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Abstract In modern tall and slender structures, dynamic

responses are usually the dominant design requirements,

instead of strength criteria. Resonance is often a threaten-

ing phenomenon for such structures. To avoid this problem,

the fundamental eigenfrequency, an eigenfrequency of

higher order, should be maximized. An optimization

problem with this objective is constructed in this paper and

is applied to a high-rise building. Using variational method,

the objective function is maximized, contributing to a

particular profile for the first mode shape. Based on this

preselected profile, a parametric formulation for flexural

stiffness is calculated. Due to some near-zero values for

stiffness, the obtained formulation will be modified by

adding a lower bound constraint. To handle this constraint

some new parameters are introduced; thereby allowing for

construction of a model relating the unknown parameters.

Based on this mathematical model, a design algorithmic

procedure is presented. For the sake of convenience, a

single-input design graph is presented as well. The main

merit of the proposed method, compared to previous

researches, is its hand calculation aspect, suitable for

parametric studies and sensitivity analysis. As the pre-

sented formulations are dimensionless, they are applicable

in any dimensional system. Accuracy and practicality of

the proposed method is illustrated at the end by applying it

to a real-life structure.

Keywords Eigenfrequency � Stiffness distribution � Free
vibration � Structural optimization � Tall buildings

Introduction

Theoptimization subject is of great importance in tall building

design that usually requires high material usage. In general,

the design process of a tall building involves conceptual

design and approximate analysis, preliminary design, and

finally detailed design (Jayachandran 2009). Some engineers

skip the preliminary design step, in which a proper stiffness

distribution is calculated. They usually go straight to the final

step after the conceptual design and finalize the structural

configuration using some sort of optimization algorithm.

However, preliminary design makes it possible to study the

problem parametrically. In the review paper done byAldwaki

and Adeli (2014), a vast range of methods proposed by many

researchers dealing with tall structures optimization are pre-

sented. Almost all of them are code-based and numerical,

while a hand calculation method, as in the preliminary design

step, is a more suitable tool for sensitivity analyses and

parametric studies (Connor and Pouangare 1991).

Although some analytical papers can be found in this field

(Kwan 1994; Kaviani et al. 2008; Rahgozar et al. 2010;

Malekinejad and Rahgozar 2012), most of them are suit-

able for abstract analysis but not for design. Moon (2010)

introduced a stiffness-based method for optimal design of

braced tube systems. For simplicity, shear and flexural

resisting systems are assumed to be decoupled with no

interaction. The optimal member sizes are determined based

on a preselected deformation and observing induced forces.

By rather similar approaches, rectangular diagrid tube

structures were also studied for optimal stiffness by Moon

et al. (2007) and Moon (2012). The problem of polygonal-
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section diagrid systems was investigated by Liu and Ma

(2017). In the research done by Montuori et al. (2014),

strength criteria, in addition to stiffness requirements, is

examined in preliminary design of diagrid systems.

Due tomore slenderness in new tall structures, controlling

the dynamic response is regarded as a serious problem

recently. Indeed, motion, rigidity and stability dominate the

design requirement instead of strength criteria in such

problems. According to Chan et al. (2009), despite of enough

lateral resistance against damage to the main structural

system of a building, minor damage to nonstructural com-

ponents or the problem of discomfort to the occupants should

be observed. An efficient approach to enhance the dynamic

responses of a structure is to optimize its natural frequency.

Dynamic behavior of a structure is mainly governed by the

fundamental (smallest) natural frequency (Meske et al. 2006;

Connor and Laflamme 2014), andmaximizing its value, as is

done in this research, makes as stiff as possible structure. In

this paper, an optimization formulation with the objective of

fundamental eigenfrequency is constructed, and it is applied

to a cantilever structure, suitable for modeling major motion

in a tall building (Connor and Laflamme 2014). It will be

shown that the optimality condition is equivalent to enforce

the mode shape to have a special format, and stiffness will be

calculated based on it. The obtained stiffness is not appli-

cable because of too small values in regions near structure’s

top; observing a lower bound constraint on stiffness, this

problem is resolved. Although such constraints have been

explored by many researchers so far, most of them are

numerical (Chan et al. 2010; Stromberg et al. 2011; Lee et al.

