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Abstract In the present study, the static, buckling, and free

vibration of laminated composite plates is examined using a

refined shear deformation theory and developed for a

bending analysis of orthotropic laminated composite plates.

These models take into account the parabolic distribution of

transverse shear stresses and satisfy the condition of zero

shear stresses on the top and bottom surfaces of the plates.

The most interesting feature of this theory is that it allows

for parabolic distributions of transverse shear stresses across

the plate thickness and satisfies the conditions of zero shear

stresses at the top and bottom surfaces of the plate without

using shear correction factors. The number of independent

unknowns in the present theory is four, as against five in

other shear deformation theories. In the analysis, the equa-

tion of motion for simply supported thick laminated rect-

angular plates is obtained through the use of Hamilton’s

principle. The accuracy of the analysis presented is

demonstrated by comparing the results with solutions

derived from other higher order models and with data found

in the literature. It can be concluded that the proposed theory

is accurate and simple in solving the static, the buckling, and

free vibration behaviors of laminated composite plates.

Keywords Higher-order theories � Shear deformation

theory of plates � Laminated composite plate

Introduction

The use of composite material for the structure/component

design has grown significantly over the past few decades

because their response characteristics can be tailored to

meet specific design requirements. Furthermore, composite

structures possess high specific stiffness and high specific

strength which leads to overall reduction of weight, by

increasing the efficiency of the structure. Laminated com-

posite plates are widely used in industry and new fields of

technology. Due to the high degrees of anisotropy and the

low rigidity in transverse shear of the plates, the Kirchhoff

hypothesis as a classical theory is no longer adequate. This

hypothesis states that the normal to the midplane of a plate

remains straight and normal after deformation because of

the negligible transverse shear effects. Refined theories

without this assumption have been used recently. The free

vibration frequencies calculated by using the classical

theory of thin plates are higher than those obtained by the

Mindlin theory of plates (Mindlin 1951), in which the

transverse shear and rotary inertia effects are included.

A number of shear deformation theories have been

proposed to date. The first such theory for laminated iso-

tropic plates was proposed apparently by Stavski (1965).

This theory was generalized to laminated anisotropic plates

in Yang et al. (1966), Ambartsumyan (1969) and

Ambartsumyan and Gnuni (1961). It was shown in Srinivas

and Rao (1970), Whitney and Sun (1973) and Bert et al.

(1974) that the Yang–Norris–Stavski (YNS) theory (Yang

et al. 1966) is adequate for predicting the flexural vibration

response of laminated anisotropic plates in the first few

modes. In Whitney and Pagano (1970), the YNS theory

was employed to study the cylindrical bending of

antisymmetric cross-ply and angle-ply plate-strips under

sinusoidal loading and the free vibration of antisymmetric
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angle-ply plate-strips (see also (Fortier and Rossettos 1973;

Shinha and Rath 1975). Using the YNS theory, a closed-

form solution for the free vibration of simply supported

rectangular plates of antisymmetric angle-ply laminates

was obtained in (Bert and Chen 1978). In Noor (1973) were

also presented exact three-dimensional elasticity solutions

for the free vibration of isotropic and anisotropic composite

laminated plates, which serve as benchmark solutions for

comparison by many researchers. The free vibration of

antisymmetric angle-ply laminated plates, with reference to

transverse shear deformations, was investigated in Reddy

(1979) using the finite-element method The author also

derived a set of variationally consistent equilibrium equa-

tions for the kinematic models originally proposed by

Levinson and Murthy (Reddy 1984). In Reddy and Khdeir

(1989), analytical and finite- element solutions for the

vibration and buckling of laminated composite plates were

found using various theories of plates to prove the neces-

sity for shear deformation theories to predict the behavior

of composite laminates. Using a higher order shear defor-

mation theory, finite-element solutions for free vibration

analysis of laminated composite plates were also obtained

in (Shankara and Iyengar 1996). The complete set of linear

equations of a second-order theory was derived in Khdeir

and Reddy (1999) to analyze the free vibration behavior of

cross-ply and antisymmetric angle-ply laminated plates. In

Singh et al. (2001), the natural frequencies of composite

plates with random material properties were determined

using a higher order shear deformation theory (including

the rotatory inertia effect). The natural frequencies of

laminated composite plates were also found in Rastgaar

et al. (2006) by employing a third-order shear deformation

theory. In Simsek (2010a), the dynamic deflections and the

stresses of a functionally graded simply supported beam

subjected to a moving mass were investigated using the

Euler–Bernoulli, Timoshenko, and the parabolic shear

deformation theory of beams. In Simsek (2010b), the free

vibration of functionally graded beams with different

boundary conditions was examined by using the classical,

first-order, and different higher order shear deformation

theories of beams. A stress analysis of a functionally gra-

ded plate subjected to thermal and mechanical loads was

performed in Matsunaga (2009) using a two-dimensional

higher order theory. A new trigonometric shear deforma-

tion theory for isotropic and composite laminated and

sandwich plates was developed recently in Mantari et al.

(2012), El and Chulkov (1973), where displacements of the

middle surface were expanded in terms of tangential

trigonometric functions of the thickness coordinate, and the

transverse displacements were assumed to be constant

across the thickness.

In this paper, a refined and simple theory of plates is

presented and applied to the investigation of static,

buckling, and free vibration behavior of laminated com-

posite plates. This theory is based on the assumption that

the in-plane and transverse displacements consist of

bending and shear components where the bending com-

ponents do not contribute to shear forces, and likewise, the

shear components do not contribute to bending moments.

The most interesting feature of this theory is that it allows

for parabolic distributions of transverse shear stresses

across the plate thickness and satisfies zero shear stress

conditions at the top and bottom surfaces of the plate

without using shear correction factors. The equations of

motion are derived using Hamilton’s principle. The fun-

damental frequencies are found by solving an Eigen value

equation. The results obtained by the present method are

compared with solutions and results of the first-order and

the other higher-order theories.

