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Abstract In this paper, a new eight-unknown shear defor-

mation theory is developed for bending and free vibration

analysis of functionally graded plates by finite-element

method. The theory based on full 12-unknown higher order

shear deformation theory simultaneously satisfies zeros

transverse stresses at top and bottom surfaces of FG plates. A

four-node rectangular element with 16 degrees of freedomper

node is used. Poisson’s ratios, Young’s moduli, and material

densities vary continuously in thickness direction according to

the volume fraction of constituents which is modeled as

power-law functions. Results are verified with available

results in the literature. Parametric studies are performed for

different power-law indices, side-to-thickness ratios.

Keywords Functionally graded plate � Finite-element

method � Bending � Vibration analysis

Introduction

Since it was invented by Japanese scientists in 1984

(Koizumi 1997), functionally graded materials (FGMs) are

increasingly and widely used in many fields, such as

aerospace, marine, mechanical, and structural engineering

due to its advantages compared to classical fiber-reinforced

laminated composites. The typical FGMs composed of

ceramic and metal materials. The ceramic composition

offers thermal barrier effects and protects the metal from

corrosion and oxidation, and the metallic composition

provides FGM toughness and strength.

For dynamic and static analysis of functionally gradedplates

and shells, many plate theories are developed. A review of

shear deformation theories for isotropic and laminated plates

was carried out by Ghugal and Shimpi (2002) and Khandan

et al. (2012). Focus on modeling of functionally graded plates

and shells, Thai and Kim (2015) reviewed various theoretical

models to investigate their mechanical behavior. The classical

plate theory (CPT) based on Kirchhoff assumptions and

ignores the transverse shear deformation effect gives appro-

priate results for thin plates. First-order shear deformation

theory (FSDT) takes into account the transverse shear defor-

mation effect and needs a shear correction factor which is

difficult to determine due to its dependence on many parame-

ters. To overcome the weaknesses of FSDT, the higher order

shear deformation theories are proposed.

A comprehensive review of the variousmethods employed

to study the static, dynamic, and stability behavior of func-

tionally graded plates can be found in work of Swaminathan

et al. (2015). The review focuses on comparing the stress,

vibration, and buckling characteristics of FGM plates using

different theories. Based on third-order shear deformation

theory with five displacement unknowns, Reddy (2000)

developed analytical and finite-element solutions for static

and dynamic analyses of functionally graded rectangular

plates. El-Abbasi andMeguidin (2000) used a new thick shell

element to study the thermoelastic behavior of functionally

graded plates and shells. They extended the four-nodded

seven-parameter shell element to account for the varying

elastic and thermal properties, as well as the temperature

boundary conditions on both faces of FG plates and shells.

Oyekoya et al. (2009) developed Mindlin-type element

and Reissner-type element for the modeling of functionally
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graded plate subjected to buckling and free vibration. The

Mindlin-type element formulation is based on averaging of

transverse shear distribution over plate thickness using

Lagrangian interpolation. The Reissner-type element for-

mulation is based on parabolic transverse shear distribution

over plate thickness using Lagrangian and Hermitian

interpolation. Talha and Singh (2010) studied free vibration

and static behavior of functionally graded plates using

higher order shear deformation theory. A continuous

isoparametric Lagrangian finite element with 13 degrees of

freedom per node is employed for the modeling of func-

tionally graded plates. Thai and Choi (2013) presented

finite-element formulation of various four-unknown shear

deformation theories for the bending and vibration analyses

of functionally graded plates. To describe the primary

variables, a four-node quadrilateral finite element is

developed using Lagrangian and Hermitian interpolation

functions. Three-dimensional graded finite-element method

based on Rayleigh–Ritz energy formulation has been

applied to study the static response of the thick functionally

graded plates (Zafarmandand and Kadkhodayan 2014).