2012). To deal with this challenging constraint by an ana-

lytical approach, the problem is analyzed by introducing a

parameter defined as the critical height. In the optimal state,

the points above the critical height have the same thickness

but different curvature of the first mode profile. Opposite

situation exists for thickness and curvature at points lower

than the critical height. It will be shown that this strategy

makes the problem easy to solve parametrically.

Optimal design of stiffness

Structural modeling

The accepted model for the structure is a one dimensional

and continuum cantilever beam, suitable for modeling

major motions (Connor and Laflamme 2014), with length ‘

and uniformly distributed mass m(z) = m. The bending

rigidity D(z) is considered as the only lateral stiffness, as it

is approximately true for beam-like structures such as tall

buildings (Connor and Laflamme 2014). The coordinate

system origin is located at top of the structure (free end)

with positive z direction pointing downward, and the

clamped end is located at z = ‘.

For the problem of transverse free vibration, if shear

deformation, rotary inertia and damping are neglected, the

governing differential equation of motion is of the fol-

lowing form (Chopra 2012)

m
o2u

ot2
þ o2

oz2
DðzÞ o

2u

oz2

� �
¼ 0 ð1Þ

where u = u (z, t) is in plane transverse displacement in the

direction orthogonal to the z axis. Trying a solution of the

form uðz; tÞ ¼ /ðzÞqðtÞ makes Eq. (1) decoupled into two

equations; one for time variable t as

€qðtÞ þ KqðtÞ ¼ 0 ð2Þ

and one for spatial variable z as

DðzÞ/00ðzÞ½ �00�Km/ðzÞ ¼ 0 ð3Þ

where eigenvalue K ¼ x2 is defined for convenience (x is

natural frequency) and will be referred as eigenfrequency.

In Eqs. (2) and (3), overdots denote time derivative, and

primes denote z derivative, respectively. In related litera-

tures, eigenvector /ðzÞ is referred to as mode shape

function.

At the clamped end, displacement and slope are both

zero; at the free end, bending moment and shear are zero

too. Therefore, geometric boundary condition (GBC) is as

follows:

GBC

EBC : /ð‘Þ ¼ /0ð‘Þ ¼ 0

NBC : DðzÞ/00ðzÞ½ �z¼0¼
d

dz
½DðzÞ/00ðzÞ�

� �
z¼0

¼ 0

8><
>:

ð4Þ

in which EBC and NBC stands for essential and natural

boundary condition, respectively. In the following sections,

we deal with governing geometric Eqs. (3) and (4).

Optimization of fundamental eigenfrequency

It is common in optimal design of a dynamic system to

maximize fundamental (smallest) eigenvalue Kf ¼ x2
min

(Bendsøe and Sigmund 2003; Zheng et al. 2012; Yaghoobi

and Hassani 2017) because it mainly dominates the

dynamic response of the structure. Therefore, the opti-

mization problem for the accepted model is stated as the

following min–max formulation:

max
DðzÞ

Kf ¼ minKi; i ¼ 1; . . .;1
� �

s:t: :

Z ‘

0

DðzÞdz ¼ U

8>><
>>:

ð5Þ
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Bending stiffness [D(z)] is selected as the independent

variable, and Kf is the smallest eigenfrequency as the

objective function. Upper bound U on sum of stiffness is

assumed because there is a design constraint on the amount

of construction material in any design problem. Otherwise,

the optimization problem has no optimal point, because

more used material yields more stiffness. According to

Rayleigh’s principal, following relation can be used for

eigenfrequency Kf and the corresponding eigenvector /f

(Chopra 2012):

Kf ¼
Z ‘

0

D/002
f dz ð6Þ

provided that /f is normalized to
R ‘

0
m/2

f dz ¼ 1.

