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Abstract The present study set out to investigate the

nonlinear seismic response of the dam–reservoir–rock

foundation system, taking into consideration the effects of

change in the material properties of discontinuous foun-

dation. To this end, it is important to provide the proper

modeling of truncated boundary conditions at the far-end

of rock foundation and reservoir fluid domain and to cor-

rectly apply the in situ stresses for rock foundation. The

nonlinear seismic response of an arch dam mainly depends

on the opening and sliding of the dam body’s contraction

joints and foundation discontinuities, failure of the jointed

rock and concrete materials, etc. In this paper, a time

domain dynamic analysis of the 3D dam–reservoir–foun-

dation interaction problem was performed by developing a

nonlinear Finite Element program. The results of the

analysis of Karun-4 Dam revealed the essential role of

modeling discontinuities and boundary conditions of rock

foundation under seismic excitation.

Keywords Concrete arch dam � Non-homogeneous and

discontinuous foundation � Nonlinear finite element

dynamic analysis � In situ stress � Boundary conditions

Introduction

A large number of high arch dams in the world are built or

to be built in the seismically active areas. Therefore, it is

essential to carry out the seismic analysis of coupled dam–

foundation system to ensure the safety and reliability of

high arch dam structures. The structural strength of an arch

dam under ground motion is mostly dependent on the

stability and strength of its abutments. Actually, even high

safety margins for unexpected ground motions do not

guarantee the stability of dam if it is constructed on an

uncertain foundation. In addition, due to the complex nat-

ure of rock foundation including non-homogeneous mate-

rials, the existence of joint sets and faults, etc., final

judgment about the performance of dam will be difficult.

Collapse of Malpasset Dam in France in 1959 is an

apparent example of the lack of foundation strength.

During the past few years, extensive research has been

done in the analysis and design of concrete dams, but the

need for more accurate modeling of abutments in a cou-

pling system with regard to the effects of mass, flexibility

and non-homogeneity of discontinuous rock foundation are

still felt. In the current study, a numerical program for 3D

nonlinear dynamic analysis of concrete arch dams is

developed in FORTRAN language and applies it to Karun

4 Dam. The study attempts to control two main features

which directly affect the accuracy and precision of ana-

lytical results, i.e., correct in situ stresses for the bedrock

and the choice of a proper boundary condition for the far-

end of discontinuous rock foundation.

A review of research areas and solving methods

The main factors that influence significantly the three-di-

mensional nonlinear dynamic analysis of arch dams are

identified: (1) dam–reservoir interaction and resulted dis-

tribution of hydrodynamic pressure, (2) reservoir–founda-

tion interaction and the related effects of reservoir bottom

sediments, (3) dam–foundation interaction and the role of
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non-homogeneity and discontinuities in bedrock, (4) non-

uniform input of the free-field motions, (5) nonlinear

behavior of the quasi-brittle material of concrete and

jointed rock, and contact in the contraction and peripheral

joints of dam body, and (6) boundary conditions.

Great effort has been made to develop the fundamentals

and analytical methods of the above-mentioned subjects

and a brief review of the main issues related to research are

presented here.

Fluid–solid interaction is a very complicated problem

which involves both structural and fluid dynamics. Several

researchers have developed advanced numerical methods

based on the finite element, boundary element or combi-

nation of them to model the dynamic dam–reservoir

interactions. Two common approaches in fluid domain are

Eulerian- and Lagrangian-based formulations (Bouaanani

and Lu 2009). The former approach is known as pressure-

or potential-based formulations where fluid pressure or

velocity potential is selected as state variable. The

Lagrangian approach in fluid domain is an extension of the

solid finite element formulation with nodal displacements

as degrees of freedom. As a result, the fluid domain is

formulated using the same shape functions as structural

elements and, in this way, compatibility at the fluid–

structure interface is automatically fulfilled. In such cases,

fluid elements are characterized by a volumetric elastic

modulus equal to the fluid bulk modulus (or fluid com-

pressibility); with a negligible shear resistance and Poisson

constant being nearly 0.5 to simulate the fluid flow more

reliable. The major disadvantage of Lagrangian approach is

the generation of spurious circulation modes, due to the

zero shear modulus. There are different methods for

eliminating these zero energy modes that have been used

by a large number of researchers (Chopra et al. 1969;

