA, which employs genetic algorithms in the search for the optimum, is described. It has been developed by 
the authors with the aim of providing a flexible tool for the solution of several optimisation problems arising in structural 
engineering. The interface has been developed to couple the programme to general solvers using text input/output files and in 
particular widely used finite element codes. The problem of GA parameter tuning is systematically dealt with by proposing 
some guidelines based on the role and behaviour of each operator. Two numerical applications are proposed to show how 
to assess the results and modify GA parameters accordingly, and to demonstrate the flexibility of the integrated approach 
proposed on a realistic case of seismic retrofitting optimal design.

Keywords  Genetic algorithms · Parameter tuning · Multi-objective optimisation · Optimal design

Introduction

Optimisation problems often arise in structural engineering. 
Identification problems and model updating, optimal design 
and topology optimisation are just examples of a field which 
has seen a growing popularity with increasing availability of 
computational resources. In general, an optimisation prob-
lem is formulated as:

where � is the parameter space; no, ne, ni are the number of 
objectives fi, equality gj and inequality hk constraints, respec-
tively; x is the input variable vector. Maximisation may be 
turned into minimisation simply by changing the sign of the 
objective function.

According to the number and type of the functions 
involved, i.e. objectives and constraints, and the input vari-
ables, different methods may be used, from closed-form 
Lagrange multiplier (Vapnyarskii 2002) to simplex (Dantzig 
and Thapa 1997) and gradient-based methods (Byrd et al. 
1987; Box et al. 1969). For problems where multimodal-
ity, multiple objectives or non-continuous variables/func-
tions are present, or when functions involved are not known 
explicitly (black-box problems), iterative methods are the 
only feasible approach. Among them, growing interest 
towards metaheuristics has been manifested by the scien-
tific community. In the definition by Sörensen and Glover 
(2013) “a metaheuristic is a high-level problem-independent 
algorithmic framework that provides a set of guidelines or 
strategies to develop heuristic optimization algorithms”. 
The most important metaheuristics, mainly developed in the 
1970s and 1980s, but still in use in the field of numerical 
optimisation, are evolutionary strategies (Beyer and Schwe-
fel 2002), genetic algorithms [GA (Holland 1975; Goldberg 
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Find x ∈ �

min fi(x) i = 1,… , no
s.t. gj(x) = 0 j = 1,… , ne

hk(x) > 0 k = 1,… , ni
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1989)] and simulated annealing (Kirkpatrick et al. 1983). 
A comprehensive review of works approaching structural 
optimisation by means of metaheuristic algorithms may be 
found in Zavala et al. (2014).

Genetic algorithms have been extensively used by the 
authors in a variety of problems (Amadio et al. 2008; Chisari 
and Bedon 2016; Chisari et al. 2015, 2017,2016; Poh’sie 
et al. 2016a, b). This research effort has led to the creation of 
the software application TOSCA, acronym for Tool for Opti-
misation in Structural and Civil engineering Analyses. Writ-
ten in C#, TOSCA code builds on preliminary work devel-
oped by Lucia (2008) and Zamparo (2009) for the optimal 
design of steel–concrete composite bridges, and has been 
extended to general optimisation problems in Chisari (2015). 
The aim of this paper is to describe the general structure of 
the code (“Main principles and interface”), giving an insight 
on the operators implemented and some recommendations 
for their selection and post-analysis assessment (“Tuning 
GA parameters”) and providing some examples to show the 
effectiveness of the approach proposed (“Examples”). Some 
conclusions are finally drawn in “Conclusions”.

Main principles and interface

Motivations and general concepts

Many tasks in structural engineering may be transformed 
into optimisation problems and solved accordingly. How-
ever, such an approach is not widespread in the professional 
community and sometimes not even in academia. In the 
authors’ opinion, the reason is threefold. Firstly, the most 
efficient way of solving an optimisation problem depends 
on the particular formulation of the objective function: see 
for example Zou et al. (2007) as an optimal design problem, 
or Bedon and Morassi (2014) as a parameter calibration 
problem. It implies that a considerable, problem-dependent 
research effort should be directed to understanding the prob-
lem structure and selecting the best approach to its solution. 
Secondly, interfacing an optimisation software application 
with a finite element (FE) solver, which is a typical require-
ment in structural optimisation problems, demands program-
ming skills which are outside the expertise of a designer. 
Finally, a structural engineer is often familiar with the issues 
of modelling a structure and performing an FE analysis, but 
has no specific competence on optimisation methods, param-
eters and appraisal of the results.

To solve these issues, the conceptual approach form-
ing the basis of TOSCA originates from the following 
considerations:

•	 Rather than developing a specific formulation for each 
problem, it may be more convenient to provide a tool 

that, although possibly less efficient, is general enough 
to be applied routinely. In this context, GA has the capa-
bility to be applied to continuous/discrete, differenti-
able/non-differentiable, analytical/black-box, mono-/
multi-objective optimisation problems. The previously 
mentioned examples (Zou et al. 2007) and (Bedon and 
Morassi 2014) were solved as black-box problems by 
means of GA in Chisari and Bedon (2016) and Chisari 
et al. (2015), respectively.

•	 If the optimisation programme had an interface with an 
FE solver, it would release the analyst from the program-
ming need, helping focus on the structural problem under 
study.

•	 Although the problem of optimally tuning GA parameters 
is a long-lasting issue in the scientific community and an 
optimisation problem per se, it is in the authors’ opinion 
and experience that some simple rules based on experi-
ence can be formulated.

The main aim of this paper is to provide a comprehensive 
description of the TOSCA software system and show how all 
these points can be accomplished. Academic or commercial 
licences for the program can be released upon request to the 
authors.