Lagrangian method is used here to solve optimization

problem (5), so

L ¼ Kf � k
Z ‘

0

DðzÞ dz� U

� �
ð7Þ

where k C 0 is the Lagrangian multiplier. Variation of L
with respect to D as the design variable yields

dL ¼
Z ‘

0

ð/002 � kÞdD
� �

dz ð8Þ

Optimality condition of dL ¼ 0 contributes to the fol-

lowing condition for the eigenvector (mode shape)

/00 ¼ �
ffiffiffi
k

p
¼ �v ð9Þ

In words, the absolute value of curvature (/00) must be

constant along the structure at the optimal state. Stiffness

will be determined by forcing this objective in the next

section.

Optimization of stiffness based on the desired

performance

As mentioned before, it is ideal for the mode shape profile

to have a uniform curvature characteristic. Considering the

positive form of /
0 0

in Eq. (9), integrating it twice,

enforcing EBC [Eq. (4)] on it, and introducing the

dimensionless parameter �z ¼ z=‘, results to the following:

/ð�zÞ ¼ v‘2uð�zÞ

uð�zÞ ¼ 1

2
ð�z� 1Þ2

8<
: ð10Þ

The bending stiffness required to produce a specific

profile for the mode shape [Eq. (10)] must be evaluated. To

this end, Eq. (3) is considered; / and positive form of /
0 0

from Eqs. (10) and (9), respectively, are substituted into

Eq. (3) and then integrating it twice observing NBC

[Eq. (4)] results to the following relation for stiffness:

Dð�zÞ ¼ Km‘4

24
�z4 � 4�z3 þ 6�z2
	 


ð11Þ

The design constraint presented in optimization problem

(5) must be satisfied. Since the dimensionless variable �z

exists in Eq. (11), the mentioned constraint is needed to be

restated in variable �z, as is done in the following:Z 1

0

Dð�zÞ d�z ¼ �D ð12Þ

where �D ¼ U=‘. Equation (12) is named as limited volume

constraint because it reflects the limitation of volume of

constructional material in practice. Modifying Eq. (11) by

multiplying and dividing by �D and defining a new

dimensionless parameter h = b‘ in which b4 ¼ Km= �D,
reduces Eq. (11) to

Dð�zÞ ¼ h4 �D
24

�z4 � 4�z3 þ 6�z2
	 


ð13Þ

Substituting (13) into constraint (12) dictates that

h4 ¼ 20. Replacing the obtained value of h4 into Eq. (13),

the stiffness function can be obtained as

Dð�zÞ ¼ �Ddð�zÞ ð14Þ

where

dð�zÞ ¼ 5

6
�z4 � 10

3
�z3 þ 5�z2 ð15Þ

dð�zÞ is named as the stiffness pattern. The value of dð�zÞ
varies from 0 (for �z ¼ 0) to 2.5 (for �z ¼ 1) by a fourth

degree polynomial. The diagram of dð�zÞ is presented in

Fig. 1.

Modified optimization problem (constrained
stiffness)

As shown in Fig. 1, the amount of d (and D as the result)

approaches zero for the points near top of the structure,

which is not right in application. Hence, a lower bound

Dmin must be observed. That is, D must satisfies

0�Dmin �D. Therefore, the new optimization problem

would be

max
DðzÞ

Kf ¼ minKi; i ¼ 1; . . .;1
� �

s:t: :

Z ‘

0

DðzÞdz ¼ U

0�Dmin �D

8><
>:

8>>>>><
>>>>>:

ð16Þ

In the following sections, some new parameters are

defined which simplify treating the new optimization

problem (16).
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Constant stiffness and constant curvature zones