Theoretical formulations

Basic assumptions

Consider a rectangular plate of total thickness h composed

of n orthotropic layers with the coordinate system as shown

in Fig. 1. The assumptions of the refined plate’s theory are

as follows:

• The displacements are small in comparison with the

plate thickness and, therefore, strains involved are

infinitesimal.

• The transverse displacement w includes three compo-

nents of bending wb and shear ws. These components

are functions of coordinates x, y, and time t only.

wðx; y; z; tÞ ¼ wbðx; y; tÞ þ wsðx; y; tÞ ð1Þ

Fig. 1 Coordinate system and layer numbering used for a typical

laminated plate
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• The transverse normal stress rz is negligible in

comparison with in-plane stresses rx and ry.
• The displacements U in x-direction and V in y-direction

consist of extension, bending, and shear components:

U ¼ uþ ub þ us; V ¼ vþ vb þ vs ð2Þ

• The bending components ub and vb are assumed to be

similar to the displacements given by the classical plate

theory. Therefore, the expression for ub and vb can be

given as

ub ¼ �z
owb

ox
; vb ¼ �z

owb

oy
ð3Þ

• The shear components us and vs give rise, in conjunction

with ws, to the parabolic variations of shear strains cxz, cyz
and hence to shear stressesrxz,ryz through the thickness of
theplate in suchaway that shear stressesrxz,ryz are zeroat
the top and bottom faces of the plate. Consequently, the

expression for us and vs can be given as

us ¼ f ðzÞ ows

ox
; vs ¼ f ðzÞ ows

oy
ð4Þ

Kinematics

Based on the assumptions made in the preceding section,

the displacement field can be obtained using Eqs. (1)–(4):

uðx; y; z; tÞ ¼ u0ðx; y; tÞ � z
owb

ox
� f ðzÞ ows

ox

vðx; y; z; tÞ ¼ v0ðx; y; tÞ � z
owb

oy
� f ðzÞ ows

oy

wðx; y; z; tÞ ¼ wbðx; y; tÞ þ wsðx; y; tÞ;

ð5aÞ

where u0 and v0 are the mid-plane displacements of the

plate in the x and y direction, respectively; wb and ws are

the bending and shear components of transverse displace-

ment, respectively, while f ðzÞ represents shape functions

determining the distribution of the transverse shear strains

and stresses along the thickness. This function ensures zero

transverse shear stresses at the top and bottom surfaces of

the plate. The parabolic distributions of transverse shear

stresses through the plate thickness are taken into account

for the analysis, by means of the hyperbolic and expo-

nential function of the assumed displacement field.

Present model 1 HSDT The function f(z) is an hyper-

bolic shape function (Hassaine Daouadji et al. 2012, 2013)

(Hyperbolic Shear Deformation Theory):

f ðzÞ ¼ z 1þ 3p
2
sec h2

1

2

� �� �
� 3p

2
h tanh

z

h

� �
ð5bÞ

Present model 2 ESDT The function f(z) is an exponential

shape function (Karama et al. 2003) (Exponential Shear

Deformation Theory):

f ðzÞ ¼ z� ze
�2z

2

h2

� 	
ð5cÞ

The strains associated with the displacements in Eq. (5a),

(5b), (5c) are

ex
ey
cxy

8><
>:

9>=
>; ¼

e0x
e0y
c0xy

8><
>:

9>=
>;þ z

kbx

kby

kbxy

8><
>:

9>=
>;þ f ðzÞ

ksx

ksy

ksxy

8><
>:

9>=
>;;

cyz
cxz


 �
¼ gðzÞ

csyz
csxz


 �
; ð6aÞ

where

e0x
e0y
c0xy

8><
>:

9>=
>; ¼

ou0

ox
ov0

oy

ou0

oy
þ ov0

ox

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

kbx

kby

kbxy

8><
>:

9>=
>; ¼

� o2wb

ox2

� o2wb

oy2

�2
o2wb

oxoy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
;

ksx

ksy

ksxy

8><
>:

9>=
>; ¼

� o2ws

ox2

� o2ws

oy2

�2
o2ws

oxoy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
;

csyz
csxz


 �
¼

ows

oy

ows

ox

8>><
>>:

9>>=
>>;

ð6bÞ

and: gðzÞ ¼ 1� f 0ðzÞ; f 0ðzÞ ¼ df ðzÞ
dz

:

Constitutive equations

The stress state in each layer is given by Hooke’s law

rx
ry
sxy
syz
sxz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55

2
66664

3
77775

ex
ey
cxy
cyz
cxz

8>>>><
>>>>:

9>>>>=
>>>>;
; ð7aÞ

where Qij are the stiffnesses, which are defined in terms of

engineering constants in the material axes of the layer:

Q11 ¼
E11

1� m12m21
;Q22 ¼

E22

1� m12m21
;Q12

¼ m12E22

1� m12m21
;Q66 ¼ G12;Q44 ¼ G23;Q55 ¼ G13:

ð7bÞ

Since the laminate is made of several orthotropic layers

with their material axes oriented arbitrarily with respect to

laminate coordinates, the constitutive equations of each

layer must be transformed to the laminate coordinates x, y,

and z. The stress–strain relations in the laminate coordi-

nates of a kth layer are
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rx
ry
sxy
syz
sxz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

¼

�Q11
�Q12

�Q16 0 0
�Q12

�Q22
�Q26 0 0

�Q16
�Q26

�Q66 0 0

0 0 0 �Q44
�Q45

0 0 0 �Q45
�Q55

2
66664

3
77775

ðkÞ ex
ey
cxy
cyz
cxz

8>>>><
>>>>:

9>>>>=
>>>>;

ðkÞ

;

ð7cÞ

where �Qij are the transformed material constants, which are

given in (Karama et al. 2003) as

�Q11¼Q11 cos
4hþ2ðQ12þ2Q66Þsin2hcos2hþQ22 sin

4h

�Q12¼ðQ11þQ22�4Q66Þsin2hcos2hþQ12ðsin4hþcos4hÞ
�Q22¼Q11 sin

4hþ2ðQ12þ2Q66Þsin2hcos2hþQ22 cos
4h

�Q16¼ðQ11�Q12�2Q66Þsinhcos3h
þðQ12�Q22þ2Q66Þsin3hcosh

�Q26¼ðQ11�Q12�2Q66Þsin3hcosh
þðQ12�Q22þ2Q66Þsinhcos3h

�Q66¼ðQ11þQ22�2Q12�2Q66Þsin2hcos2h
þQ66ðsin4hþcos4hÞ

�Q44¼Q44 cos
2hþQ55 sin

2h
�Q45¼ðQ55�Q44Þcoshsinh
�Q55¼Q55 cos

2hþQ44 sin
2h ð7dÞ

In which h is the angle between the global x-axis and the

local x-axis of each layer.