Shugar and Katona 1975; Hamdi et al. 1978; Zienkiewicz

and Bettess 1978; Akkaş et al. 1979; Wilson and Khalvati

1983; Olson and Bathe 1983; Doğangün et al. 1996;

Doğangün and Livaoglu 2006, etc.). One approach is based

on assuming that the shear modulus of the fluid is

numerically very small. This approach has been adopted by

this study. The partial absorption of pressure waves at

sediment layers of reservoir bottom and its lateral sides

may significantly affect the magnitude of hydrodynamic

forces while the response of dam due to the ground motion

is being investigated (Mirzabozorg et al. 2003). In the

present study, the Lagrangian approach is used for mod-

eling the fluid and sediment domain. Also, the interface

elements with low shear stiffness are used to model the

common surfaces of the fluid and solid elements.

Dam–foundation interaction is mainly related to the

bedrock’s flexibility, changes of physical properties of rock

foundation, existence of joints and faults in it, geometry of

dam body, water leakage, uplift pressure, etc. It has been

proven that in a nonlinear dynamic analysis including

dam–foundation interaction, the foundation’s mass, flexi-

bility and radiation damping are important (Tan and Cho-

pra 1995). In addition, in order to model the behavior of

jointed rock masses, their strength and deformability

should be expressed as a function of joint orientation, joint

size, and joint frequency. Moreover, it is not possible to

represent every joint individually in a constitutive model.

Therefore, it is necessary to use simple techniques such as

equivalent continuum method which can capture reason-

ably the behavior of jointed rock mass. The finite element

method developed in the present study applies for the

foundation rock model both: nonlinear solid element for

modeling the jointed rock as an equivalent continuum

whose properties represent material properties of the join-

ted rock, and nonlinear interface element to account for the

surface roughness of discontinuities.

The best way to determine the size of foundation model

is based on the ratio of deformation modulus of foundation

(Ef) to the elastic modulus of concrete dam (Ec). For a

flexible rock foundation with Ef/Ec less than �, the foun-

dation model should extend at least twice the dam height in

all directions (Federal Energy Regulatory Commission

Division of Dam Safety and Inspections, Washington DC

1999).

The definition of suitable boundary conditions related to

its surrounding domain is another important part of mod-

eling procedure. In the present study, the governing equa-

tions and related boundary conditions consist of water free

surface and far-end truncated boundaries of the reservoir

and rock foundation. By neglecting the effects of gravity

waves, a zero-pressure boundary condition is prescribed at

the horizontal free surface water (assuming negligible

surface tension). This simplification is a common

assumption in the analysis of concrete dams, particularly

for deep reservoirs. Also, several studies have been carried

out into the improvement of the boundary condition at far-

end of the reservoir and rock foundation in the dynamic

analysis of coupling system. A radiation condition (such as,

Sommerfeld’s and Sharan’s boundary conditions and

Küçükarslan 2004) can be applied at the truncated

boundary of the reservoir. A similar boundary for elimi-

nating waves propagating outward from the foundation

domain is Lysmer and Kuhlemeyer (1969) boundary.

Boundary element method has also been widely used (Beer

et al. 2008; Brebbia and Dominguez 1992). In this method,

only the boundaries of the unbounded medium are dis-

cretized so that the spatial dimension is reduced by one and

the radiation condition is satisfied automatically as a part of

the fundamental solution (Estorff and Kausel 1989). Many

researchers have successfully used infinite boundary ele-

ments to model wave propagation problems on far-end

boundary (Valliappan and Zhao 1992, etc.). In this study,
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for the truncated boundary conditions of reservoir and rock

foundation, interface elements have been used. Using these

boundary conditions does not prevent the sliding at foun-

dation discontinuities due to seismic loading, thus provid-

ing non-uniform excitation.

It has been recognized that for infrastructures with

extended foundations such as concrete arch dams, the

ground motion is non-uniform along the canyon due to the

wave passage effects, coherency effects and site response

effects (Der kiureghian 1996). Several researchers have

studied on the response of concrete dams when the system

was excited non-uniformly (Bayraktar et al. 1996; Mirz-

abozorg et al. 2007, etc.). Some studies indicate that the

non-uniform seismic input can have an important role in

the dam response (Alves and Hall 2006).

In addition, the nonlinear material properties of concrete

dam and bedrock as well as the nonlinear effects of con-

traction joints of dam body and discontinuities in the dam

foundation are modeled by appropriate methods which will

be described later (Ahmadi and Razavi 1992; Ahmadi et al.