Based on presented diagram in Fig. 1, the lower bound

constraint is violated for some points, almost high ele-

vations. It seems helpful to divide the design region into

two zones by introducing a specified point as critical

height (CH), denoted by �zC in dimensionless format. For

the points higher than CH (�z 2 ½0 �zC�), uniform stiffness

Dmin with varying curvature of first mode shape is

assumed. This region will be called constant stiffness

(CS) zone. Inversely, for the points lower than CH

(�z 2 ½�zC 1�), curvature is constant and the stiffness varies

along the height, so it is referred to as constant curvature

(CC) zone. Formally, these specifications are as follows;

for CS zone

CSð0� �z� �zcÞ
/00
CS ¼ /00

CSð�zÞ
DCS ¼ Dmin

(
ð17Þ

and for CC zone

CCð�zc � �z� 1Þ
/00
CC ¼ v

DCC ¼ DCCð�zÞ

(
ð18Þ

Mode shape function

The final goal is to determine a parametric formulation for

the stiffness. However, the equation of mode shape / is

needed for calculating stiffness in prior. Therefore, / is

evaluated in different zones at first.

CC zone

The curvature of all points in this region has same value of

v. Considering EBC from Eq. (4) for this region, by a

similar way used for (10), results

/CCð�zÞ ¼ v‘2uCCð�zÞ

uCCð�zÞ ¼
1

2
ð�z� 1Þ2

8<
: ð19Þ

CS zone

The governing equilibrium Eq. (3) must be solved to deter-

mine the mode shape function in CS zone. Substituting the

constant stiffness value Dmin for D (z) ends in the following

governing equation in this zone; in additionGBC is presented:

/IV
CSðzÞ � b4c/CSðzÞ ¼ 0

GBC

NBC : Dmin/
00
CSð0Þ ¼

d

dz
Dmin/

00
CSðzÞ

� �
z¼0

¼ 0

EBC :
/CSðzcÞ ¼ /CCðzcÞ

/0
CSðzcÞ ¼ /0

CCðzcÞ

8<
:

8>>>>><
>>>>>:

8>>>>>>>><
>>>>>>>>:

ð20Þ

where

b4c ¼ Km=Dmin ð21Þ

is defined for simplicity. NBC comes from the fact that

bending moment and shear are both zero at the free end,

and EBC conditions are due to continuity of mode shape

function and its derivative in CH point.

The general solution for Eq. (20) is (Chopra 2012)

/CSðzÞ ¼ C1 sin bczþ C2 cos bczþ C3 sinh bcz
þ C4 cosh bcz ð22Þ

Enforcing NBC on Eq. (22) results in

/CSðzÞ ¼ C1ðsin bczþ sinh bczÞ þ C2ðcos bczþ cosh bczÞ
ð23Þ

Finally, imposing EBC, Eq. (23) reduces to the fol-

lowing equation for the mode shape in CS zone:

Fig. 1 Stiffness pattern

diagram, without a lower bound

constraint
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/CSð�zÞ ¼ v‘2uCSð�zÞ

uCSð�zÞ ¼ c uCCð�zcÞ½a1f1ð�zÞ � a2f2ð�zÞ� þ
u0
CCð�zcÞ
hc

½a1f2ð�zÞ � a3f1ð�zÞ�
� �

8><
>:

ð24Þ

where

hc ¼ bc‘ ð25Þ

in which bc is presented in (21), and u0
CCð�zcÞ ¼

½duCC=d�z��z¼�zc
: Other included parameters are defined as

c¼ 1=½2ð1þ coshc�zc coshhc�zcÞ� a1 ¼ coshc�zc þ coshhc�zc
f1ð�zÞ ¼ coshc�zþ coshhc�z a2 ¼� sinhc�zc þ sinhhc�zc
f2ð�zÞ ¼ sinhc�zþ sinhhc�z a3 ¼ sinhc�zc þ sinhhc�zc