Overview of genetic algorithms

Genetic algorithms are a metaheuristic approach to optimi-
sation developed in the 1970s and 1980s by Holland (1975) 
and Goldberg (1989), and based on the concepts of adapta-
tion and evolution taken from natural biology. Resembling 
what happens in nature, a set (population) of potential solu-
tions (individuals) evolves (i.e. increases its average fitness) 
through the application of specific operators.

The first step of the procedure consists of the chromo-
some definition for the problem under study and its correct 
representation. The chromosome collects the parameters 
which are varied during the process. While the genotypic 
representation of the genes is called a chromosome, each 
phenotypic instance is an individual, and a population is a 
collection of different individuals. Each parameter (called 
a gene) may be a binary variable (original formulation), a 
discrete variable (integer representation) or a continuous 
variable (real-coded GA). The initial population can be 
generated randomly or with quasi-random techniques. The 
correct generation of the initial population is of the greatest 
importance for the GA analysis. It should be well distributed 
over the parameter space to let the algorithm explore all 
possibilities.

Processing a population consists of evaluating the objec-
tive function values for each individual; after that ranking 
and selection are applied. During the former phase, the 
results of the evaluation are inspected and the population is 
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ranked according to fitness. In the simplest mono-objective 
problem, the fitness is equal to the objective function value, 
sometimes suitably scaled. If the optimisation formulation 
contains any constraints, the fitness value must account for 
constraint satisfaction too (Mezura-Montes and Coello Coe-
llo 2011). If the problem is multi-objective, ranking may 
be based on non-domination and crowding distance, as in 
NSGA-II (Deb et al. 2002). Selection is the operator respon-
sible of creating a “mating pool”, i.e. a set of individuals that 
will be coupled to apply the crossover operator. With selec-
tion, no different individuals are created, but the previous 
population is rearranged in such a way that the most promis-
ing individuals are cloned and the worst deleted. Afterwards, 
a new population is generated: given two parents, two off-
spring are generated through application of the crossover 
(or recombination) operator, with a probability pc. For the 
sake of completeness, it must be pointed out that, while this 
approach is the most widespread, some crossover operators 
handling more than two parents and creating more than two 
children have been proposed in the literature (Sánchez et al. 
2009).

To improve convergence, an elitist approach can be used, 
in which the best N individuals are always placed (without 
undergoing the crossover operator) in the subsequent popu-
lation. Once the new population has been created, mutation 
is applied to some individuals. Basically, mutation consists 
of randomly changing some genes of an individual according 
to a probability pm; it is useful to prevent the loss of diversity 
in the population, but it is highly disruptive with respect to 
convergence. For this reason, special care must be taken in 
the choice of both the type and probability of mutation.

The procedure discussed above is shown schematically 
in Fig. 1. The process continues with the evaluation of the 
population created. From one generation to the next, when 
the most promising genetic material spreads, the popula-
tion fitness standard deviation decreases, and, if only one 
global optimum is found, the parameter standard deviation 
decreases also towards zero. Termination criteria are needed 
to end the process (Ribeiro et al. 2011). Usually, the pro-
cess can be stopped when (i) a given maximum number of 
generations have been formed, (ii) a minimum fitness stand-
ard deviation in the current population is reached, or (iii) a 
maximum number of generations in which the solution has 
not been improved have been evaluated. To date, in TOSCA 
only criterion (i) has been implemented.

Operators

The operators implemented in TOSCA until the date of this 
article publication are listed in Table 1 together with the 
numerical parameters needed to define them. In addition to 
those listed, other important parameters are the number of 

generations and the random seed controlling the pseudo-
random generators of the process.

Interface

Once the GA framework has been completely defined by 
selecting the values for parameters listed in Table 1, the 
optimisation process consists of evaluating each individual 
in the population for a number of generations. Therefore, 
the user’s task entails instructing the programme on how to 
perform this basic operation. In other words, the user must 
specify: (a) the variables to write on the input file for the sin-
gle evaluation; (b) the format of the input file; c) the actions 
to carry out to perform a single evaluation; (d) the variables 
to be extracted from the output file of the single evaluation 
and how to combine them into objectives and constraints; 
(e) the format of the output file.

All information is contained in six text files which must 
be prepared by the user. They are:

•	 GA_Parameters.txt. This file contains the information 
regarding operators and parameters described in Table 1. 
The typical syntax of an instruction for the program is: 
operatorName: value.

•	 InputVariables.txt. This file contains all information 
regarding the input parameters in the optimisation prob-
lem (variables x in Eq. (1)). They can be defined as con-
stant (variableName: value), variable within an interval 
(variableName: lowerBound, upperBound, increment), 
variable with predefined values extracted from a file 
(variableName: filename_columnName), or depending 
on other variables (variableName: expression).

•	 OutputVariables.txt. In this file, the output parameters, 
objectives and constraints are defined. The variables 
may be extracted from the output file (variableName) or 
evaluated from other variables (variableName: expres-
sion); the constraints are defined as constraintName: 
expression, weight, lowerAdmissibleValue, upperAdmis-
sibleValue; the objectives are defined as objectiveName: 
expression, minimize|maximize, [tol]. tol is an optional 
tolerance for the objective value.

•	 InputTemplate. This file (whose actual name is defined 
in GA_Parameters.txt) is copied in the directory where 
the single evaluation is performed. When the special 
string < !variableName! > is encountered in the template, 
this is replaced by the actual value of the input variable 
variableName defined in InputVariables.txt.