2001; Mojtahedi and Fenves 2000).

Description of the analysis procedure

The schematic view of dam–reservoir–foundation system

is shown in Fig. 1. The full system is modeled by an

assemblage of solid and interface elements. The isopara-

metric 8-node solid elements with 2 9 2 9 2 Gauss

integration are used for all domains including dam body,

reservoir, sediment and rock abutments. Also, eight-node

interface elements are used in common surfaces of

domains, such as the contraction and perimetral joints in

dam body and discontinuities of rock abutments. The

finite element formulations support both geometric and

material nonlinearity. Assuming that non-linearities are

limited to the concrete dam, rock blocks, contraction

joints of dam body and rock discontinuities, the stiffness

of these elements needs to be updated at each iteration.

Interface elements are placed between continuum (solid)

elements, as shown in Fig. 2. A summary flow chart of

the finite element program is shown in Fig. 3. In the

programing, the capabilities of several open source pro-

grams that are developed for the analysis of concrete

dams such as ADAP-88, EAGD-SLIDE, EACD-3D-96

(Mojtahedi et al. 1992; Chavez and Fenves 1994; Tan and

Chopra 1996) were investigated and useful subroutines

and subprograms of them were used (Smith and Griffiths

2004; Bathe 1996).

Nonlinear dynamic analysis

The governing equations of motion for 3D nonlinear

dynamic analysis of coupling system (subjected to earth-

quake loads) were discretized using Newmark’s method.

By adopting very large time increments, static nonlinear

analysis can be accomplished as a special case of dynamic

analysis. The discretized nonlinear dynamic equation of

Fig. 1 Schematic view of dam–reservoir–foundation system

Fig. 2 Detailed view of solid-interface elements

Fig. 3 Flow chart of nonlinear finite element program
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motion is given by (Bathe 1996; Zienkiewicz and Taylor

2005):

KT½ � þ c
bDt

CT½ � þ 1

bDt2
M½ �

� �
€Unþ1

� �
¼ Rnþ1f g

þ C½ � c
bDt

Unf g þ c
b
� 1

� �
_Un

� �
þ Dt

c
2b

� 1

� �
€Un

� �� 	

þ M½ � 1

bDt2
Unf g þ 1

bDt
_Un

� �
þ 1

2b
� 1

� �
€Un

� �� 	

ð1Þ

where [M] is the mass matrix, [C] is the damping matrix,

[K] is the stiffness matrix and {R} is the nodal external

forces. €U
� �

, _U
� �

and Uf g are the acceleration, velocity

and displacement vectors, respectively, at the (n ? 1)th

time step. Also, [KT] is the tangent stiffness matrix and

[CT] is the updated damping matrix which changes at the

same time as the stiffness reduces. The dynamic equilib-

rium of the system at time ‘‘n ? 1’’ can be written in terms

of the unknown node displacements Un?1 by substitution of

(Wilson 2002):

€Unþ1 ¼ b1ðUnþ1 � UnÞ þ b2
_Un þ b3

€Un ð2Þ
_Unþ1 ¼ b4ðUnþ1 � UnÞ þ b5

_Un þ b6
€Un ð3Þ

where the constants b1 to b6 are defined: b1 ¼ 1


bDt2; b2 ¼

1=bDt; b3 ¼ b� 1=2; b4 ¼ cDtb1; b5 ¼ 1 þ cDtb2 and

b6 ¼ Dtð1 þ cb3 � cÞ:
The damping matrix is determined based on the well-

known Rayleigh damping:

C½ � ¼ a K½ � þ b M½ � ð4Þ

The parameters a and b are pre-defined constants and

can be evaluated by the solution of a pair of simultaneous

equations if the two damping ratios (ni) associated with two

specific frequencies ðxiÞ are known:

2xin ¼ aþ bx2
i ð5Þ

The full Newton–Raphson iteration scheme can be used

to resolve the nonlinearity. The parameters b and c deter-

mine the stability and accuracy characteristics of the

algorithm. The constant acceleration method is obtained

when b = 1/4 and c = 1/2.

Nonlinear models for foundation rock and Dam

body

Combinations of Mohr–Coulomb (1882–1900) yield

function with a tension cut-off (i.e., The Modified Mohr–

Coulomb model suggested by Paul in 1961) are used for

both concrete and jointed rock materials. Crook et al.