ð26Þ

Optimal distribution of constrained stiffness

Mode shape functions in both CS and CC zones are known

from Eqs. (24) and (19), respectively. In addition, the

stiffness value in CS zone is known as Dmin. The stiffness

function in CC zone can be determined by use of these

knows. To that end, the governing Eq. (3) is integrated

twice from 0 to an arbitrary variable �z 2 ½�zc1� (located in

CC zone) observing NBC presented in Eq. (4). Integrating

region must be divided into two zones of ½0 �zc� and ½�zc �z�,
and Eqs. (24) and (19) are used, respectively, for / in each

zone. In addition, dimensionless parameter �z ¼ z=‘ is

defined for making relations dimensionless, and v is sub-

stituted for /00. This calculations result in the following

relation for stiffness:

Dð�zÞ ¼ �Ddð�zÞ ð27Þ

where stiffness pattern dð�zÞ is written as

dð�zÞ ¼ dCSð�zÞ ¼ �Dmin 0� �z� �zc
dCCð�zÞ ¼ �Dminh

4
chð�zÞ �zc � �z� 1

�
ð28Þ

In which the dimensionless parameter �Dmin, with the

following relation, is introduced for simplicity:

�Dmin ¼
Dmin

�D
ð29Þ

and it is named relative minimum stiffness (RMS). hð�zÞ
formulation is as follows,

hð�zÞ ¼ g1�zþ
Z �z

0

g2ð�zÞd�z

g1 ¼
Z �zc

0

uCSð�zÞd�z and g2ð�zÞ ¼
Z �z

�zc

uCCð�zÞd�z

8>>><
>>>:

ð30Þ

In Eq. (27), �D shows the amount of used material.

Adjusting this parameter, one can control the response of

the structure, such as maximum displacement. However,

the stiffness pattern, dð�zÞ, is unchanged.
There are two unknowns �zc and hc in the presented

formulation of dð�zÞ (h depends on �zc and hc) to be deter-

mined. On the other hand, there are two constraints which

must be satisfied; one comes from the continuity of the

stiffness, and other is limited volume constraint [Eq. (12)].

These two constraints are observed in the following to

evaluate �zc and hc.
Constraint of continuity of stiffness requires that

DCSð�z ¼ �zcÞ ¼ DCCð�z ¼ �zcÞ, which using Eqs. (27) and

(28) results in the following equation:

h4chð�z ¼ �zcÞ � 1 ¼ 0 ð31Þ

Equation (31) represents a constraint on �zc and hc. This
equation is solved numerically, and the results are pre-

sented in Fig. 2 which presents values of hc for different

values of �zc 2 ½0 1�. Based on Fig. 2, for �zc ¼ 1 (uniform

stiffness) hc = 1.8751; this result is true according to

Chopra (2012).

As stated earlier, limited volume constraint must be

satisfied. For this end, Eq. (12) is considered; the integra-

tion domain [0 1] is divided into two regions of ½0 �zc� and
½�zc 1�, and related formulation of stiffness from Eqs. (27)

and (28) are used for each region. The result of integration

ends in the following relation

�Dmin �zc þ h4c

Z 1

�zc

hd�z

� 

� 1 ¼ 0 ð32Þ

Satisfying Eq. (31), make hc as a function of �zc, so there

are two unknowns �zc and �Dmin in Eq. (32). Solving

Eq. (32) numerically, one can find the relation between �zc
and �Dmin. Figure 3 presents this relation. Note that Dmin is

always lower than �D, otherwise the limited volume con-

straint [Eq. (12)] is violated. Therefore, �Dmin 2 0 1½ �.
At present, all inputs are available to calculate D from

Eqs. (27) and (28). In the following, this calculation is

summarized by an algorithmic procedure.

Design algorithmic procedure

The design process is summarized here based on before

determined information. Going through the following

5-step algorithm, the optimal design will be achieved.

Step 1 [RMS ( �Dmin)]: By use of the design information �D
[Eq. (12)] and Dmin (a practical constraint), RMS is eval-

uated from Eq. (29).