In this paper, a new higher order displacement field

based on 12-unknown higher order shear deformation

theory is developed to analyze the free vibration and

buckling of functionally graded plates. The new eight-un-

known higher order shear deformation theory is derived

from the satisfaction of vanishing transverse shear stress at

the top and bottom surfaces of the plate. The finite-element

model is developed for bending and free vibration analysis

of power-law functionally graded plates. A C1 continuous

four-node quadrilateral plate element with 16 degrees of

freedom per node is employed. Lagrangian linear interpo-

lation functions are used to describe the in-plane dis-

placements and the rotation of normals about x and y axes;

Hermitian cubic interpolation functions are given for the

transverse displacement, rotation about z-axis, higher order

term of displacements and their first derivation.

Kinematics

The 12-unknown higher order displacement field is given

as follows (Jha et al. 2012):

u(x, y; z) ¼ u0(x; y) þ zhx(x; y) þ z2u�0(x; y) þ z3h�x(x; y);

vðx; y; zÞ ¼ v0ðx; yÞ þ zhyðx; yÞ þ z2v�0ðx; yÞ þ z3h�yðx; yÞ;
wðx; y; z; tÞ ¼ w0ðx; y; tÞ þ zhzðx; y; tÞ þ z2w�

0ðx; y; tÞ
þ z3h�z ðx; y; tÞ ð1Þ

where u; v; w denote the displacements of a point along

the (x, y, z) coordinates. u0; v0; w0 are the corresponding

displacements of a point on the midplane. hx, hy, and hz are
the rotations of the line segment normal to the midplane

about the y-axis, x-axis, and z-axis, respectively. The

functions u�0, v
�
0, w

�
0, h

�
x , h

�
y , and h�z are the higher order

terms in the Taylor series expansion defined in the

midplane.

For bending plates, the transverse shear stresses rxz and
ryz must be vanished at the top and bottom surfaces. These

conditions lead to the requirement that the corresponding

transverse strains on these surfaces be zero. From

cxz x; y; � h
2

� �
¼ cyz x; y; � h

2

� �
¼ 0 , we obtain

u�0 ¼ � 1

2
hz;x � h2

8
h�z;x; h

�
x ¼ � 4

3h2
hx þ w0;x

� �
� 1

3
w�
0;x;

v�0 ¼ � 1

2
hz;y � h2

8
h�z;y; h

�
y ¼ � 4

3h2
hy þ w0;y

� �
� 1

3
w�
0;y.

ð2Þ

Thus, the displacement field (1) becomes

u ¼ u0 þ zhx � z2

2
hz;x þ c1h

�
z;x

� �

� z3

3
c2 hx þ w0;x

� �
þ w�

0;x

h i
;

v ¼ v0 þ zhy � z2

2
hz;y þ c1h

�
z;y

� �

� z3

3
c2 hy þ w0;y

� �
þ w�

0;y

h i
;

w ¼ w0 þ zhz þ z2w�
0 þ z3h�z

ð3aÞ

with c1 ¼ h2

4
; c2 ¼ 4

h2

or in matrix notation as

uf g ¼ �H½ � df g ð3bÞ

where

�H½ � ¼
1 0 z � c2z

3

3
0 0

�c2z
3

3
0 0

�z2

2
0 0

�z3

3
0 0

�c1z

2
0

0 1 0 z � c2z
3

3
0 0

�c2z
3

3
0 0

�z2

2
0 0

�z3

3
0 0

�c1z

2
0 0 0 0 1 0 0 z 0 0 z2 0 0 z3 0 0

2

6664

3

7775
;
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uf g ¼ u; v; wf gT displacement vector of any generic

point within the plate; df g ¼ u0; v0; hx; hy; w0;
�

w0;x; w0;y; hz; hz;x; hz;y; w�
0; w

�
0;x; w

�
0;y; h

�
z ; h�z;x; h

�
z;yg

T :