(2003) presented that the Modified Mohr–Coulomb model

is able to effectively model both brittle-tensile or axial

splitting fractures and shear features model. The Mohr–

Coulomb criterion is based on Coulomb’s equation (1773).

If r11 � r22 � r33 are the principal stresses, we can write

this criterion as (Lubliner 1990):

r11 � r33 þ ðr11 þ r33Þsin/� 2cðcos/Þ ¼ 0 ð6Þ

where / and c are the internal friction angle and cohesion,

respectively. The 3D failure surface of the Mohr–Coulomb

criterion can be expressed in terms of stress invariants

(I1 ¼ rii ¼ r11 þ r22 þ r33, J2 ¼ 1
2
sijsij; J3 = 1

3
sijsjkski

with sij ¼ rij � 1
3
I1dij; ‘‘Kronecker delta dij’’):

f1ðI1; J2; J3Þ ¼
I1

3
sin/þ

ffiffiffiffiffi
J2

p
sin hþ p

3

� 


þ
ffiffiffiffiffi
J2

3

r
cos hþ p

3

� 

sin/� cðcos/Þ

¼ 0 ð7Þ

where the lode angle is: h ¼ 1
3

cos�1 3
ffiffi
3

p

2
J3

J
3=2

2

� �
.

For the tension cutoff yield function (Rankine crack

model), we have

r11 ¼ f 0t ; r22 ¼ f 0t ; r33 ¼ f 0t ð8Þ

where f
0
t is tension strength. This criterion can be fully

described by the following equation:

f2ðI1; J2; J3Þ ¼ 2
ffiffiffiffiffiffiffi
3J2

p
cos hþ I1 � 3f 0t ¼ 0; 0� h� p=3

ð9Þ

Reservoir modeling and simulation

The finite element formulation for fluid is based on

Lagrangian approach in which the fluid strains are calculated

from the linear strain–displacement equations. The pressure

volume relationship for a linear fluid is expressed by

p ¼ kev ð10Þ

where p, k and ev are pressure that is equal to the mean

stress, the bulk modulus and the volumetric strains of the

fluid, respectively. The volumetric strain can be expressed

in terms of Cartesian displacement components as follows:

ev ¼
oux

ox
þ ouy

oy
þ ouz

oz
ð11Þ

where ux, uy and uz are displacement components related

to axes x, y and z, respectively.

Nonlinear interface element

Different models have been developed to represent the

contact between two surfaces. One is based on the cohesive

law which can be expressed in a way that the local traction

ðtÞ across the interface is taken as a function of
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displacement jump ðdÞ across the cohesive surfaces. A

formula worked out by Ortiz and Pandolfi (1999) accounts

for the free energy density per unit undeformed area (H) so

that the traction acting on the interface:

t ¼ oH
od

¼ erc
d
dc

exp � d
dc

� �
if ðd ¼ dmax and _d� 0Þ

ð12Þ

where dc denotes the value of d (Needleman 1990) at peak

traction ðtmax ¼ rcÞ:

d ¼ dk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
n þ b2d2

s

q
;

dn ¼ d:n and ds ¼ d� dnnk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
s1 þ d2

s2

q� � ð13Þ

t ¼ tn þ ts ¼
oH
odn

nþ oH
ods

ods
ods

¼ t

d
ðdnnþ b2dsÞ ð14Þ

H ¼ ercdc 1 � 1 þ d
dc

� �
e�d=dc

� �
; ðe ¼ expð1ÞÞ ð15Þ

Figure 4 illustrates the curve of loading and unloading

responses of interface elements. When the contact surfaces

undergo a combination of shear deformation and normal

compression, the effective separation ðdÞ is computed only

from the shear components. Also, under normal compres-

sion the cohesive material behaves like a linear spring. The

weighting coefficient ðbÞ defines the ratio between critical

shear and normal tractions (Ruiz et al. 2001).

The value of interface stiffness depends on the rough-

ness of contact surfaces, as well as the relevant properties

of filling material and its moisture. For an initially closed

interface, the normal stiffness Kn and the tangential stiff-

ness KS are assumed to have large values. These values can

be estimated from the lowest Young’s modulus and shear

modulus of the adhesive domain around it, according to the

following equations:

Kn ¼ m1

EAe

Le
and Ks ¼ m2

GAe

Le
ð16Þ

where mi ði ¼ 1; 2Þ is a factor that controls the contact

properties (only in penetration), E and G are the smaller

elastic and shear modulus when considering the contact

between two different materials, Le is the characteristic

thickness of the adjacent solid element perpendicular to the

interface, and Ae is the surface area of the interface

element.