Step 2 [CH (�zc)]: CH can be determined easily by presented

diagram in Fig. 3, using the evaluated RMS from Step 1.

Step 3 [hc]: For the known CH from Step 2, hc can be

determined by use of the presented diagram in Fig. 2.
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Step 4 [u]: In this step, u for each zone is calculated. For

CC zone, this function (uCC) is presented in Eq. (19).

Equation (24) presents uCS, related to CS zone, which

needs uCCð�z ¼ �zcÞ, u0
CCð�z ¼ �zcÞ, hc, �zc and presented

parameters in (26) as inputs. Therefore, using these

parameters uCS can be determined easily.

Step 5 [optimal stiffness (D)]: By presented formulations in

Eqs. (27) and (28), the stiffness function is evaluable.

Indeed, using Eq. (28) needs to evaluate h, which in return

g1 and g2 must be calculated from Eq. (30).

Design graph

Using the 5-step algorithm includes some equations deal-

ing with may need computer or calculator. As the goal of

this paper is to present a hand calculation method for

design, the formulation of stiffness pattern [dð�zÞ in

Eq. (28)] has been evaluated numerically, and its diagram

is presented for different values of �Dmin ¼ 0:1; 0:2; . . .; 0:9,

Fig. 4. Constructing new data points within the range of the

discrete set of known data points, one can do interpolation.

Therefore, knowing RMS ( �Dmin) as the only input, one can

choose the related diagram from Fig. 4. Then, scaling the

obtained diagram by �D [Eq. (27)] yields the value of

optimal stiffness.

Illustrative example

This section illustrates the proposed method in application to

preliminary design of lateral-resisting systems in tall build-

ings. Among different systems used in high-rise structures,

braced tube is selected here. In this system, the lateral loads

are assumed to be carried by exterior frame only; the

Fig. 2 Diagram of hc versus
CH (�zc)

Fig. 3 Diagram of RMS ( �Dmin)

versus CH (�zc)
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bending strength is generated by closely spaced perimeter

columns connected by spandrel beams, and shear forces are

resisted by diagonal elements that extended over some sto-

ries (Fig. 5). It is assumed that the role of diagonals in

bending strength is negligible, as well as the role of

perimeter columns in shear resistance (Moon 2010).

Therefore, changing dimensions of perimeter columns can-

not affect the shearing performance and vice versa. In tall-

enough structures, the fundamental eigenfrequency, as the

objective function herein, is related to bending. Hence, to

optimize this parameter, the perimeter column dimensions

are selected as design variable, with the confidence that the

shear performance remains unchanged and the fundamental

response of the structure is not influenced by it.

To assess the efficiency of the proposed method, the

real-life building known as 780 Third Avenue (Kowalczyk

et al. 1995) (Fig. 5) is adapted as the reference point and

will be referred to as the basic model in the followings.

This structure will be redesigned (with identical amount of

material), based on graph of Fig. 4, as the proposed model.

Two models are then analyzed, and the results will be

compared at the end. The mentioned building is a concrete

tube system, braced by shear walls in a cross and zigzag

pattern in wide and narrow faces, respectively (Fig. 8). The

geometrical information of this building is presented in

Table 1 (Kowalczyk et al. 1995).

Structural modeling and definitions

As mentioned above, shear and bending resisting sys-

tems can be decoupled into two separate systems. Clo-

sely spaced columns located on structure’s perimeter

increase effective moment of inertia to resist the bending

moments. Hence, a cantilevered box beam, Fig. 6, is a

reasonable model for the bending system (Smith and

Coull 1996).

In the presented model in Fig. 6, thickness of the box, t,

accounts for the perimeter columns and is taken as the only

independent variable. As the relations in this paper are

constructed based on stiffness (D), it would be beneficial to

present D as a function of thickness (t), so

Dð�zÞ ¼ ðEI0Þ tð�zÞ ð33Þ

where E is the Young’s modulus of elasticity and I0 = [(4/

3)b3 ? 4ab2], in which 2a = 38.12 m and 2b = 21.08 m

are perimeter dimensions based on Fig. 6 that their values

are presented in Table 1.