•	 OutputTemplate. This file (whose actual name is defined 
in GA_Parameters.txt) should have the same structure as 
the output file written by the script at each evaluation. Each 
variable variableName is identified by its position with 
respect to a reference referenceName. This is the multi-
line text block included between < !referenceName!b! > a
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nd < !referenceName!e! > in the template. The position of 
the special string < !variableName!referenceName! > with 
respect to this block determines the location of the variable 
value in the actual output file.

•	 Script.bat. This file (whose actual name is defined in 
GA_Parameters.txt) is the script that will be run by the 
optimisation process at each evaluation. It is respon-
sible of performing the analysis reading an input file 
with the structure defined in InputTemplate and writing 

an output file with the structure defined in OutputTem-
plate.

The conceptual workflow is displayed in Fig. 2. The prepa-
ration of the input/output variables and templates allows for 
the creation of the input file for the single evaluation and the 
interpretation of the output file as created by the script. This 
may consist of an FE analysis, as in the case studied in “Opti-
mal design of nonlinear viscous dampers”.

Fig. 1   Flowchart of the genetic 
algorithm
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Tuning GA parameters

As stated in Sörensen and Glover (2013), GA should be con-
sidered as a framework more than a procedure, since many 
operators must be selected and calibrated for the problem at 
hand. Since the behaviour of the algorithm depends not only 
on the individual operators, but also on how they interact 
with each other, they are usually tuned by using a trial-and-
error procedure. Some recommendations are provided in this 
section.

Initial population generation, population size 
and number of generations

The basic rule for the generation of the initial popula-
tion is that it should sample as much genetic material as 
possible. Considering this point, the problem of generat-
ing a good initial population resembles that of creating 
an optimal design of experiment (DOE) uniformly fill-
ing the sampling space. For this reason, it is well known 
(Sloan and Woźniakowski 1998) that low-discrepancy (or 

quasi-random) sequences as Sobol’s (1967) are to be pre-
ferred over pseudo-random generators.

The population size ( Ps ) is linked to the number of 
generations ( Ng ) by the need to limit the computational 
time of the analysis. The single run (individual evaluation) 
may be expensive in terms of the computing effort, i.e. it 
may be a nonlinear static or dynamic structural analysis, 
and so the number of total evaluations Ne = Ps ⋅ Ng must 
be limited. The hypothesis here is that Ne is fixed (since, 
once the analysis time of a single run is known, the user 
can decide how long the optimisation process should last). 
To perform Ne runs, one can choose to have a large Ps and 
small Ng or vice versa.

Under this hypothesis, large population sizes reduce the 
power of GA. This is easily understandable, since, as a 
limit, with Ps = Ne, the process reduces to a simple random 
search. On the contrary, some researchers (Krishnakumar 
1990) have developed microGAs, i.e. a GA with small 
population size (typically only 5–10 individuals) that is 
repeatedly run for short durations and then restarted (while 

Table 1   Operators implemented in TOSCA

GA phase Operator Parameters References

Representation Integer – –
Initial population Random Population size –

Sobol Population size Sobol (1967)
Diagonal Population size –
From file Initial population file, population size –

Replacement Children – –
Elitism Number of elitist individuals Srinivas and Patnaik (1994)
Competence – –

Ranking Normalizing � ∈ ]0, 1[ Gen and Cheng (1997)
Linear �r ∈ [1, 2] Hancock (1994)
Exponential �r ∈ ]0, 1] Hancock (1994)

Selection Tournament Tournament size Ts Goldberg and Deb (1991)
Roulette wheel – Goldberg (1989)
Stochastic universal sampling (SUS) – Baker (1987)

Crossover Multi-point Number of crossover points, crossover probability pc Goldberg (1989)
Directional Crossover probability pc Michalewicz et al. (1994)
Fixed arithmetical Crossover probability pc –
Probabilistic arithmetical Interval modifier α, crossover probability pc Michalewicz (1996)
Discrete Number of offsprings, crossover probability pc Goldberg (1989)
Blend-α Interval modifier α, crossover probability  pc Eshelman and Schaffer (1992)

Mutation Aleatory Mutation probability pm –
Directional Mutation probability pm –
Local Non-dimensional mutation range, mutation probability pm –

Constraint penalty 
function

Statical Constraint weight –
Dynamic Constraint weight Gen and Cheng (1996)
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keeping a few optimal solutions from the previous runs) 
until convergence is achieved.

Apart from these extreme examples, the authors have 
usually found good results by applying the empirical rule 
Ps = Ng , as a first attempt. Notwithstanding, a test in which 
the population size is increased step-by-step until conver-
gence is always suggested.

Genetic drift control

It is reported in the literature (Rogers and Prugel-Bennett 
1999) that small populations suffer from the phenomenon 
called “genetic drift”. Genetic drift is a term borrowed 
from population genetics where it is used to explain 
changes in gene frequency through random sampling of 

Fig. 2   Conceptual scheme of the optimisation analysis and analysis input files
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the population. It is a phenomenon observed in GA due to 
the stochastic nature of the selection operator, and is one 
of the mechanisms by which the population converges to a 
single member. In the literature, some attempts to control 
genetic drift by choosing the population size are reported 
in Gibbs et al. (2008). However, this phenomenon may 
be easily avoided by using the stochastic universal sam-
pling (SUS) as the selection method. An example showing 
how SUS, roulette wheel and tournament selections (with 
tournament size equal to 2) are differently affected by 
genetic drift is reported in Fig. 3. An optimisation prob-
lem, in which two variables x1 and x2 (varying between 
− 2000 and + 2000 with a 0.001 increment) are involved, 
is considered. The objective is minimising a constant 
(flat fitness landscape). To obtain the same probability 
of being selected for all individuals (10 per generation), 
the linear rank scaling procedure with α = 1.0 is applied. 
No crossover, mutation or elitism is employed. Hence, 
any reduction in the population variance is due to the 
selection method. The aim of this analysis is to study the 
response of different types of selection (SUS, tournament 
and roulette wheel).