For a proper numerical modeling of the far-end bound-

aries of massed foundation and reservoir, the viscous

boundary condition must be applied to prevent wave

reflection from the artificial boundary of infinite media in

finite element analysis (Ghaemian et al. 2005).

Combinations of viscous and spring boundaries were

used as the basis for interface element to find a simple and

efficient model. Therefore, interface elements are placed

around the problem boundaries with equivalent stiffness of

infinite media and related damping to absorb the energy of

outgoing waves in the normal and tangential directions. To

calculate the damping coefficient Ctb for the elements of

far-end boundaries, the following equations are used:

Ctb
n ¼ Aeqf VP and Ctb

s;t ¼ Aeqf VS ð17Þ

In which VP and VS are the primary and secondary wave

propagation velocity within the foundation medium and are

given as:

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ef ð1 � vf Þ
qf ð1 þ vf Þð1 � 2vf Þ

s
and Vs ¼

ffiffiffiffiffiffi
Gf

qf

s
ð18Þ

where subscript f indicates the parameters pertinent to the

rock foundation. The radiation damping derived from

Eq. (17) is applied on the far-end boundaries of the foun-

dation which are added to the global damping matrix of the

structure, [C]. Similarly, linear viscous elements can be

inserted at the upstream boundary of the reservoir that will

allow the wave to pass and the strain energy in the water to

‘‘radiate’’ away from the dam.

Verification example

To verify the accuracy and validity of the finite element

modeling and developed computer code, the tallest

monolith with unit width of well-known Pine Flat Dam, a

concrete gravity dam in California, which is 122 m high, is

selected. A water depth of 116 m is considered as the full

reservoir condition. The geometry and FE model of the

Pine Flat dam monolith with unit width is shown in Fig. 5

(Batta and Pekae 1996). The properties of applied material

in the modeling are: Ec = 22.75 GPa, v ¼ 0:2 and q ¼
25 kN=m3: For nonlinear analysis, the tensile strength of

Fig. 4 Loading and unloading traction–separation exponential curve

for interface elements
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concrete is taken to be 3.36 MPa which is about 12% of its

compressive strength. The dynamic tensile strength must

be equivalent to the direct tensile strength multiplied by a

factor of 1.50 (Raphael 1984). The analysis results consist

of the weight of the dam, the static pressure of impounded

water and the seismic response for earthquake excitation of

horizontal-x component of Taft-1952 Lincoln California

ground motion with scaling to a PGA = 0.4 g. The applied

proportional damping of the dam provides a critical

damping ratio of 5% in the fundamental vibration mode of

it. Figure 6 shows the comparison between the obtained

results for crest displacement of the first 15 s excitation

from the program developed for the present study and

commercially available ANSYS program for the case of

linear material behavior. In addition, Fig. 7 shows the

analysis results obtained from developed program by

considering the effects of material nonlinearity and base

sliding. For transient structural analysis in ANSYS, a

corresponding 8-node 3-D concrete element SOLID65 is

selected.

Results of case study analysis

Karun-4 Dam is a double curvature arch dam on Karun

River in the province of Chaharmahal-e Bakhtiari, Iran. Its

whole crest length is divided by 20 contraction joints. The

geometric characteristics of the dam shape are listed in

Table 1. The geometry and FE model of the Karun-4 Dam

is shown in Figs. 8 and 9, respectively. The modulus of

elasticity, Poisson’s ratio and unit weight of concrete are

taken as 23.6 GPa, 0.2 and 24 kN/m3, respectively. The

tensile strength of concrete is assumed to be 2.75 MPa.