In addition, we need a relation to calculate the dimen-

sions of columns from the thickness (t). According to the

relation presented by Kwan (1994), thickness of the box

can be calculated as

Fig. 4 Design graph, for

different values of RMS ( �Dmin)

Fig. 5 Braced tube system; 780 Third Avenue building
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t ¼ Ac=s ð34Þ

in which t is same as used in Eq. (33), Ac is the sectional

area of the columns, and s is the columns’ spacing which is

2.84 m here (Table 1). In basic structure, perimeter col-

umns are 1.2 m wide, and depth reduces from 0.457 to

0.406 to 0.356 m at floors 19 and 31 (Kowalczyk et al.

1995), Fig. 7a. Thus, the design domain of basic structure

consists of three zones, each of which has uniform column

area (Ac).

Structural design

The only needed information to use design graph presented

in Fig. 4 is RMS ( �Dmin) which in turn needs two more

inputs �D and Dmin, based on Eq. (29). Substituting Eq. (33)

into Eq. (12), we have the following relation for �D:

�D ¼
Z 1

0

ðEI0Þ t dð�zÞ ¼
Z 0:385

0

ðEI0Þð0:1504Þ dð�zÞ

þ
Z 0:63

0:385

ðEI0Þ ð0:1715Þ dð�zÞ

þ
Z 1

0:63

ðEI0Þ ð0:1931Þ dð�zÞ ¼ ðEI0Þð�tÞ ð35Þ

where

�t ¼ 0:1714 ð36Þ

Integration limits are non-dimensional and related to

zone limits of basic model. Thickness (t) of each zone can

be calculated using Eq. (34). Considering Eq. (33), the

following relation can be written for Dmin:

Dmin ¼ ðEI0Þ tmin ð37Þ

where tmin is a design constraint which could be dependent

on some practical requirements. Suppose minimum depth

Table 1 780 Third Avenue geometrical information

Floors above ground Typical story height First story height Structural height Plan dimensions Column spacing

49 3.5 m 4.4 m 172.4 m 38.12 m 9 21.08 m 2.84 m

Fig. 6 Beam model with hollow box section for bending resisting

system of the structure

Fig. 7 Design graph of example a basic structure, b proposed structure
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of 0.2 m for columns and keep their width unchanged

(1.2 m). Thus, the minimum sectional area would be

0.24 m2, so using Eq. (34) for s = 2.84 m, we have

tmin ¼ 0:0845m ð38Þ

as the minimum thickness of the box. Therefore, based on

Eqs. (29), (35) and (37), and using the obtained values for �t

and tmin from Eqs. (36) and (38), respectively,

�Dmin ¼
tmin

�t
¼ 0:4929 ð39Þ

Referring to Fig. 4 and choosing RMS = 0.5 (approxi-

mate value instead of 0.4929), the related diagram for

stiffness pattern [dð�zÞ] is selected (the green one). Based on

this diagram, CH is 0.386 in its dimensionless format.

Using total height of 172.4 m (Table 1), its dimensional

value is 66.4 m. Dividing 66.4 m by 3.5 m (typical story

height), results approximately 19 stories as the CS zone.

Thus, the last 19 stories of the proposed model must have

minimum value of stiffness. For the other stories, dð�zÞ can
be determined from the selected diagram. However, as the