Governing equations

Using Hamilton’s energy principle, we derive the equation

of motion of the laminated composite plate

d
Z t2

t1

ðU � V � TÞdt ¼ 0; ð8aÞ

where U is the strain energy, T is the kinetic energy of the

plate, and V is the work of external forces. Employing the

principle of minimum total energy leads to the general

equation of motion and boundary conditions. Taking the

variation of the above equation and integrating by parts, we

obtain

Zt1
t2

Z
V

ðrxdex þ rydey þ sxydcxy þ syzdcyz þ sxzdcxzÞ

2
4

� qð€u0du0 þ €m0dv0 þ ð €wb þ €wsÞdðwb þ wsÞÞdV �
Z
A

qdðwb þ wsÞdA

þ
Z
A

N0
x

o2ðwb þ wsÞ
ox2

þ N0
y

o2ðwb þ wsÞ
oy2

þ 2N0
xy

o2ðwb þ wsÞ
oxoy

� �
dA

�
dt ¼ 0;

ð8bÞ

where q and N0
x , N

0
y , N

0
xy are transverse and in-plane dis-

tributed force, respectively.

Where two points above a variable means the second

derivative with respect to time. Using the combination of

Eqs. (6a), (6b), (8a) and (8b) which takes the form

Zt1
t2

Z
A

�du0Nx;x � dv0Ny;y � du0Nxy;y � dv0Nxy;x � dwbM
b
x;xx � dwbM

b
y;yy

�2
4 � 2dwbM

b
xy;xy

�dwsM
s
x;xx � dwsM

s
y;yy � 2dwsM

s
xy;xy � dwsS

s
xz;x � dwsS

s
yz;y

�
dA�

Z
A

qdðwb þ wsÞdA

þ
Z
A

N0
x ðwb;xx þ ws;xxÞ þ N0

y ðwb;yy þ ws;yyÞ þ 2N0
xyðwb;xy þ ws;xyÞ

h i
dA

�
Z
A

du0f I1€u0 � I2 €wb;x � I4 €ws;x

� 	
þ dv0 I1€m0 � I2 €wb;y � I4 €ws;y

� 	

þ dwb I1ð €wb þ €wsÞ þ I2ð€u0;x þ €vo;yÞ � I3ð €wb;xx þ €wb;yyÞ � I5ð €ws;xx þ €ws;yyÞ
� 

þ dws I1ð €wb þ €wsÞ þ I4ð€u0;x þ €vo;yÞ � I5ð €wb;xx þ €wb;yyÞ � I6ð €ws;xx þ €ws;yyÞ
� �

dA

dt ¼ 0

ð9Þ
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The stress resultants N, M, and S are defined as

ðNx;Ny;NxyÞ ¼
Z h=2

�h=2

ðrx;ry; sxyÞ dz

¼
XN
k¼1

Z zkþ1

zk

ðrx; ry; sxyÞ dz ð10aÞ

ðMb
x ;M

b
y ;M

b
xyÞ ¼

Z h=2

�h=2

ðrx; ry; sxyÞ z dz

¼
XN
k¼1

Z zkþ1

zk

ðrx; ry; sxyÞ z dz ð10bÞ

ðMs
x;M

s
y;M

s
xyÞ ¼

Z h=2

�h=2

ðrx; ry; sxyÞ f ðzÞ dz

¼
XN
k¼1

Z zkþ1

zk

ðrx; ry; sxyÞ f ðzÞ dz ð10cÞ

ðSsxz; SsyzÞ ¼
Z h=2

�h=2

ðsxz; syzÞ gðzÞ dz

¼
XN
k¼1

Z zkþ1

zk

ðsxz; syzÞ gðzÞ dz ð10dÞ

Inserting Eqs. (7a), (7b), (7c), (7d) into Eqs. (10a),

(10b), (10c), (10d) and integrating across the thickness of

the plate, the stress resultants are obtained:

N

Mb

Ms

8><
>:

9>=
>; ¼

A B Bs

B D Ds

Bs Ds Hs

2
64

3
75

e

kb

ks

8><
>:

9>=
>;;

Ssyz

Ssxz


 �
¼

As
44 As

45

As
45 As

55

� �
csyz
csxz


 �
; ð11aÞ

where

N ¼ Nx;Ny;Nxy

� �t
; Mb ¼ Mb

x ;M
b
y ;M

b
xy

n ot

;Ms

¼ Ms
x;M

s
y;M

s
xy

n ot

ð11bÞ

e ¼ e0x ; e
0
y ; c

0
xy

n o
; kb ¼ kbx ; k

b
y ; k

b
xy

n o
; ks ¼ ksx; k

s
y; k

s
xy

n o

ð11cÞ

A ¼
A11 A12 A16

A12 A22 A26

A16 A26 A66

2
64

3
75;B ¼

B11 B12 B16

B12 B22 B26

B16 B26 B66

2
64

3
75;

D ¼
D11 D12 D16

D12 D22 D26

D16 D26 D66

2
64

3
75 ð11dÞ

Bs ¼
Bs
11 Bs

12 Bs
16

Bs
12 Bs

22 Bs
26

Bs
16 Bs

26 Bs
66

2
64

3
75;Ds ¼

Ds
11 Ds

12 Ds
16

Ds
12 Ds

22 Ds
26

Ds
16 Ds

26 Ds
66

2
64

3
75;