Dynamic magnification factors of 1.5, 1.3 and 1.25 are

applied to its modulus of elasticity, tensile and compressive

strengths, respectively. The damping ratio for the dam and

its foundation was set 5%. Based on the geotechnical

investigations of the dam site, the geomechanical param-

eters of most regions of bedrock are as follows (Mahab

Ghodss Consulting Engineering Company 2003): unit

weight = 25 kN/m3, deformation modulus = 11.0 GPa,

Poison’s ratio = 0.25, friction angle = 42�, cohe-

sion = 0.5 MPa and allowable bearing capacity: From 9 to

14 MPa (Used 12 MPa). Nonlinearity in the finite element

analysis was incorporated in the form of material nonlin-

earity of equivalent rock with uniaxial compressive and

tensile strength of 12 and 1.2 MPa, respectively. The

developed FE model of foundation extends 2.5 times of

dam height in all directions. Regarding the geometry of

discontinuities in each abutment and based on the results of

a preliminary analysis, ‘‘F4-a & F6-a’’ and ‘‘MJ67-c &

MJ28’’ are defined as critical discontinuities on the left and

right abutments, respectively. The characteristics of critical

Fig. 5 FE model of Pine Flat dam on rigid base and subjected to

Taft-1952 ground motion

Fig. 6 Comparison of displacement results of the Pine flat dam crest

with ANSYS program results due to horizontal component of dam

base displacement Taft-1952

Fig. 7 Comparison of horizontal displacement for the nonlinear

behavior of materials and the possibility of slip at the base of dam
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discontinuities are presented in Table 2. These plates cause

six large blocks, as shown in Fig. 10.

The water in the reservoir was assumed to have a

constant depth of 155 m, mass density = 10 kN/m3, bulk

modulus = 2131 MPa and Poisson’s ratio = 0.495 for

nearly incompressible fluid. For the upstream/down-

stream sediments with the assumption of about 60/30 m

depth: mass density qs = 13.6 kN/m3, and bulk modulus

Bs = qs cs
2 = 3312 MPa, where the sound speed profile

is estimated through the physical sediment properties

using Biot theory and assuming cs = 1560 m/s. The

developed finite element mesh for the reservoir and

sediments is shown in Fig. 11.

Interface elements are used for the modeling of rock

discontinuities, vertical joints between the cantilevers and

the intersection of the dam with canyon rock, as well as the

boundary between reservoir and surrounding domain with

negligible shear stiffness. At the truncated boundaries of

the reservoir and rock foundation (later called as ‘‘Moving

B.C.’’), the interface elements are available in the devel-

oped numerical program. The properties of several inter-

face elements are presented in Table 3. The developed

coupled model includes 11,764 nodes and 9348 elements.

The position of interface elements is shown in Fig. 12.

The loads applied to the model consist of static and

dynamic loading. Static loads are dead weight and the

hydrostatic pressure of reservoir water at its normal level in

addition to the sediment weight.

Information about the in situ stresses of the rock field is

a fundamental parameter for the dam–foundation analysis

and has a direct effect on dynamic design of such a coupled

system. The in situ stress in a rock mass is simply equal to

the weight of the overlying material; therefore, the dis-

continuities will control the magnitude and direction of this

stress field. In this study, firstly the static load of discon-

tinuous rock weight was applied to investigate the in situ

stress. For this loading case, the dam body should remain

free of stress because of canyon deformation. To overcome

this problem, the numerical program has the ability to

change the material properties in loading steps. Therefore,

in a pre-loading step, Young’s modulus of dam body and a

region of the rock abutments near the dam gradually

decrease and Poisson’s ratio increases to 0.49. In the next

dummy load step, material properties gradually change to

real values.

The first 40 s of the three components of Taft Lincoln

School records obtained from the 1952 earthquake hap-

pening in Kern County, California are used as input ground

motion. The peak ground acceleration of x, y (horizontal

components), and z (vertical component) directions are

0.156, 0.178 and 0.108g, respectively. For seismic hazard

study of Karun 4 Dam site, the earthquake time histories

are scaled to the maximum credible level at the middle

height of canyon (PGAhor = 0.49g, PGAver = 0.26g). A

time step of 0.01 s is chosen for the analysis. The

Fig. 8 General view of Karun 4 project area

Fig. 9 3D finite element model of the Karun 4 arch dam and interface

elements of contraction and perimetral joints

Table 1 The geometric

characteristics and dimensions

of the dam shape

Geometric parameters Dam shape Geometric parameters Dam shape

Crest elevation 1032.0 m Base thickness 37.0 m

Maximum height 230.0 m Base undercut 6.0 m

Crest thickness 7.0 m Maximum thickness 50.5 m

Crest overhang 40.0 m Reservoir volume 2190 9 106 m3

Crest central angle 83.2� Concrete volume 1,675,000 m3

Crest length 440 m Excavation volume 660,000 m3

Outlets discharge capacity 8600 m3/s Developed mid-face 55,000 m2
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displacement time histories for the three components of

Taft earthquake are shown in Fig. 13.