Following strain–displacement relation, the non-zero

strains are given as:

ex
ey
ez
cxy
cxz
cyz

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

=

e0x
e0y
e0z
c0xy
c0xz
c0yz

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

þ z

j0x
j0y
j0z
j0xy
j0xz
j0yz

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

þ z2

e�x
e�y
e�z
c�xy
c�xz
c�yz

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

þ z3

j�x
j�y
0

j�xy
j�xz
j�yz

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

or

: ef g ¼ e0
� �

+ z j0
� �

þ z2 e�f g þ z3 j�f g. ð4Þ

where

e0
� �

¼ e0x ; e
0
y ; e

0
z ; c

0
xy

n o

¼ u0;x; v0;y; hz; u0;y þ v0;x
� �

;

j0x ; j
0
y ; j

0
z ; j

0
xy

n o
¼ hx;x; hy;y; 2w

�
0; hx;y þ hy;x

� �
;

e�x ; e
�
y ; e

�
z ; c

�
xy

n o
¼ � 1

2
hz;xx þ c1h

�
z;xx

� �
;

�

� 1

2
hz;yy þ c1h

�
z;yy

� �
; 3h�z ; � hz;xy þ c1h

�
z;xy

� �o
;

j�x ; j
�
y ; j

�
xy

n o
¼ � 1

3
c2 hx;x þ w0;xx

� �
þ w�

0;xx

� ��
;

� 1

3
c2 hy;y þ w0;yy

� �
þ w�

0;yy

� �
;

�1

3
c2 hx;y þ hy;x þ 2w0;xy

� �
þ 2w�

0;xy

� �	
;

c0xz; c
0
yz

n o
¼ w0;x þ hx; w0;y þ hy

� �
; j0xz; j

0
yz

n o

¼ �c1h
�
z;x; �c1h

�
z;y

n o
;

c�xz; c
�
yz

n o
¼ �c2 w0;x þ hx

� �
;�c2 w0;y þ hy

� �� �
;

j�xz; j
�
yz

n o
¼ h�z;x; h

�
z;y

n o
:

Constitutive equation

Consider a rectangular FGM plate with the length a, width

b, and thickness h. The x-, y-, and z-coordinates are taken

along the length, width, and height of the plate, respec-

tively, as shown in Fig. 1. The material properties of FGM

plates are assumed to vary continuously through the

thickness of the plate by a power-law distribution as

(Reddy 2002):

VðzÞ ¼ Vc � Vmð Þ z

h
þ 1

2


 �p

þ Vm ð5Þ

where V(z) represents the effective material property, such

as Young’s modulus E, mass density q, and Poisson’s ratio

m; subscripts m and c represent the metallic and ceramic

constituents, respectively; and p is the volume fraction

exponent.

The stress–strain relationship for the FGM plate can be

written as

rx
ry
rz
rxy
rxz
ryz

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

¼

Q11 Q12 Q13 0 0 0

Q21 Q22 Q23 0 0 0

Q31 Q32 Q33 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

2

666666664

3

777777775

ex
ey
ez
cxy
cxz
cyz

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

or compact matrix form: rf g ¼ D½ � ef g ð6Þ

in which

Q11 ¼ Q22 ¼ Q33 ¼ 1 � mð ÞE
1 þ mð Þ 1 � 2mð Þ ;

Q44 ¼ Q55 ¼ Q66 ¼ E
2 1 þ mð Þ ;

Fig. 1 Geometry of FG plate with positive set of reference axes

4 (-1,1)  (1,1) 

1 (-1,-1) 2 (1,-1) 

Fig. 2 Node number of four-node quadrilateral element in its natural

coordinate
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Q12 ¼ Q23 ¼ Q13 ¼
mE

1þ mð Þ 1� 2mð Þ ¼ Q21 ¼ Q32 ¼ Q31.

Finite-element formulation

A C1 continuous four-node quadrilateral plate-bending

element with 16 degrees of freedom per node is used

(Fig. 2). The Lagrangian linear interpolation functions

Ni n; gð Þ are employed to describe the variables

u0; v0; hx; hy and the Hermitian cubic interpolation func-

tions Hij n; gð Þ are employed to describe the variables

w0; w0;x; w0;y; hz; hz;x; hz;y; w�
0; w

�
0;x; w

�
0;y; h

�
z ; h

�
z;x; h

�
z;y :

u0; v0; hx; hy
� �T ¼

X4

i¼1

Ni u0i; v0i; hxi; hyi
� �T ¼ �B1½ � qef g;