Hs ¼
Hs

11 Hs
12 Hs

16

Hs
12 Hs

22 Hs
26

Hs
16 Hs

26 Hs
66

2
64

3
75 ð11eÞ

And the stiffness components and inertias are given as

Aij;Bij;Dij;B
s
ij;D

s
ij;H

s
ij

� �
¼

Zh=2

�h=2

�Qijð1; z; z2; f ðzÞ; zf ðzÞ; f 2ðzÞÞdz ;

ði; jÞ ¼ ð1; 2; 6Þ
ð12aÞ

As
ij ¼

Zh=2

�h=2

�Qij gðzÞ½ �2 dz; ði; jÞ ¼ ð4; 5Þ ð12bÞ

ðI1; I2; I3; I4; I5; I6Þ ¼
Zh=2

�h=2

qð1; z; z2; f ðzÞ; zf ðzÞ; ½f ðzÞ�2Þdz:

ð12cÞ

Collecting the coefficients of du0, dv0, dwb, and dws in

Eq. (9), the equations of motion are obtained as

du0 : Nx;x þ Nxy;y ¼ I1€u0 � I2 €wb;x � I4 €ws;x

dv0 : Nxy;x þ Ny;y ¼ I1€v0 � I2 €wb;y � I4 €ws;y

dwb : M
b
x;xx þ 2Mb

xy;xy þMb
y;yy þ qþ N

¼ I1ð €wb þ €wsÞ þ I2ð€u0;x þ €v0;yÞ
� I3ð €wb;xx þ €wb;yyÞ � I5ð €ws;xx þ €ws;yyÞ;

dws : M
s
x;xx þ 2Ms

xy;xy þMs
y;yy þ Ssxz;x þ Ssyz;y þ qþ N

¼ I1ð €wb þ €wsÞ þ I4ð€u0;x þ €v0;yÞ
� I5ð €wb;xx þ €wb;yyÞ � I6ð €ws;xx þ €ws;yyÞ ð13aÞ

where N is defined by

N ¼ N0
x

o2ðwb þ wsÞ
ox2

þ N0
y

o2ðwb þ wsÞ
oy2

þ 2N0
xy

o2ðwb þ wsÞ
oxoy

; ð13bÞ

Clearly, when the effect of transverse shear deformation

is neglected (ws = 0), Eqs. (13a), and (13b) yield the

equations of motion of a composite plate based on the

classical theory of plates.
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Analytical solutions for simply supported

rectangular laminates

For antisymmetric cross-ply laminates

The Navier solutions can be developed for rectangular

laminates with two sets of simply supported boundary

conditions. For antisymmetric cross-ply laminates, the

following plate stiffnesses are identically zero:

A16 ¼ A26 ¼ D16 ¼ D26 ¼ Ds
16 ¼ Ds

26 ¼ Hs
16 ¼ Hs

26 ¼ 0

B12 ¼ B26 ¼ B16 ¼ B66 ¼ Bs
12 ¼ Bs

16 ¼ Bs
26 ¼ Bs

66 ¼ As
45 ¼ 0

B22 ¼�B11;B
s
22 ¼�Bs

11 ð14Þ

The following boundary conditions for antisymmetric

cross-ply laminates can be written as

vð0; yÞ ¼ wbð0; yÞ ¼ wsð0; yÞ ¼
owb

oy
ð0; yÞ ¼ ows

oy
ð0; yÞ ¼ 0

vða; yÞ ¼ wbða; yÞ ¼ wsða; yÞ ¼
owb

oy
ða; yÞ ¼ ows

oy
ða; yÞ ¼ 0

Nxð0; yÞ ¼Mb
x ð0; yÞ ¼Ms

xð0; yÞ ¼ Nxða; yÞ ¼Mb
x ða; yÞ

¼Ms
xða; yÞ ¼ 0

uðx;0Þ ¼ wbðx;0Þ ¼ wsðx;0Þ ¼
owb

ox
ðx;0Þ ¼ ows

ox
ðx;0Þ ¼ 0

uðx;bÞ ¼ wbðx;bÞ ¼ wsðx;bÞ ¼
owb

ox
ðx;bÞ ¼ ows

ox
ðx;bÞ ¼ 0

Nyðx;0Þ ¼Mb
y ðx;0Þ ¼Ms

yðx;0Þ ¼ Nyðx;bÞ ¼Mb
y ðx;bÞ

¼Ms
yðx;bÞ ¼ 0 ð15Þ

The boundary conditions in Eq. (15) are satisfied by the

following expansions:

u0 ¼
X1
m¼1

X1
n¼1

Umn e
ixt cosðk xÞ sinðl yÞ

v0 ¼
X1
m¼1

X1
n¼1

Vmn e
ixt sinðk xÞ cosðl yÞ

wb ¼
X1
m¼1

X1
n¼1

Wbmn e
ixt sinðk xÞ sinðl yÞ

ws ¼
X1
m¼1

X1
n¼1

Wsmn e
ixt sinðk xÞ sinðl yÞ

ð16Þ

where Umn, Vmn, Wbmn, and Wsmn unknown parameters

must be determined, x is the Eigen frequency associated

with (m, n) the Eigen-mode, and k ¼ mp
a
and l ¼ np

b
.

The transverse load q is also expanded in the double-

Fourier sine series as follows:

qðx; yÞ ¼
X1
m¼1

X1
n¼1

Qmn sinðkxÞ sinðlyÞ ð17Þ

The coefficients Qmn are given below for some typical

loads:

Qmn ¼
4

ab

Z a

0

Z b

0

qðx; yÞ sinðkxÞ sinðlyÞdxdy;

and

Qmn ¼ q0

Qmn ¼
16q0

mnp2

8<
:

ð18Þ

Substituting Eqs. (14), (16), and (17) into Eqs. (13a),

(13b), the Navier solution of antisymmetric cross-ply

laminates can be determined from equations

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 þ S a34 þ S

a14 a24 a34 þ S a44 þ S

2
6664

3
7775�x2

m11 0 0 0

0 m22 0 0

0 0 m33 m34

0 0 m34 ms44

2
6664

3
7775

0
BBB@

1
CCCA

Umn

Vmn

Wbmn

Wsmn

8>>><
>>>:

9>>>=
>>>;

¼

0

0

q

q

8>>><
>>>:

9>>>=
>>>;
; ð19Þ

where

a11 ¼ A11k
2 þ A66l

2; a12 ¼ kl A12 þ A66ð Þ;
a13 ¼ �B11k

3; a14 ¼ �Bs
11k

3

a22 ¼ A66k
2 þ A22l

2; a23 ¼ B11l
3; a24 ¼ Bs

11l
3

a33 ¼ D11k
4 þ 2ðD12 þ 2D66Þk2l2 þ D22l

4

a34 ¼ Ds
11k

4 þ 2ðDs
12 þ 2Ds

66Þk
2 l 2 þ Ds

22 l
4

a44 ¼ Hs
11k

4 þ 2ðHs
12 þ 2Hs

66Þk
2l2 þ Hs

22l
4 þ As

55k
2 þ As

44l
2

m11 ¼ m22 ¼ I1; m33 ¼ I1 þ I3ðk2 þ l2Þ
m34 ¼ I1 þ I5ðk2 þ l2Þ;m44 ¼ I1 þ I6ðk2 þ l2Þ; S ¼ N0

xk
2 þ N0

yl
2

ð20Þ

For antisymmetric angle-ply laminates

For antisymmetric angle-ply laminates, the following plate

stiffnesses are identically zero:

A16 ¼ A26 ¼D16 ¼D26 ¼Ds
16 ¼Ds

26 ¼Hs
16 ¼Hs

26 ¼ 0

B11 ¼ B12 ¼ B22 ¼ B66 ¼ Bs
11 ¼ Bs

12 ¼ Bs
22 ¼ Bs

66 ¼ As
45 ¼ 0:

ð21Þ

The following boundary conditions for antisymmetric

angle-ply laminates can be written as
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uð0; yÞ ¼ wbð0;yÞ ¼ wsð0;yÞ ¼
owb

oy
ð0;yÞ ¼ ows

oy
ð0;yÞ ¼ 0

uða; yÞ ¼ wbða;yÞ ¼ wsða;yÞ ¼
owb

oy
ða;yÞ ¼ ows

oy
ða;yÞ ¼ 0

Nxyð0; yÞ ¼Mb
x ð0;yÞ ¼Ms

xð0; yÞ ¼ Nxyða;yÞ ¼Mb
x ða;yÞ

¼Ms
xða;yÞ ¼ 0

vðx;0Þ ¼ wbðx;0Þ ¼ wsðx;0Þ ¼
owb

ox
ðx;0Þ ¼ ows

ox
ðx;0Þ ¼ 0

vðx;bÞ ¼ wbðx;bÞ ¼ wsðx;bÞ ¼
owb

ox
ðx;bÞ ¼ ows

ox
ðx;bÞ ¼ 0

Nxyðx;0Þ ¼Mb
y ðx;0Þ ¼Ms

yðx;0Þ ¼ Nxyðx;bÞ ¼Mb
y ðx;bÞ

¼Ms
yðx;bÞ ¼ 0: ð22Þ

The boundary conditions in Eq. (22) are satisfied by the

following expansions:

u0 ¼
X1
m¼1

X1
n¼1

Umn e
ixt sinðk xÞ cosðl yÞ

v0 ¼
X1
m¼1

X1
n¼1

Vmn e
ixt cosðk xÞ sinðl yÞ

wb ¼
X1
m¼1

X1
n¼1

Wbmn e
ixt sinðk xÞ sinðl yÞ

ws ¼
X1
m¼1

X1
n¼1

Wsmn e
ixt sinðk xÞ sinðl yÞ:

ð23Þ

Substituting Eqs. (21), (17), and (23) into Eqs. (13a),

(13b), the equations of the form in Eq. (19) are obtained

with the following coefficients:

a11 ¼A11k
2þA66l

2;a12 ¼ kl A12þA66ð Þ;
a13 ¼�ð3B16k

2lþB26l
3Þ;a22 ¼A66k

2þA22l
2

a14 ¼�ð3Bs
16k

2lþBs
26l

3Þ;a23 ¼�ðB16k
3þ3B26kl

2Þ;
a24 ¼�ðBs

16k
3þ3Bs

26kl
2Þ

a33 ¼D11k
4þ2ðD12þ2D66Þk2l2þD22l

4;

a34 ¼Ds
11k

4þ2ðDs
12þ2Ds

66Þk2l2þDs
22l

4

a44 ¼Hs
11k

4þ2ðHs
12þ2Hs

66Þk
2l2þHs

22l
4þAs

55k
2þAs

44l
2;

S¼N0
xk

2þN0
yl

2m11 ¼m22 ¼ I1;m33 ¼ I1þ I3ðk2þl2Þ;
m34 ¼ I1þ I5ðk2þl2Þ;m44 ¼ I1þ I6ðk2þl2Þ ð24Þ

Numerical results and discussion

In this study, various numerical examples are described and

discussed for verifying the accuracy of the present models in

predicting the static bending, critical buckling load, and free

vibration behaviors of simply supported antisymmetric

cross-ply and angle-ply laminates. To verify, the results

achieved by current models are compared with those of

Reddy (1984) and exact solution of elasticity in three

dimensions (Pagano 1970). The effectiveness of these pre-

sent0s theories is use of the extension component of trans-

verse displacement. The following lamina properties are

used:

Material 1 (Noor 1975): E1 ¼ 40E2; G12 ¼G13 ¼
0:6E2; G23 ¼ 0:5E2 ; m12 ¼ 0:25

Material 2 (Ren 1990): E1 ¼ 40E2; G12 ¼G13 ¼
0:5E2; G23 ¼ 0:6E2 ; m12 ¼ 0:25

Material 3 (Pagano 1970): E1 ¼ 25E2; G12 ¼G13 ¼
0:5E2; G23 ¼ 0:2E2 ; m12 ¼ 0:25

For convenience, the following nondimensionalizations

are used in presenting the numerical results in graphical

and tabular forms:

�w ¼ 100h3E2

q0a4
wða=2; b=2Þ; �rx ¼

h2

q0a2
rxða=2; b=2Þ;

�ry ¼
h2

q0a2
ryða=2; b=2Þ

�sxy ¼
h2

q0a2
sxyð0; 0Þ; �sxz ¼

h

q0a
sxzð0; b=2Þ;

�x ¼ x
a2

h

ffiffiffiffiffi
q
E2

r
�N ¼ Ncr

a2

E2h3

� �
ð25Þ

Numerical results for bending analysis

The static bending solution obtained by setting the time

derivative terms and in-plane forces to zero and simplified

as

a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

2
664

3
775

Umn

Vmn

Wbmn

Wsmn

8>><
>>:

9>>=
>>;

¼

0

0

Qmn

Qmn

8>><
>>:

9>>=
>>;
: ð26Þ

A simply supported two-layer antisymmetric angle-ply

(45�/-45�) laminate under sinusoidal transverse load is

considered. Material set 2 is used. The numerical results of

nondimensionalized deflection for the square and rectan-

gular plates are shown in Table 1. In the case of thick

plates, a considerable difference exists between the results

obtained using the various models and the values reported

by Ren’s model (Ren 1990). For a / h ratio equal to 4, the

deflections predicted by Reddy’s (Reddy 1984), both these

theories are 20–25 % lower for a square flat, and 15 % and

20 % lower for a rectangular flat as compared to the values,

therefore, obtained by Ren model’s (Ren 1990). The results

computed using all the five models are in good agreement

with those reported by Reddy (Reddy 1984) and Ren (Ren

1990) for thin plates (a/h = 100). The nondimensionalized

deflections of two-layer (45�/-45�) square laminates under

sinusoidal transverse load are presented in Fig. 1 for vari-

ous ratio of modulus E1/E2 (G12 = G13 = 0.5E2, G23 =

0.6E2, m12 = 0.25, a/h = 10).
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A simply supported two-layer (0�/90�) antisymmetric

square laminate under sinusoidal transverse load is con-

sidered. The layers have equal thickness. Material set 3 is

used. Numerical values of nondimensionalized transverse

displacement and in plane stresses are shown in Table 2.

Three-dimensional elasticity results are obtained using the

method given by (Pagano 1970). The results clearly indi-

cate that the percentage error with respect to three-di-

mensional elasticity solution in predicting the transverse

displacement and in-plane stresses is very much lesser in

the case of present models and the prediction of in-plane

normal stresses, �rx, �ry, is very poor.

To further illustrate the accuracy of present theory for

wide range of thickness ratio a/h and material anisotropy

E1/E2, the variations of dimensionless deflection with

respect to thickness ratio and material anisotropy are

illustrated in Figs. 2 and 3, respectively. The obtained

results are compared with those predicted by (Reddy

1984). Again, the present’s models and existing FSDT

give almost identical solutions, whereas CPT underesti-

mates deflections of thick laminates with a/h\20 due to

ignoring shear deformation effects (Fig. 3). The through

thickness variations and corresponding values of the in-

plane displacement, normal stresses (�rx, �ry), and shear

Table 1 Nondimensionalized

deflections of simply supported

two-layer (45�/-45�) square
and rectangular laminates under

sinusoidal transverse load

a/h Theory �w

Square plate (a = b) Rectangular plate (b = 3a)

4 Model-Ren (Ren 1990) 1.4471 3.9653

Model-HSDT (Reddy 1984) 1.0203 3.1560

Present model 1 1.0220 3.0995

Present model 2 1.0203 3.0971

10 Model-Ren (Ren 1990) 0.6427 2.3953

Model-HSDT (Reddy 1984) 0.5581 2.2439

Present model 1 0.5583 2.2328

Present model 2 0.5581 2.2325

100 Model-Ren (Ren 1990) 0.4685 2.0686

Model-HSDT (Reddy 1984) 0.4676 2.0671

Present model 1 0.4676 2.0670

Present model 2 0.4676 2.0670

Table 2 Nondimensionalized

deflections and stresses in two-

layer (0�/90�) simply supported

square laminated plate under

sinusoidal transverse load

a/h Theory �w �rx �ry �sxy

2 Model-elasticity (Pagano 1970) 4.9362 -0.9070 1.4480 -0.0964

Model-Reddy (Reddy 1984) 4.5619 -1.4277 1.4277 -0.0719

Present model 1 4.5728 -1.4256 1.4256 -0.0719

Present model 2 4.5619 -1.4277 1.4277 -0.0719

5 Model-elasticity (Pagano 1970) 1.7287 -0.7723 0.8036 -0.0586

Model-Reddy (Reddy 1984) 1.6670 -0.8385 0.8385 -0.0558

Present model 1 1.6680 -0.8380 0.8380 -0.0558

Present model 2 1.6670 -0.8385 0.8385 -0.0558

10 Model-elasticity (Pagano 1970) 1.2318 -0.7317 0.7353 -0.0540

Model-Reddy (Reddy 1984) 1.2161 -0.7468 0.7468 -0.0533

Present model 1 1.2164 -0.7467 0.7467 -0.0533

Present model 2 1.2161 -0.7468 0.7468 -0.0533

20 Model-elasticity (Pagano 1970) 1.1060 -0.7200 0.7206 -0.0529

Model-Reddy (Reddy 1984) 1.1018 -0.7235 0.7235 -0.0527

Present model 1 1.1019 -0.7235 0.7235 -0.0527

Present model 2 1.1018 -0.7235 0.7235 -0.0527

100 Model-elasticity (Pagano 1970) 1.0742 -0.7219 0.7219 -0.0529

Model-Reddy (Reddy 1984) 1.0651 -0.7161 0.7161 -0.0525

Present model 1 1.0651 -0.7161 0.7161 -0.0525

Present model 2 1.0651 -0.7161 0.7161 -0.0525
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stresses (�rxy, �rxz) are also given in Figs. 4, 5, 6, and 7,

respectively, for a moderately thick laminate with a/

h = 10. An excellent agreement between the results

predicted by the present theories and results of the first-

order and the other higher order theories is found in the

literature.