To present the effect of foundation interaction on the

seismic response, several cases of massive foundation are

chosen:

• C0 Continuous rock foundation—Moving B.C (without

interface elements between the rock blocks and with

interface elements on the truncated boundary);

• C1 Continuous rock foundation—Fixed B.C (without

interface elements between the rock blocks and on the

truncated boundary);

• C2 Discontinuous rock foundation—Moving B.C

(called ‘‘Real Case’’);

• C3 Condition ‘‘C1’’ with rigid and massless foundation;

• C4 Condition ‘‘C2’’ with applying a reduction factor of

10% for deformation modulus and allowable bearing

capacity of the rock blocks RB1, RB2, RB3 and RB4

(demonstrated in Fig. 10);

• C5 Condition ‘‘C2’’ with applying a reduction factor of

10% for deformation modulus and allowable bearing

capacity of rock blocks RB5 and RB6 (demonstrated in

Fig. 10);

Fig. 10 3D finite element model of the rock foundation is divided

into six blocks

Fig. 11 Finite element mesh of the reservoir and sediment elements

Table 2 Geomechanical parameters of the critical discontinuities in the left abutment

Geometrical

specification

Discontinuities

F4-a F6-a MJ28New MJ67-c

Dip direction 052� 001� 349� U/S: 015�
D/

S:030–070

Dip 30� 41� 35� U/S: 035�
D/S: 030�

Leakage

condition

Wet Wet Wet NA

Geomechanical

condition

Rock fractured- calcium filling thickness

10–15 cm, 2 m displaced, planar-

smooth

Fractured zone, Fe gravel clay filling

10–30 cm, 2–8 m displaced, planar,

rough, smooth

Rock fractured,

filling 2 cm,

planar, rough

NA

Abutment Left Left Left Right

Rock block planes

RB1 H – – H

RB2 H – – H

RB3 H H – H

RB4 H H – H

RB5 H – H H

RB6 H – H H

198 Int J Adv Struct Eng (2017) 9:191–203

123



• C6 Condition ‘‘C6’’ with applying a reduction factor of

20%; and

• C7 Condition ‘‘C7’’ with applying a reduction factor of

20%.

Figures 14, 15, 16, 17 and 18 show the comparison of

crest displacement of the crown cantilever (node number

64 in Fig. 9) in upstream–downstream direction for several

cases. As can be seen, detailed modeling of foundation

with high accuracy has a very important role in the coupled

system analysis. Also, using the interface elements with

appropriate characteristics on the far-end boundaries and

major fault zones of the foundation changes the seismic

response of dam significantly. It should also be noted that

such boundary conditions and modeling of discontinuities

in bedrock are critical for an actual response of dam as

compared in Fig. 14. The foundation flexibility effects on

dam response is also compared in Fig. 15.

The results of the analysis, as shown in Fig. 16, illustrate

the importance of the effects of inhomogeneity and change

in the material properties of discontinuous rock foundation

on the seismic response of concrete dams. As can be seen,

the foundation flexibility with a reduction factor of 10 and

20% for deformation modulus and allowable bearing

Fig. 12 Finite element mesh of interface elements

Fig. 13 Three displacement

components of the Kern County,

California earthquake of 21 July

1952 recorded at the Taft

Lincoln School Tunnel

Fig. 14 Comparison of

upstream/downstream crest

displacement of Karun 4 dam

under Taft earthquake for C0,

C1 and C2 cases

Table 3 Interface elements

parameters
Position of contact surfaces Interface stiffness

Normal direction (N/mm3) Tangential direction (N/mm3)