In Fig. 3, the normalised standard deviation of each 
variable in the parameter space (a measure of how much 
it is distributed in the space) is plotted against the genera-
tion number. It is clear that, thanks to its deterministic 
nature, SUS is the only selection method able to main-
tain diversity in the population even in the case of small 
populations. The other selection procedures suffer from 
genetic drift and at about the generation 7 (tournament) 
and 30 (roulette wheel) the entire population consists of 
copies of just one individual.

Selection parameters

In general, the optimisation analysis should be a compro-
mise between exploration and refinement, i.e. the need of 
covering the parameter space exhaustively and the need of 
accelerating the process by discarding the areas where poor 
solutions have been found so far, and focusing on the regions 
where particularly good individuals are present.

According to (Kita and Yamamura 1999),

“In the GA, selection operation should be designed 
so as to gradually narrow the probability distribution 
function (p.d.f.) of the population, and the crossover 
operation should be designed so as to preserve the 
p.d.f. while keeping its ability of yielding novel solu-
tions in finite population case.”

This functional specialisation hypothesis clearly divides 
the responsibilities of the operations. The selection operator, 
which mainly utilises the fitness values of solution candi-
dates rather than their location information, should encour-
age the population in convergence towards an optimum, and 
crossover operation, which does vice versa, should explore 
the promising regions identified by the selection operation.

As seen for genetic drift, SUS is the best selection method 
among the ones implemented in TOSCA. Its power may be 
easily controlled by tuning scaling type and pressure, but 
the optimal parameters are problem- dependent. As a rule 
of thumb, it could be suggested that the selection pressure 
(with which we mean the effect of both scaling type and 
pressure) should be such that in the final part of the analy-
sis, the population fitness is distributed around the optimum 
value (convergence), meaning that the population fitness 
standard deviation should be very low but non-zero. In 
Fig. 4, three different analyses in which the sphere function 

Fig. 3   Comparison of premature convergence for genetic drift using different selection methods in a flat landscape two-dimensional problem: a 
parameter x1, b parameter x2
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( f (x) =
∑30

i=1
x2
i
 ) with 30 variables ( −0.348 ≤ xi ≤ 4.048 ) is 

minimised are displayed. It is clear that too low a pressure 
does not lead the analysis to convergence and may induce 
the phenomenon called “stagnation”, even for convex func-
tions. If the pressure is too high, the analysis can be trapped 
into the local optima or induce early loss of diversity in the 
population, thus preventing the attainment of the global opti-
mum. The optimal selection pressure is the one identified as 
“medium pressure”.

As far as the scaling types are concerned, it is suggested 
by many authors (Hancock 1994; Razali and Geraghty 2011; 
Someya 2011) that a rank-based selection scheme helps 
prevent premature convergence due to “super” individuals, 
since the best individual is always assigned the same selec-
tion probability, regardless of its objective value. According 
to this view, linear and exponential ranking is superior to 
normalising scaling. Figure 5 shows how the selection pres-
sure is influenced by the scaling method.

The selection pressure becomes almost equal for linear 
scaling with α = 1.8 and exponential scaling with α = 0.986 
(Hancock 1994). The suggested values for an ordinary 
mono-objective optimisation problem are linear rank scaling 

with α = 1.5–1.8. In case of multi-objective problems and 
NSGA-II (see “NSGA-II”), selection is responsible of pro-
moting more isolated points and thus a value α = 2.0 gener-
ally leads to good results.

Crossover parameters

The role of crossover is to explore the region of the space 
identified by the selection operator. Therefore, “the distri-
bution of the offsprings generated by crossover operators 
should preserve the statistics such as the mean vector and the 
covariance matrix of the distribution of parents” (Kita and 
Yamamura 1999). A very good review of different crosso-
ver operators and optimal tuning of their parameters can be 
found in Someya (2008, 2012).

As far as the implemented crossovers are concerned:

•	 Multi-point and discrete crossovers have no parameters 
to tune, and they automatically satisfy the functional spe-
cialisation hypothesis.

•	 Fixed arithmetical and directional crossovers have no 
parameters to tune, and they cannot satisfy the functional 
specialisation hypothesis.

•	 Probabilistic arithmetical and blend-α crossovers may 
satisfy the functional specialisation hypothesis if they 
are properly calibrated.

For the last two, in an approximate way, it can be achieved 
by setting the interval modifier α = 2.0. The same optimi-
sation problem considered for genetic drift, but now with 
five variables (varying between − 2000 and + 2000 with a 
0.001 increment), is considered. Since the objective is find-
ing a minimum of a flat landscape and the linear rank scal-
ing procedure with α = 1.0 is considered for SUS, no real 
selection is applied. The decrease in parameter standard 

Fig. 4   Comparison between different selection pressures: a population fitness standard deviation and b population fitness mean

Fig. 5   Increasing selection pressure
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deviation (loss of diversity), seen in Fig. 6, is entirely due 
to the crossover operator. It is apparent that BLX-α, unlike 
fixed arithmetical crossover, does not decrease the popula-
tion variability in the space, and thus satisfies the functional 
specialisation hypothesis.

The probability of crossover should be set high (85–00%).

Elitism

Elitism can be useful to prevent the loss of good individuals. 
However, the user must be aware that it is another source of 
selection pressure together with scaling pressure (Someya 
2011). So, it should be used when the non-convexity and 
discontinuity of the function may cause the algorithm to lose 
good individuals. Another common situation is when the 
parameter space is too large and the population size limited, 
it is necessary to increase the disrupting power of mutation 
to explore the space as much as possible. In this case, good 
individuals may be easily lost. In any case, not more than 
one or very few elitist individuals should be considered.