Numerical results for free vibration analysis

In the case of free vibration, the natural frequencies of the

laminates can be obtained by setting the determinant of the

coefficient of the following matrix to zero:

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

2
6664

3
7775�x2

m11 0 0 0

0 m22 0 0

0 0 m33 m34

0 0 m34 ms44

2
6664

3
7775

0
BBB@

1
CCCA

Umn

Vmn

Wbmn

Wsmn

8>>><
>>>:

9>>>=
>>>;

¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

ð27Þ

In Tables 3 and 4, the nondimensional fundamental

frequencies of anti-symmetrically laminated cross-ply

plates obtained using different shear deformation theories

0 5 10 15 20 25 30 35 40

0,5

1,0

1,5

2,0

2,5

3,0

W

E1/E2

 (15°/-15°)
 (30°/-30°)
 (45°/-45°)
 (60°/-60°)
 (75°/-75°)

Fig. 2 The effect of modulus ratio on nondimensionalized deflection

of simply supported two-layer (h/�h) square laminates under

sinusoidal transverse load (a/h = 10)

0 5 10 15 20 25 30 35 40 45 50
0,0

0,5

1,0

1,5
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2,5

3,0

3,5

4,0

4,5

5,0

5,5

W

a/h

 a/b=0.5
 a/b=1
 a/b=2

Fig. 3 The effect of side-to-thickness ratio on nondimensionalized

deflection of simply supported two-layer (45�/-45�) square laminates

under sinusoidal transverse load
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Fig. 4 Variation of normal stress �rx through the thickness of simply

supported two-layer (0�/90�) square plate for different values of the

aspect ratio
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Fig. 5 Variation of normal stress �ry through the thickness of simply

supported antisymmetric two-layer (0�/90�) square plate for different

values of the aspect ratio
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are shown for various values of a/h and modules ratios. It

can be seen that, in general, the present model gives more

accurate results in predicting the natural frequencies than

the PSDT (Reddy 1984) and the three-dimensional elas-

ticity solution given in (Noor 1973). It should be noted that

unknown functions in the present model are four, while the

unknown functions in the higher order shear deformation

theories (Reddy 1984) are five. It can be concluded that the

present model is not only accurate, but also simple in

predicting the natural frequencies of laminated plates.

The variation of natural frequencies with respect to side-

to-thickness ratio a/h is presented in Table 5. The natural

frequencies obtained using the present model is compared

with Reddy’s theory PSDT Reddy (1984), Swaminathan

and Patil (2008), and FSDT. In the case of thick plates (a/

h ratios 2, 4, 5, and 10) there is a considerable difference

between the results computed using the present and the

theories of Reddy (1984), Swaminathan and Patil (2008),

and (Xiang et al. (2011). The variation of natural fre-

quencies with respect to side-to-thickness ratio a/h for

different E1/E2 ratio is presented. For a four-layered thick

plate with a/h ratio equal to 2 and E1/E2 ratio equal to 3 and

10, the percentage difference in values predicted by present

theory is 0.15 and 3.50 % lower as compared to Reddy’s

theory PSDT Reddy (1984) and Swaminathan and Patil

(2008). At higher range of E1/E2 ratio equal to 20–40, the

percentage difference in values between both the theories is

very much higher, and Reddy’s theory very much over-

predicts the natural frequency values. For a four-layered

thick plate with a/h ratio equal to 2 and E1/E2 ratio equal to

20, 30, and 40, the percentage differences in values pre-

dicted by present theory are 6, 8, and 9.50 % lower as

compared to the theories of Reddy (1984), Swaminathan

and Patil (2008), and Xiang et al. (2011). The difference

between the models tends to reduce for thin and relatively

thin plates. Irrespective of the number of layers, the per-

centage difference in values between the two theories

increases with the increase in the degree of anisotropy. As

the number of layer increases, the percentage difference in

values between the two theories decreases significantly.

The obtained results of fundamental frequencies are

compared with the exact 3D solutions reported by Reddy’s

theory (Reddy 1984). Here also the results obtained by the

present theories are almost identical with those predicted

by existing FSDT. This statement is also firmly demon-

strated in Figs. 8 and 9 in which the results obtained by the

present theory and FSDT are in excellent agreement for a

wide range of thickness ratio a/h. According to Table 6 the

present results are in good agreement with the results of

Reddy PSDT Reddy (1984), Swaminathan and Patil (2008)

and Xiang et al. (2011).

Numerical results for buckling analysis

For buckling analysis, the applied loads are assumed to be

in-plane forces

N0
x ¼ �N0; N0

y ¼ cN0 ; c ¼ N0
x

N0
y

; N0
xy ¼ 0 : ð28Þ

The buckling solution can be obtained from Eq. (19) by

setting the time derivative terms and transverse forces to

zero:
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Fig. 6 Variation of longitudinal tangential stress �sxy through the

thickness of simply supported two-layer (0�/90�) square plate for

different values of the aspect ratio
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Fig. 7 Variation of tangential stress �sxz through the thickness of

simply supported two-layer (0�/90�) square plate for different values

of the aspect ratio
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a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 � N0ðk2 þ cl2Þ a34 � N0ðk2 þ cl2Þ
a14 a24 a34 � N0ðk2 þ cl2Þ a44 � N0ðk2 þ cl2Þ

2
66664

3
77775

Umn

Vmn

Wbmn

Wsmn

8>>>><
>>>>:

9>>>>=
>>>>;

¼

0

0

0

0

8>>>><
>>>>:

9>>>>=
>>>>;

ð29Þ

Following the condensation of variables procedure to

eliminate the in-plane displacements Umn and Vmn, the

following system is obtained:

�a33 � N0ðk2 þ cl2Þ �a34 � N0ðk2 þ cl2Þ
�a43 � N0ðk2 þ cl2Þ �a44 � N0ðk2 þ cl2Þ

" #
Wbmn

Wsmn


 �

¼
0

0


 �
; ð30Þ

where

�a33 ¼ a33 � a13
b1

b0
� a23

b2

b0
; �a34 ¼ a34 � a14

b1

b0
� a24

b2

b0
;