ð7aÞ

w0; hz; w
�
0; h

�
z

� �T ¼
X4

i¼1

X3

j¼1

Hij

w0i; w0i;x; w0i;y; hzi; hzi;x; hzi;y; w
�
0i; w

�
0i;x; w

�
0i;y;

n

h�zi; h
�
zi;x; h

�
zi;y

oT

¼ �B21½ � qef g; ð7bÞ

w0;x; hz;x;w
�
0;x; h

�
z;x

n oT

¼
X4

i¼1

X3

j¼1

Hij;x

� w0i;w0i;x;w0i;y; hzi; hzi;x; hzi;y;w
�
0i;w

�
0i;x;w

�
0i;y; h

�
zi; h

�
zi;x; h

�
zi;y

n oT

¼ �B22½ � qef g;
ð7cÞ

w0;y;hz;y;w
�
0;y;h

�
z;y

n oT

¼
X4

i¼1

X3

j¼1

�Hij;y w0i;w0i;x;w0i;y;hzi;hzi;x;hzi;y;w
�
0i;w

�
0i;x;w

�
0i;y;h

�
zi;h

�
zi;x;h

�
zi;y

n oT

¼ �B23½ � qef g:
ð7dÞ

For rectangular elements, the interpolation functions Ni

and Hij for the ith node are given in terms of the natural

coordinates as

Ni ¼
1

4
1þ ninð Þ 1þ gigð Þ; ð8aÞ

Hi1 ¼
1

8
1þ ninð Þ 1þ gigð Þ 2þ ninþ gig� n2 � g2

� �
;

Hi2 ¼
1

8
ni nin� 1ð Þ 1þ gigð Þ 1þ n2i n

2
� �

;

Hi3 ¼
1

8
gi gig� 1ð Þ 1þ ninð Þ 1þ n2i n

2
� �

: ð8bÞ

qef g ¼ q1, q2, q3, q4f gT is element nodal displacement

vector.

qif g ¼ u0i; v0i; hxi; hyi;w0i;w0;xi;w0;yi; hzi; hz;xi; hz;yi;
�

w�
0i;w

�
0;xi;w

�
0;yi; h

�
zi; h

�
z;xi; h

�
z;yig

T
is nodal displacement vector

corresponding to the ith node.

The displacement vector at any generic point can be

written as

df g ¼ �B½ � qef g ð9Þ

where �B½ � ¼ �B1½ �; �B21½ �; �B22½ �; �B23½ �½ �T is the shape function

matrix.

The strain vector is expressed by

ef g ¼ L½ � df g = L½ � �B½ � qef g ¼ B½ � qef g: ð10Þ

[L] is differential operator matrix, B½ � ¼ L½ � �B½ � is the

strain–displacement matrix.

Hamilton’s principle can be expressed as

0 ¼
ZT

0

dU þ dW � dTð Þdt ð11aÞ

and applying for each element:

The strain energy of the FGM plate element is given by

Ue ¼
1

2

Z

Ve

rf gT ef gdV ¼ 1

2

Z

Ve

qef gT B½ �T D½ � B½ � qef gdV

¼ 1

2
qef gT Ke½ � qef g.

ð11bÞ

The external work done on the plate element by distributed

applied load may be written as

We ¼ �
Z

Ae

df gT ff gdA ¼ �
Z

Ae

qef gT �B½ �T ff gdA

¼ � qef gT Fef g ð11cÞ

and {f} is mechanical load vector.

The kinetic energy of the FGM plate can be expressed as

Te ¼
1

2

Z

V

_uf gT _uf g q(z)dV

¼ 1

2

Z

V

_qef gT �H½ �T B½ �T �H½ � B½ � _qef g q zð ÞdV

¼ 1

2
_qef gT Me½ � _qef g. ð11dÞ

Substituting Eqs. (11b–11d) into Eq. (11a), finite-element

stiffness equation is obtained as

Me½ � €qef g þ Ke½ � qef g ¼ Fef g ð12Þ

where [Ke], [Me], and {Fe} are the element stiffness matrix,

element mass matrix, and element nodal load vector, {qe}

is nodal displacement vector, and €qef g is the second
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derivative of the displacements of the element with respect

to time.