Contraction joints in the dam 3:0 � 109 1:5 � 109

Peripheral joints at the dam–foundation 4:0 � 109 2:0 � 109

Discontinuities in rock masses 1:0 � 109 0:8 � 109

Far-end boundaries of rock foundation 6:0 � 109 3:0 � 109

Fig. 15 Comparison of

upstream/downstream crest

displacement of Karun 4 dam

under Taft earthquake for C1

and C3 (continuous, rigid and

massless foundation) cases
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capacity of domain parts has significantly affected the dam

response. Figure 17 shows the difference between time

history response of three adjacent nodes of the truncated

boundary of foundation (belongs the three blocks RB1,

RB2 and RB3). This is a result of non-uniform excitation of

discontinuities foundation that has been composed of

blocks with different mass, geometry and boundary con-

ditions. To study the effect of contraction joint nonlinearity

on the seismic response of dam, the time history compar-

ison of joint sliding at the crown cantilever in crest and

mid-height levels is considered as shown in Fig. 18. The

maximum joint sliding is 10.1 cm at time 29.5 s for case

C2. It should be noted that for the model with joint non-

linearity, there are two nodes at each point which are

located on the interface elements. For example, nodes 64

and 53 at crest level and nodes 775 and 814 at the mid-

height level are both on the crown cantilever at the same

position (demonstrated in Fig. 9). Also, the contours of

maximum and minimum principal stress obtained from

nonlinear analysis for real case (Case C2) with a deformed

scale of 20 at time 40 s are shown in Fig. 19a, b. A sum-

mary of the upstream–downstream and vertical displace-

ments for all the analyses is provided for comparison in

Table 4.

Conclusions

In this study, after conducting a survey of the literature on

numerical methods for modeling of coupled concrete dam–

reservoir water–foundation rock systems, a finite element

computer program developed for the analysis and design of

Fig. 16 Comparison of upstream/downstream crest displacement of Karun 4 dam under Taft earthquake for different reduction factor of rock

blocks

Fig. 17 Comparison of

displacements time history

between the three adjacent

nodes of truncated boundary of

rock foundation (demonstrated

in Fig. 9) in normal direction

(case C2)

Fig. 18 Comparison of crest

and mid-height joint sliding at

the crown cantilever (case C2)
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new dams and for the seismic safety evaluation of existing

concrete dams.

For the purpose of the study, the highest arch dam in

Iran, i.e., ‘‘Karun 4’’is selected. To evaluate the seismic

response of this arch dam more accurately, various effects

of dam–foundation interaction in time domain including

the effects of inertia and flexibility of non-homogeneous

foundation rock as well as the proper exertion of in situ

stresses have been taken into account.

As mentioned in the previous section, ten cases are

considered: the linear model, and nine nonlinear models

with flexibility, non-homogeneous and discontinuities

Fig. 19 a Maximum principal stress contours, and b minimum principal stress contours with deformed scale of 20 at time 40 s for the cases of

C2 ‘‘Real Case’’ (upstream-right and downstream-left views)\unit: MPa[

Table 4 Upstream–downstream and vertical displacement comparison of crest at crown cantilever (node 64)

Cases

index

Seismic analysis results under Taft earthquake

Maximum upstream

displacement (m)

Time

(s)

Maximum

downstream

Time

(s)

Maximum/minimum vertical

displacement (m)

Time (s) at max dis./

min dis.

C0 0.647 21.63 0.447 23.92 0.191/-0.377 15.79/34.39

C1 0.681 32.40 0.529 31.60 0.174/-0.441 31.71/32.44

C2 0.567 17.19 0.601 16.14 0.178/-0.248 14.43/36.07

C3 0.221 28.63 0.193 26.12 0.075/-0.096 32.75/11.41

C4 0.456 17.07 0.332 16.38 0.133/-0.242 13.80/18.70

C5 0.560 17.12 0.547 16.11 0.179/-0.291 14.36/39.65

C6 0.573 38.60 0.514 16.30 0.212/-0.284 14.52/38.70

C7 0.603 17.34 0.561 39.39 0.164/-0.266 14.47/36.27

C8 0.652 30.52 0.647 31.40 0.075/-0.372 17.27/39.19

C9 0.486 33.65 0.514 39.88 0.161/-0.304 14.62/39.78
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effects of foundation rock and hydrodynamic effects of

reservoir on dam response. In each case, the time history

response of crest displacement of the crown cantilever in

upstream–downstream direction is obtained.

The results demonstrate that the response of concrete

arch dam–reservoir–foundation system is significantly

affected by ‘‘concrete and rock material nonlinearity’’, ‘‘the

role of various discontinuities present in real system’’,

‘‘flexibility of non-homogeneous foundation’’, and ‘‘far-

end boundary condition’’. Also, the results show that the

application of material non-homogeneity in foundation for

dynamic analysis is a key factor for seismic response, but

neglecting the foundation discontinuities and moving and

viscous properties of far-end boundary condition leads to

inappropriate results.
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