Mutation

The basic objective of mutation is to increase the explora-
tion of the parameter space. To limit its disrupting power, 
its probability should be kept under 1–2%. A special case is 
the mutation called local in subsection “Operators”. If asso-
ciated with probabilistic arithmetical crossover, it can pro-
duce a hybrid operator which has an intermediate behaviour 
between probabilistic arithmetical crossover and BLX-α. To 
obtain this, the mutation probability should be set at a high 
value (20–30%) and the additional parameter measuring the 
subset of the original range could be around 10%.

NSGA‑II

When the number of objectives is greater than one, the 
general solution of the optimisation problem is represented 
by the Pareto front (PF), composed of non-dominated indi-
viduals (Miettinen 1999). Thanks to the implicit parallelism 
of population processing, genetic algorithms are naturally 
designed to converge to a set of solutions instead of a single 
one and thus are clearly superior to gradient-based methods. 
In this context, the state-of-art approach to multi-objective 
optimisation is represented by the non-dominated sorting 
genetic algorithm II (NSGA-II) (Deb et al. 2002). It exploits 
the concepts of non-domination ranking and crowding dis-
tance to reach convergence to the PF while maintaining 
diversity in the population. At the end of each generation, 
the individuals are ranked based on non-domination fronts. 
The first front is composed of individuals which are not 
dominated by any other in the population; the second front 
by those dominated only by the first front and so on. Inside 
each front, the individuals are ranked according to a density-
estimation metric, called crowding distance, which repre-
sents a measure of how close (in terms of objective values) 
an individual is to its neighbours, and more isolated points 
are favoured to increase diversity in the population. Even 
though in the original formulation the domination ranking 
is associated with tournament selection, this is not manda-
tory, and, as stated above, stochastic universal sampling is 
herein suggested as a selection operator. Constraint satisfac-
tion is imposed without the use of any penalty function, but 
directly in the ranking stage. When comparing two individu-
als, if one satisfies the constraint and the other does not, the 
former is considered better than the latter regardless of the 
objective values; otherwise domination and then crowding 
distance govern the comparison between individuals.

Fig. 6   Evolution of parameter standard deviation a for BLX-α (with α = 2) and b fixed arithmetical crossover
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When considering the above-mentioned issue of balanc-
ing the exploration of the space and the refinement of the 
solutions, the basic concepts of NSGA-II are the following:

	 (i)	 Refinement is achieved by a broader elitism operator 
(competence in Table 1), in which Ps, more fitting 
individuals among the 2 Ps belonging to the current 
and the previous generation, undergo the selection 
operator (while in ordinary GA without elitism, the 
Ps individuals belonging to the current generation 
do).

	 (ii)	 Exploration is achieved by the selection operator 
based on crowding distance. When comparing two 
individuals in tournament selection, or when ranking 
the population in SUS or roulette wheel, the objec-
tive value is not taken into account, whilst the fitness 
is based on the crowding distance value. This encour-
ages exploration.

It follows that in NSGA-II scaling pressure controls 
exploration, unlike in ordinary GA where it controls con-
vergence. Hence, values around 2.0 are suggested to increase 
the exploration power of the algorithm. In Table 2, the sug-
gested values for a generic optimisation problem with one 
or more objectives are listed. In the applicative examples, 
it will be shown how to assess the optimisation process and 
change the parameters accordingly, if needed.

It is underlined herein that there cannot exist an algorithm 
which is the most efficient and effective for all optimisa-
tion problems (Wolpert and Macready 1997). The guide-
lines suggested in this paper regard optimisation problems 
where the number of variables does not exceed ten and the 
number of objectives is less then 4–5. Large-scale problems 
(Mohamed 2017) and many-objective problems (Farina and 
Amato 2004) require specialised algorithms which are not 
covered in this work.

Examples

Minimisation of a multimodal function

The first example refers to the minimisation of a multimodal 
analytical function, the Rastrigin function. It is often used as 
a benchmark test for optimisation algorithms, for the great 
number of local optima which make it impossible to find the 
minimum with gradient-based methods. Its expression is:

where  in this example A = 10, xi ∈ [−4.348, 4.048] and 
n = 10 is the number of variables. It has one global mini-
mum at x  = 0, where f(x) = 0, and a large number of local 
optima (Fig. 7).

The GA parameters initially adopted to solve the optimi-
sation problem are:

•	 Initial population generation: Sobol sequence.
•	 Population size: 100 individuals.

(2)f (x) = An +

n∑
i=1

[
x2
i
− A cos

(
2�xi

)]
,

Table 2   Suggested values for 
the GA implemented in TOSCA

N
e
  maximum number of evaluation allowed in the analysis by time limits

Parameter Suggested value

Mono-objective Multi-objective

Population size
√
Ne

√
Ne

Number of generations
√
Ne

√
Ne

Initial population Sobol Sobol
Selection SUS SUS
Scaling Linear α = 1.5–1.8 Linear α = 2.0
Crossover Blend-α α = 2.0

pc= 0.85–1.0
Blend-α α = 2.0
pc= 0.85–1.0

Mutation Aleatory pm= 0.005–0.01 Aleatory pm= 0.005–0.01
Replacement Elitism n = 1 Competence

Fig. 7   Rastrigin function for n =2
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•	 Number of generations: 100.
•	 Crossover probability: 1.0.
•	 Type of crossover: probabilistic arithmetical with param-

eter α = 2.1.
•	 Mutation probability: 0.0.
•	 Type of selection: SUS.
•	 Linear scaling pressure: 1.4.
•	 Replacement: elitism, 5 individuals.