By assembling the element matrices, the global equi-

librium equations for the plate can be obtained as

K½ � Qf gþ M½ � €Q
� �

¼ F½ �: ð13Þ

where [K], [M], and {F} are the global stiffness matrix,

mass matrix, and nodal load vector of the structure,

respectively, {Q} is nodal displacement vector, and €Qg
�

is

the second derivative of the displacements of the structures

with respect to time.

The generalized governing Eq. (13) can be employed to

study the free vibration and static analysis by dropping the

appropriate terms as follows.

For linear static analysis

K½ � Qf g ¼ Ff g: ð14Þ

For free vibration analysis, the frequency of natural

vibration can be obtained from the bellow eigenvalue

problem:

K½ ��x2 M½ �
� �

Qf g ¼ 0½ �: ð15Þ

This equation can be solved after imposing boundary

conditions of the structure, with eigenvalues solving

common problems.

The boundary conditions for an arbitrary edge with

simply supported and clamped edge conditions are:

Clamped (C):

u0 ¼ v0 ¼ hx ¼ hy ¼ w0 ¼ w0;x ¼ w0;y ¼ hz ¼ hz;x ¼ hz;y
¼ w�

0 ¼ w�
0;x ¼ w�

0;y ¼ h�z ¼ h�z;x ¼ h�z;y

at x = 0; a and y = 0; b.Simply supported (S):

v0 ¼ hy ¼ w0 ¼ w0;y ¼ hz ¼ hz;y ¼ w�
0 ¼ w�

0;y ¼ h�z ¼
h�z;y at x = 0; a.

u0 ¼ hx ¼ w0 ¼ w0;x ¼ hz ¼ hz;x ¼ w�
0 ¼ w�

0;x ¼ h�z ¼
h�z;x at y = 0; b.

Numerical results

Matlab codes for finite-element model have been built for

numerical investigation. After checking convergence, a

10 9 10 mesh of four-node element has been used in the

computation. The selective integration scheme based on

Gauss-quadrature rules, with 3 9 3 for membrane, cou-

pling, flexure and inertia terms and 2 9 2 for shear term. A

rectangular FG plates with different boundary conditions,

as shown in Fig. 3 are considered (F-free, S-simply sup-

ported, and C-clamped). Material properties of the P-FG

plate are given in Table 1. For convenience, the following

dimensionless forms are used (Thai and Kim 2013):

�w ¼ 10wEch
3

q0a4
; �x ¼ xh

ffiffiffiffi
qc
Ec

q
:

Example 1 Validation study

Dimensionless central deflections �w of isotropic square

plates (p = 0) with various values of thickness ratios a/

h are presented in Table 2. The present results are com-

pared with the solutions given by Thai and Choi (2013)

based on four-unknown shear deformation theories (zeros

shape function—FSDT) and the analytical solutions

Table 1 Material properties used in the P-FG plate [13]

Properties E (GPa) t q (kg/m3)

Metal Aluminum (Al) 70 0.3 2702

Ceramic Alumina (Al2O3) 380 0.3 3800

y

x

y

x

y

x

y

x

y

x

y

x

y

x

CSSSCSCSCCCC

FSFSSSFSCSFSSSSS

Fig. 3 Boundary conditions of plates
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reported by Zenkour (2003) based on a mixed first-order

shear deformation theory (MPT). It can be seen that the

present solution is in close agreement with those solutions

(errors\0.2%).

Dimensionless fundamental frequencies �x of simply

supported (SSSS) square FG plates (p = 0) with various

values of thickness ratios a/h and power-law index p are

presented in Table 3. The comparison of the dimensionless

fundamental frequencies of present results shows good

agreement with analytical solutions of Thai and Kim

(2013) based on simple higher order theory, and finite-

element results of Thai and Choi (2013) based on four

unknowns shear deformation theories.

Example 2 Effect of power-law index p and side-to-

thickness ratio a/h on the dimensionless central deflection

�w.

In this example, the square FG plate with different

boundary conditions under uniformly distributed load is

considered. The calculated dimensionless central deflection

with various power-law indices p = 0; 0.5; 1.0; 2; 5; 10

and a/h = 5; 10; 20; 50 are given in Table 4. Figures 4 and

5 show the variation of power-law index p and side-to-

thickness ratio a/h versus dimensionless central deflection.