value of dð�zÞ varies continuously and is not practical, the

design domain must be divided into some zones with

constant value of dð�zÞ. Based on Fig. 8b, each diagonal

element ties six stories. It seems reasonable to choose

every 6 stories as a zone. Therefore, typical length of each

zone is about 21 m with non-dimensional value of 0.1218

(0.1270 for the first zone containing first floor). Thus, each

zone limits elevation can be determined, and the related

value of dð�zÞ can be read from the selected graph. For

example, the first zone of proposed structure concludes

story 1–6 with elevation span from 150.5 to 172.4 m. The

dimensionless values of the span limits are 0.873 and 1

with value of dð�zÞ as 1.81 and 2.2, respectively, based on

the selected graph. The limitation that must be observed

while calculating a constant value for dð�zÞ in each span is

to keep the material volume unchanged. For simplicity, it is

assumed that dð�zÞ varies linearly in each span. Thus, 2, as

the average of 1.81 and 2.2, is selected for the constant

value of stiffness pattern (d) in this zone.

To calculate equivalent thickness from the obtained

value of d in the previous part, Eqs. (27), (33) and (35) are

used which results in

t ¼ �t d ð40Þ

By use of the value of �t from Eq. (36) into Eq. (40),

equivalent thickness of each zone is calculated. Consider-

ing first zone as example, substituting 2 as d in (40) yields

t = 0.3428. All that remains is to evaluate the sectional

area of columns based on equivalent thickness t. Substi-

tuting the obtained t into Eq. (34), with s = 2.84 m, col-

umns’ sectional areas are determined. Supposing uniform

width of 1.2 m for columns, their depth can be simply

calculated using the sectional area values. This calculation

yields 0.8 m for the first zone. Other zones information can

be found from Fig. 7.

Software analysis and results

In previous part, the optimal dimensions of the columns are

obtained by a hand calculation and simple approach. To

evaluate enhancement of the proposed structure compared

to basic one, both of them are analyzed in SAP2000 (2013).

To construct models in the software, geometrical infor-

mation from Table 1 and column dimensions presented in

Fig. 7 are used. The bracing pattern is presented in Fig. 8,

and the thickness of filled panels in basic model is the same

as adjacent columns. The bracing geometry in proposed

model is completely similar to that of basic one to assess

just bending system role in dynamic response. The effec-

tive mass is about 800 kg/m2, and compressive strength of

concrete is about 35 MPa.

The modal analysis outputs show that the fundamental

period of the new structure is 4.26 versus 4.77 s related to

basic model. That means, fundamental eigenfrequency as

the objective function is improved in the proposed structure

to some extent. This fact shows that, in addition to sim-

plicity of the proposed method, the result is satisfactory in

application.

Conclusions

Due to importance of dynamic responses in design of high-

rise structures, vibrational characteristics are investigated.

An optimization problem with the objective of fundamental

eigenfrequency, the main effective factor in dynamicFig. 8 Model used in SAP2000 a 3D, b narrow face, c wide face
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response, is constructed. Flexural stiffness is selected as the

only independent variable and its optimal value is calcu-

lated. Some major results are as follows,

• Applying calculus of variation on the optimization

problem contributes to a specific profile for the first mode

shape as the optimality condition. The stiffness, required

to produce this profile for the mode shape, is evaluated.

• The optimization problem is modified then by adding

the practical constraint of lower bound on stiffness. To

treat this new optimization problem by an analytic

strategy, new parameters CH, CC and CS were

introduced to construct the parametric model. In

assessing the effect of design constraints, non-dimen-

sional parameter, RMS, was introduced also.

• The resulting mathematical model yielded diagrams,

relating unknown parameters. Based on these diagrams,

a simple algorithmic procedure for design is presented.

• To make the design procedure more convenient in

practice, the problem of optimal design has been solved

for almost all possible values of RMS (0.1, …, 0.9) and

presented as a design graph.

• Accuracy and simplicity of the method were demon-

strated by applying it to a real-life structure, which was

redesigned utilizing the proposed method. Modal

analyses show an 11% enhancement in structural

response as compared to that of the original structure;

thereby validating the method as a fast and reliable

approach in design process of tall buildings.

• Theclosed-formsolutions andpresentedgraphsmay serve

as benchmarks for numerical studies in optimal design of

2- or 3-dimensional models and for basic understanding.
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