The elitist replacement procedure has been considered 
necessary, given the high multimodality of the function. 
To counterbalance the high selection pressure it induces, 
parameter α in the crossover algorithm has been higher than 
the suggested value 2.0 (see Table 2). The results in terms 
of history chart and population statistics are displayed in 
Fig. 8 (Analysis 1).

It is possible to see that convergence is already reached 
at generation 50, as the fitness standard deviation is equal to 
zero. The optimum found is at 

 and has the value 6.70. It is evident that the algorithm has 
been trapped into a local optimum and has no ability to exit 
it. To improve the performance of the algorithm, aleatory 
mutation can be added, with a 0.5% probability. The results 
are shown in Fig. 9 (Analysis 2).

The improvement in terms of population variability, espe-
cially in the last part of the analysis, when convergence is 
reached, is clearly visible in Fig. 9a. The optimum found is 
now at 

x = [−0.9679,−0.9607,−0.0035, 0.0174,−0.9953,

− 0.025,−0.0511, 0.9835,−0.0549,−1.0078]

Fig. 8   Rastrigin function, analysis 1: a individual history chart and b population statistics

Fig. 9   Rastrigin function, analysis 2: a individual history chart and b population statistics
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 with a very good function value of 0.125. Considering the 
complexity of the problem (large number of variables, large 
number of local optima), it can be considered a satisfactory 
solution.

Since GAs significantly rely on random procedures, to be 
sure that the solution is valid it is usually a good practice to 
perform more than one analysis with different random seeds. 
A random seed (or seed state, or just seed) is a number used 
to initialise a pseudo-random number generator, such as the 
one used by computers. This has been done, and the result-
ing solution has a value fopt = 0.301, close to the solution 
previously found.

x = [0.0115, 0.0057, 0.008, 0.0101,−0.0012,

− 0.0024, 0.0132, 0.0087,−0.0055, 0.0037]

Finally, a different crossover type has been studied: 
Blend-α crossover with the same parameters as Analysis 2. 
The analysis shows the trends displayed in Fig. 10 (Analysis 
3).

The analysis has experienced the phenomenon of stagna-
tion, i.e. due to the low selection pressure and the particular 
structure of the function it failed to converge. To solve this, it 
is sufficient to increase the scaling pressure to 2.0 and reduc-
ing the value of the α interval multiplier for the crossover to 
2.0 (Analysis 4, Fig. 11). The convergence is now reached 
and the (near-optimal) solution found is equal to 0.99.

Considering that this paper is directed to users more than 
theoretical analysts, it seems useful to summarise some 
general guidelines to assess the results of an optimisation 
analysis. A good analysis should comprise two comple-
mentary stages. In the first part of the analysis, the average 
standard deviation of the fitness function should decrease 

Fig. 10   Rastrigin function, analysis 3: a individual history chart and b population statistics

Fig. 11   Rastrigin function, analysis 4: a individual history chart and b population statistics
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considerably, until the population is concentrated around the 
best solution(s) found so far (“Convergence” in Fig. 11b). 
Afterwards, the analysis should explore the most promis-
ing area(s), in the search for the optimum (“Refinement” 
in Fig. 11b). At this stage, it is very important to maintain 
a minimum diversity in the population (non-zero standard 
deviation, unlike Fig. 8). As an empirical rule of thumb, 
good results have been generally observed when the two 
stages were approximately of the same duration (compare 
for instance Figs. 9 and 11). In the literature, hybrid methods 
have been proposed, in which the two stages are assigned 
to two different algorithms, i.e. simple GA for the “conver-
gence” phase and a local gradient/non-gradient method for 
the “refinement” one (Mahinthakumar and Sayeed 2005). 
This is not explored in this paper.

Optimal design of nonlinear viscous dampers

The second example regards the optimal design of a seis-
mic retrofitting system for a reinforced concrete (RC) frame. 
The system is composed of a number of nonlinear dampers 
inserted in the meshes of the frame. This kind of devices is 
able to produce a force F in the direction of its axis equal to:

where c is called the damping constant, u̇ is the relative 
velocity between the end points of the damper and α is the 
damping coefficient. When α = 1, the damper is linear and 
reacts with a force proportional to the velocity; conversely, 
when α ≤ 1 the device transfers higher forces at low veloci-
ties and lower forces at high velocities. This allows the 
designer to obtain better performance at low velocities and 
control the reactions on the structure, otherwise indefinitely 
increasing with velocity. Usual commercial devices are char-
acterised by α = 0.15–0.30 (FIP Industriale SpA 2014).

The reference structure is a two-dimensional frame hav-
ing four 6 m-long spans and six storeys with 3.5 m intersto-
rey. The cross-sectional dimensions are displayed in Fig. 12. 
At each floor, a mass equal to 60 t is considered in addition 
to the self-weight of the structural elements.

The aim of the design is to improve the seismic behav-
iour of the frame under the damage limit state (DLS). Seven 
natural ground motions were selected by means of the soft-
ware code REXEL (Iervolino et al. 2010). The set of spec-
tra, shown in Table 3, is acceleration consistent in average 
with the Eurocode 8 (EN 1998-1-1 2005) Type A horizontal 
spectrum with PGA = 0.15 g, site class A, and a lower and 
an upper tolerance on pseudo-acceleration Sa between 0.15 s 
and 2 s equal to 10% and 30%, respectively. The record spec-
tra, their mean, the target and the bounds are displayed in 
Fig. 13.