It is found that the dimensionless central deflection

increases as power-law index p increases, while dimen-

sionless central deflection decreases as side-to-thickness

ratio increase with all types of boundary conditions.

Example 3 Effect of power-law index p and side-to-

thickness ratio a/h on the fundamental frequency �x

Table 5 presents the dimensionless fundamental fre-

quency for various power-law indices p = 0; 0.5; 1.0; 2; 5;

10 and a/h = 5; 10; 20; 50. Different boundary conditions

for each case are considered. The variation of dimension-

less fundamental frequency versus power-law index p and

side-to-thickness ratio a/h is illustrated in Figs. 6 and 7.

It is observed that for all types of boundary condition,

dimensionless frequencies decreases as power-law index

and side-to-thickness ration increases. Effect of boundary

conditions is clearly too, the dimensionless frequency of

FG plate with boundary conditions CCCC is highest, and

the lowest with SSSS boundary conditions.

Conclusions

In this study, the new eight-unknown shear deformation

theory is used to analyze the bending and free vibration of

rectangular functionally graded plates by finite-element

approach. The governing equations and boundary condi-

tions are derived by employing Hamilton’s principle.

Validation studies have been carried out to confirm the

accuracy of the present formulation. The obtained result

shows good agreement with those available in the litera-

ture. Influence of power-law index, side-to-thickness ratio

on bending, and vibration responses of FG plates have been

Table 3 Dimensionless fundamental frequency �x of SSSS Al/Al2O3

square plates

a/h Method Power-law index (p)

0 0.5 1 4 10

5 TSDT [14] 0.2113 0.1807 0.1631 0.1378 0.1301

FSDT [13] 0.2108 0.1802 0.1629 0.1396 0.1322

Present 0.2280 0.1949 0.1765 0.1504 0.1420

10 TSDT [14] 0.0577 0.0490 0.0442 0.0381 0.0364

FSDT [13] 0.0576 0.0489 0.0441 0.0382 0.0365

Present 0.0591 0.0502 0.0457 0.0402 0.0383

20 TSDT [14] 0.0148 0.0125 0.0113 0.0098 0.0094

Present 0.0154 0.0130 0.0119 0.0105 0.0100

Table 2 Dimensionless

deflection �w of isotropic square

plates under uniform loads

a/h Method Boundary condition

SCSC SSSC SSSS SFSC SFSS SFSF

5 MPT (Zenkour 2003) 0.3021 0.3827 0.4904 0.7139 0.9072 1.4539

FSDT (Thai and Kim 2013) 0.2837 0.3686 0.4929 0.6945 0.9146 1.4794

Present 0.2833 0.3565 0.4526 0.6958 0.8837 1.5742

10 MPT (Zenkour 2003) 0.2209 0.3059 0.4273 0.6065 0.8224 1.3459

FSDT (Thai and Kim 2013) 0.2220 0.3062 0.4298 0.6121 0.8314 1.3722

Present 0.2550 0.3337 0.4390 0.6625 0.8629 1.5406

25 MPT (Zenkour 2003) 0.1965 0.2830 0.4096 0.5737 0.7981 1.3154

FSDT (Thai and Kim 2013) 0.2047 0.2887 0.4121 0.5890 0.8080 1.3422

Present 0.2005 0.2816 0.3961 0.5822 0.8005 1.4487

10,000 MPT (Zenkour 2003) 0.1917 0.2785 0.4062 0.5667 0.7931 1.3094

FSDT (Thai and Kim 2013) 0.2014 0.2853 0.4087 0.5847 0.8036 1.3365

Present 0.1919 0.2736 0.3905 0.5694 0.7918 1.4324
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Table 4 Dimensionless

deflection �w of Al/Al2O3 square

plates under uniform loads

a/h p Boundary condition

CCCC SCSC SSSC SSSS SFSC SFSS SFSF

5 0 0.2064 0.2833 0.3565 0.4526 0.6958 0.8837 1.5742

0.5 0.3048 0.4225 0.5379 0.6909 1.0545 1.3526 2.4082

1 0.3897 0.5418 0.6919 0.8911 1.3602 1.7498 3.1272

2 0.5090 0.7053 0.8956 1.1463 1.7574 2.2511 4.0427

5 0.6757 0.9205 1.1406 1.4234 2.2019 2.7611 4.9461

10 0.7802 1.0537 1.2921 1.5952 2.4780 3.0770 5.5048

10 0 0.1800 0.2550 0.3337 0.4390 0.6625 0.8629 1.5406

0.5 0.2720 0.3875 0.5104 0.6756 1.0148 1.3290 2.3678

1 0.3424 0.4899 0.6491 0.8642 1.2974 1.7087 3.0590

2 0.4280 0.6131 0.8144 1.0868 1.6364 2.1622 3.9014

5 0.5271 0.7489 0.9827 1.2960 1.9656 2.5738 4.6574

10 0.5999 0.8469 1.1016 1.4402 2.1933 2.8499 5.1563

20 0 0.1393 0.2056 0.2862 0.3996 0.5895 0.8056 1.4562

0.5 0.2135 0.3158 0.4411 0.6175 0.9085 1.2445 2.2444

1 0.2725 0.4039 0.5659 0.7945 1.1696 1.6075 2.9111

2 0.3429 0.5086 0.7136 1.0029 1.4810 2.0400 3.7224

5 0.4088 0.6042 0.8439 1.1809 1.7518 2.4059 4.4104

10 0.4536 0.6689 0.9309 1.2984 1.9302 2.6432 4.8511

50 0 0.1297 0.1940 0.2756 0.3919 0.5727 0.7942 1.4395

0.5 0.2001 0.2996 0.4259 0.6062 0.8848 1.2280 2.2205

1 0.2566 0.3846 0.5478 0.7810 1.1413 1.5877 2.8827

2 0.3231 0.4848 0.6913 0.9863 1.4460 2.0156 3.6873

5 0.3801 0.5698 0.8118 1.1570 1.7013 2.3708 4.3596

10 0.4181 0.6263 0.8913 1.2690 1.8679 2.6000 4.7882
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Fig. 4 Variation of dimensionless deflection �w versus power-law

index p of Al/Al2O3-1 square plates under uniform loads (a/h = 10)
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Fig. 5 Variation of dimensionless deflection �w versus thickness ratio

a/h of Al/Al2O3-1 square plates under uniform loads (p = 2)
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Table 5 Dimensionless