An FE model of the structure was created in ABAQUS 
6.9 (Dassault Systemes 2009). The structural members 
were modelled as isotropic elastic beam elements B32, 
having the mechanical properties of the gross section with-
out considering the steel reinforcement. Lumped masses 

(3)F = c ⋅ sign(u̇) ⋅ |u̇|𝛼 ,

Fig. 12   Reference frame to retrofit by means of nonlinear dampers

Table 3   List of the selected seismic events at the damage limit state

Earthquake ID Station ID Earthquake name Date Mw Epicentral 
distance (km)

PGAx (m/s2) EC8 site class

2142 ST2557 South Iceland (aftershock) 21/06/2000 6.4 15 1.2481 A
474 ST1258 Ano Liosia 07/09/1999 6 14 2.3842 B
65 ST28 Friuli (aftershock) 15/09/1976 6 14 1.3841 B
83 ST50 Volvi 20/06/1978 6.2 29 1.3649 C
1635 ST2487 South Iceland 17/06/2000 6.5 13 1.2916 A
83 ST50 Volvi 20/06/1978 6.2 29 1.3649 C
2142 ST2488 South Iceland (aftershock) 21/06/2000 6.4 11 4.1226 B
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accounting for self-weight of the members and additional 
vertical loads were applied at the nodes, with mass-pro-
portional damping characterised by coefficient αd= 0.45. 
The dampers to be designed were modelled as DASH-
POTA element with nonlinear behaviour defined in the 
input file by a force–velocity piecewise linear law. This 
law is evaluated for each element type by means of Eq. (3) 
after defining the value assumed by the damping constant 
c and the exponent α. Fixed restraints were applied at the 
base of each column.

According to EC8, when nonlinear time history analysis 
with at least seven ground motions is performed used in the 
design, average quantities are to be used for the structural 
checks. In particular, at the DLS, the standard prescribes the 
interstorey drift to be less than 0.005 h for buildings having 
non-structural elements of brittle materials attached to the 
structure, where h is the interstorey height. The bare frame 
without any dampers does not satisfy this prescription, as 
all interstorey drifts are outside the minimum limit. Thus, a 
retrofitting system is needed.

The global cost of a retrofitting system composed of 
dampers may be assumed as a function of the following 
variables:

(a)	 The number of devices. This affects the costs associated 
with the intervention, as it would be preferable to locate 
as few dampers as possible.

(b)	 The damping constant. Stronger (i.e. with higher c) 
dampers are usually more expensive; for illustrative 
reasons the single damper cost will be herein assumed 
as proportional to its damping constant.

(c)	 The maximum forces transferred by the devices. If 
these forces are very high, expensive local reinforce-

ment actions must be carried out on the existing struc-
ture.

Theoretically, knowing the relative weight of each of 
these factors it could be possible to express the total cost of 
the intervention and carry out the design by minimising it. 
However, this may be difficult in the preliminary stage, and 
it is preferable to carry out a multi-objective optimisation, 
postponing the choice of a single solution a posteriori.

The design is thus transformed into the following opti-
misation problem:

In Eq. (4), ci is the damping constant of the i-th device 
type (with N number of damper types), which can assume 
values inside the interval 

[
cli, cui

]
, while ii is a binary vari-

able which is equal to 1 if the i-th damper is applied and 0 
otherwise. Hence, f1 counts the number of dampers actu-
ally applied to the structure; f2, according the hypothesis 
stated above, is proportional to the cost of the dampers; f3 is 
equal to the maximum force Fmax transferred by the dampers, 
evaluated considering all dampers and all earthquakes. The 
constraint required by the code is enforced on d̄j, which is the 
maximum interstorey drift of the j-th storey averaged over 
the considered earthquakes and NS= is the number of sto-
reys. The lower and upper bounds for ci were set as cli= 0.0 
kN (m/s)−α and cui = 3000.0 kN (m/s)−α. The damping coef-
ficient was fixed as α = 0.15.

In engineering practice, it is not common to use many 
different typologies of dampers in the design. So only two 
typologies of dampers were assumed herein, i.e. damping 
constants c1 and c2 are to be selected, respectively, for the 
three lower storeys and for the three upper storeys. Further-
more, the frame meshes were divided into eight groups, and 
if the variable i assumed value equal to 1, all meshes in each 
group i were filled with a diagonal damper (Fig. 14).

As each individual analysis, composed of seven nonlin-
ear time history analyses, had a considerable computational 
burden (on an Intel® Core™ i7-3770 with 3.40 GHz CPU 
and 32 GB RAM it lasted up to 8 min), the number of overall 
evaluations had to be limited. For this reason, the following 
parameters were used:

(4)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Find x =
�
c1,… , cN , i1,… , iN

�
min f1 =

∑N

i=1
ii

f2 =
∑N

i=1
ciii

f3 = Fmax(x)

s.t. ci ∈
�
cli, cui

�
ii ∈ {0, 1}

d̄j ≤ 0.005hj = 1,… ,NS

.Fig. 13   Elastic spectra of the natural records selected for the dynamic 
analyses
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•	 Initial population generation: Sobol sequence.
•	 Population size: 20 individuals.
•	 Number of Generations: 20.
•	 Crossover probability: 1.0.
•	 Type of crossover: Blend- α with parameter α = 2.0.
•	 Mutation probability: 0.005.
•	 Type of selection: SUS.
•	 Linear scaling pressure: 2.0.
•	 Replacement: competence.

For multi-objective optimisation analyses, a plot as that in 
Fig. 11b allowing the assessment of the convergence, would 
be desirable. However, it cannot be created simply consider-
ing each objective separately: if the optimum of one objec-
tive implies low fitness in another objective (large-spanning 
Pareto front), the average value of the former objective in the 

population does not approach the minimum at convergence 
like in the mono-objective case. For this reason, the domi-
nation front, evaluated at the end of the analysis consider-
ing all individuals, was used here as a metric. According to 
this rule, at the end of the analysis, domination front equal 
to 0 was assigned to the individuals belonging to the PF, 
1 to those only dominated by the former, and so on. The 
domination front represents a sort of fitness value for each 
individual, and hence it is possible to describe the evolu-
tion of the population towards the solution, i.e. the Pareto 
front, by means of only one indicator, independently from 
the number of objectives.