fundamental �x frequency of Al/

Al2O3 square plates

a/h p Boundary condition

CCCC SCSC SSSC SSSS SFSC SFSS SFSF

5 0 0.3422 0.2896 0.2562 0.2280 0.1480 0.1386 0.1097

0.5 0.2970 0.2503 0.2201 0.1949 0.1263 0.1180 0.0933

1 0.2702 0.2274 0.1996 0.1765 0.1143 0.1067 0.0840

2 0.2432 0.2051 0.1806 0.1602 0.1037 0.0968 0.0758

5 0.2174 0.1850 0.1651 0.1482 0.0962 0.0903 0.0706

10 0.2052 0.1755 0.1575 0.1420 0.0924 0.0869 0.0682

10 0 0.0984 0.0805 0.0684 0.0591 0.0312 0.0300 0.0252

0.5 0.0843 0.0688 0.0582 0.0502 0.0267 0.0256 0.0215

1 0.0775 0.0631 0.0532 0.0457 0.0248 0.0238 0.0197

2 0.0714 0.0582 0.0490 0.0421 0.0233 0.0222 0.0182

5 0.0661 0.0543 0.0461 0.0398 0.0219 0.0209 0.0172

10 0.0630 0.0519 0.0442 0.0383 0.0209 0.0200 0.0165

20 0 0.0275 0.0220 0.0182 0.0154 0.0080 0.0077 0.0064

0.5 0.0234 0.0187 0.0154 0.0130 0.0069 0.0066 0.0055

1 0.0214 0.0171 0.0141 0.0119 0.0064 0.0061 0.0050

2 0.0197 0.0158 0.0130 0.0109 0.0060 0.0057 0.0046

5 0.0187 0.0150 0.0123 0.0104 0.0057 0.0054 0.0044

10 0.0180 0.0144 0.0119 0.0100 0.0054 0.0052 0.0042

50 0 0.0046 0.0036 0.0030 0.0025 0.0013 0.0012 0.0010

0.5 0.0039 0.0031 0.0025 0.0021 0.0011 0.0011 0.0009

1 0.0035 0.0028 0.0023 0.0019 0.0010 0.0010 0.0008

2 0.0033 0.0026 0.0021 0.0018 0.0010 0.0009 0.0007

5 0.0031 0.0025 0.0020 0.0017 0.0009 0.0009 0.0007

10 0.0030 0.0024 0.0019 0.0016 0.0009 0.0008 0.0007
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Fig. 6 Variation of dimensionless fundamental frequency �x versus

power-law index p of Al/Al2O3 square plates (a/h = 10).
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Fig. 7 Variation of dimensionless fundamental frequency �x versus

thickness ratio a/h of Al/Al2O3 square plates (p = 2)
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investigated and discussed. The new eight unknowns shear

deformation theory is accurate in predicting static and free

vibration responses of FG plates.

Acknowledgments This research is funded by Vietnam National

Foundation for Science and Technology Development (NAFOSTED)

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

El-Abbasi N, Meguid SA (2000) Finite element modeling of the

thermoelastic behavior of FG plates and shells. Int J Comput Eng

Sci 1:151–165

Ghugal YM, Shimpi RP (2002) A review of refined shear deformation

theories of isotropic and anisotropic laminated plates. J Reinf

Plast Compos 21(9):775–813

Jha DK, Kant T, Singh RK (2012) Higher order shear and normal

deformation theory for natural frequency of functionally graded

rectangular plates. Nucl Eng Des 250:8–13

Khandan R, Noroozi S, Sewell P, Vinney J (2012) The development

of laminated composite plate theories: a review. J Mater Sci

47(16):5901–5910

Koizumi M (1997) FGM activities in Japan. Compos B Eng 28(1):1–4

Oyekoya OO, Mba DU, El-Zafrany AM (2009) Buckling and

vibration analysis of functionally graded composite structures

using the finite element method. Compos Struct 89:134–142

Reddy JN (2000) Analysis of functionally graded plates. Int J Numer

Meth Eng 47:663–684

Reddy JN (2002) Energy principles and variational methods in

applied mechanics, 2nd edn. John Wiley & Sons Inc, Hoboken

Swaminathan K, Naveenkumar DT, Zenkour AM, Carrera E (2015)

Stress, vibration and buckling analyses of FGM plates—a state-

of-the-art review. Compos Struct 120:10–31

Talha M, Singh BN (2010) Static response and free vibration analysis

of FGM plates using higher order shear deformation theory.

Applied Mathematical Modelling 34.3991-4011

Thai HT, Choi DH (2013) Finite element formulation of various four

unknown shear deformation theories for functionally graded

plates. Finite Elem Anal Des 75:50–61

Thai HT, Kim SE (2013) A simple higher-order shear deformation

theory for bending and free vibration analysis of functionally

graded plates. Compos Struct 95:188–196

Thai HT, Kim SE (2015) A review of theories for the modeling and

analysis of functionally graded plates and shells. Compos Struct

128:70–86

Zafarmandand H, Kadkhodayan M (2014) Three-dimensional static

analysis of thick functionally graded plates using graded finite

element method. Proc Inst Mech Eng Part C J Mech Eng Sci

228(8):1275–1285

Zenkour AM (2003) Exact mixed-classical solutions for the bending

analysis of shear deformable rectangular plates. Appl Math

Model 27(7):515–534

Int J Adv Struct Eng (2016) 8:391–399 399

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Bending and free vibration analysis of functionally graded plates using new eight-unknown shear deformation theory by finite-element method
	Abstract
	Introduction
	Kinematics
	Constitutive equation
	Finite-element formulation
	Numerical results
	Conclusions
	Acknowledgments
	References