The results plotted in Fig. 15 show that at the beginning 
of the analysis, the population is rather far from the solution 
(average domination front equal to 146). The first individual 
belonging to the final Pareto front appears at generation 12, 
and already after generation 10 the average domination front 
fluctuates around a value equal to 20. The division of the 
analysis in convergence and refinement stages seems satis-
fied in this case.

Figure 16 shows the first population and all feasible (i.e. 
satisfying constraints) individuals in the parameter c1–c2 
plane and in the objective f2–f3 plane. It is clear that only 
the upper-right portion of the parameter plane satisfies the 
constraint related to interstorey drift.

In Fig. 17, all feasible and Pareto optimal individuals are 
plotted. To make the structure satisfy the interstorey drift 
constraint, the number of active damper groups (function 
f1) of the feasible individuals spans from five to eight. Con-
versely, to minimise function f1, all Pareto front individuals 
are characterised by five groups. For illustrative purposes, 
in Fig. 18, the f3-minimum solution is shown. From the plot 
in Fig. 18b, the strong improvement in interstorey drift per-
formance is evident.

As said, it is always suggested to test different configura-
tions in terms of population size. The analysis was repeated 
with population size and number of generations equal to 30. 
The results, displayed in Table 4, show that:

•	 A feasible design with less than five damper groups 
installed on the structure is possible (solution minimising 
objective f1, Fig. 19a), but with an increase in maximum 
force transferred by the device to the structure of about 
40% compared with the optimum solution displayed in 
Fig. 18.

•	 Conversely, increasing the number of damper groups to 
six (Fig. 19b), it is possible to decrease the maximum 
force on the structure by 25% compared with the same 
optimum solution.

•	 It is interesting to note that all solutions displayed in 
Table 4 are characterised by similar f2 values, i.e. cost. 
In this specific case, the designer has the possibility of 
selecting the final solution considering a posteriori if the 

Fig. 14   Damper groups configuration

Fig. 15   Evolution of the population in the seismic retrofitting analysis
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primary cost of the device has a higher incidence than the 
reinforcement intervention on the existing structure.

Considering the results of this analysis, it appears clear 
that the population size selected as first attempt was exces-
sively small and by increasing this parameter more fitting 
solutions can be found. It must be pointed out, however, that 
further enlargement of the population is not allowed by the 
need of limiting analysis time.

Conclusions

In this paper, an optimisation tool called TOSCA, specifi-
cally designed for structural and civil engineering prob-
lems, is described. It makes use of genetic algorithms and 
has a general interface which can easily be adapted to 
external solvers without the need of programming. Along 
with the description of the code, a thorough discussion on 
the role of each GA operator is presented, with the aim of 
giving some indications on parameter setting and analysis 

Fig. 16   First generation and feasible solutions in the a parameter and b objective plane

Fig. 17   Feasible individuals and Pareto front in the a parameter and b objective plane
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assessment. Basically, the initial population should be 
generated by algorithms able to explore efficiently the 
parameter space, a problem analogous to that of experi-
mental design. Genetic drift, a phenomenon reducing the 
chromosome variability in the case of small populations, 

may be avoided by using stochastic universal sampling as 
the selection algorithm. To obtain a good balance between 
exploration of the space and refinement of the solution, 
the functional specialisation hypothesis prescribes that 
the crossover operator should not change the population 

Fig. 18   f3-Optimum solution: a design configuration, and b interstorey drift performance

Table 4   Optimal solutions 
in the analysis with different 
population sizes

Population 
size

Minimum 
objective

f1 f2 f3 C1 [kN (m/s)−α] C2 [kN (m/s)−α]

20 f2 5 7880 1774 1794 1249
f3 5 8003 1714 1800 1300

30 f1 4 7702 2422 2477 1374
f2 6 7658 1312 1234 1362
f3 6 7684 1300 1239 1364

Fig. 19   Solutions in the analysis with population size equal to 30: a with four damper groups; b with six damper groups
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variance of the mating pool in the parameter space, while 
the selection operator should gradually decrease it in the 
objective space.

Two examples are presented. The first example is the min-
imisation of an analytical function of ten variables (Rastrigin 
function). The large number of local optima makes it ideal 
to test the ability of GA to reach convergence without being 
trapped in the local minima. The importance of tuning scal-
ing pressure according to the crossover type utilised and of 
applying the mutation operator is shown. Even though the 
algorithm is not able to reach the real optimum, very good 
near-optimal solutions may be found by selecting the GA 
parameters according to the strategy presented above.

The second example concerns the optimal design of a 
seismic retrofitting system composed of nonlinear dampers 
for RC frames. It is shown how the design problem may 
be formulated as a multi-objective constrained optimisation 
problem. It is a mixed-integer optimisation problem, since 
some binary variables are used to model yes/no decisions, 
i.e. whether apply the damper or not. From the point of view 
of genetic algorithms, the presence of constraints, integer 
variables and multiple objectives can be easily handled. The 
results show the effectiveness of the approach, which is able 
to find solutions remarkably decreasing the interstorey drifts 
(which did not satisfy the standard prescription for the bare 
frame), but minimising different cost items. It is shown that 
by increasing the population size, a more fitting solution 
may be found, but this approach is necessarily limited by the 
computational effort needed by a single analysis.
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