�a43 ¼ a34 � a13
b3

b0
� a23

b4

b0
�a44 ¼ a44 � a14

b3

b0
� a24

b4

b0
;

b0 ¼ a11a22 � a212;b1 ¼ a13a22 � a12a23

b2 ¼ a11a23 � a12a13; b3 ¼ a14a22 � a12a24; b4 ¼ a11a24 � a12a14

ð31Þ

Table 3 nondimensional

fundamental frequencies of

antisymmetric square plates at

various values of orthotropy

ratio with a/h = 5

No of layers Theory E1/E2

3 10 20 30 40

(0�/90�)1 Model-Exact (Noor 1973) 6.2578 6.9845 7.6745 8.1763 8.5625

Present model 1 6.2168 6.9881 7.8198 8.5028 9.0841

Present model 2 6.2169 6.9887 7.8210 8.5050 9.0871

Model-PSDT (Reddy 1984) 6.2169 6.9887 7.8210 8.5050 9.0871

(0�/90�)2 Model-exact (Noor 1973) 6.5455 8.1445 9.4055 10.1650 10.6790

Present model 1 6.5009 8.1958 9.6273 10.5359 11.1728

Present model 2 6.5008 8.1954 9.6265 10.5348 11.1716

Model-PSDT (Reddy 1984) 6.5008 8.1954 9.6265 10.5348 11.1716

(0�/90�)3 Model-exact (Noor 1973) 6.6100 8.4143 9.8398 10.6950 11.2720

Present model 1 6.5558 8.4053 9.9182 10.8546 11.5009

Present model 2 6.5558 8.4052 9.9181 10.8547 11.5012

Model-PSDT (Reddy 1984) 6.5558 8.4052 9.9181 10.8547 11.5012

(0�/90�)5 Model-exact (Noor 1973) 6.6458 8.5625 10.0843 11.0027 11.6245

Present model 1 6.5842 8.5126 10.0671 11.0191 11.6721

Present model 2 6.5842 8.5126 10.0674 11.0197 11.6730

Model-PSDT (Reddy 1984) 6.5842 8.5126 10.0674 11.0197 11.6730

Table 4 Nondimensional

fundamental frequencies of

antisymmetric square plates at

various values of a/h with E1/

E2 = 40

No of layers Theory a/h

2 4 10 20 50 100

(0�/90�)1 Present model 1 5.7100 8.3507 10.5669 11.1048 11.2750 11.3001

Present model 2 5.7170 8.3546 10.5680 11.1052 11.2751 11.3002

Model-PSDT (Reddy 1984) 5.7170 8.3546 10.5680 11.1052 11.2751 11.3002

(0�/90�)2 Present model 1 5.7528 9.7366 14.8474 16.5737 17.1850 17.2784

Present model 2 5.7546 9.7357 14.8463 16.5733 17.1849 17.2784

Model-PSDT (Reddy 1984) 5.7546 9.7357 14.8463 16.5733 17.1849 17.2784

(0�/90�)3 Present model 1 5.8702 9.9870 15.4635 17.3774 18.0644 18.1699

Present model 2 5.8741 9.9878 15.4632 17.3772 18.0644 18.1698

Model-PSDT (Reddy 1984) 5.8741 9.9878 15.4632 17.3772 18.0644 18.1698

(0�/90�)5 Present model 1 5.9476 10.1226 15.7700 17.7743 18.4984 18.6097

Present model 2 5.9524 10.1241 15.7700 17.7743 18.4984 18.6097

Model-PSDT (Reddy 1984) 5.9524 10.1241 15.7700 17.7743 18.4984 18.6097
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For nontrivial solution, the determinant of the coeffi-

cient matrix in Eq. (30) must be zero. This gives the fol-

lowing expression for buckling load:

N0 ¼
1

k2 þ cl2
� �a33�a44 � �a34�a43

�a33 þ �a44 � �a34 � �a43
ð32Þ

A simply supported anti-symmetric cross-ply (0/90)n
(n = 2, 3, 5) square laminate subjected to uniaxial com-

pressive load is considered. Table 7 shows a comparison

between the results obtained using the various models and

the three-dimensional elasticity solutions given by Noor

(1975). The results clearly indicate that the present model

gives more accurate results in predicting the buckling loads

when compared to Reddy (1984). Compared to the three-

dimensional elasticity solution, the buckling loads pre-

dicted by present model, Reddy (1984), are 6–7 %, for

four-layer antisymmetric cross-ply (0/90/0/90) square

laminates. The effect of side-to-thickness ratio on buckling

load of simply supported four-layer (0/90/0/90) square

laminates is also presented in Figs. 10 and 11.

In Table 8, a simply supported two-layer anti-symmetric

angle-ply (h=� h) square laminate subjected to uniaxial

compressive is considered. The numerical values of

buckling. The results are compared with the values repor-

ted by Ren (1990). For all values of side-to-thickness ratio

and fiber orientation, the buckling loads predicted by the

present model and Reddy (1984) are almost identical. For

Table 5 Non-dimensionalized fundamental frequencies for a simply supported antisymmetric angle-ply square laminated plate

No of

layers

Theory a/h

2 4 5 10 12.5 20 25 50 100

(45�/-45�)1 Present model 1 6.3247 9.7517 10.8336 13.2605 13.7058 14.2455 14.3823 14.5722 14.6211

Present model 2 6.3368 9.7594 10.8398 13.2631 13.7040 14.2463 14.3828 14.5724 14.6212

Model-PSDT (Reddy 1984) 6.2837 9.7593 10.8401 13.2630 13.7040 14.2463 14.3827 14.5723 14.6214

Model-Swaminathan (Swaminathan

and Patil 2008)

5.3325 8.8426 10.0350 12.9115 13.4690 14.1705 14.3500 14.6012 14.6668

(45�/-45�)2 Present model 1 6.1019 10.6508 12.5342 18.3240 19.7645 21.8072 22.3804 23.2238 23.4508

Present model 2 6.1068 10.6508 12.5332 18.3221 19.7621 21.8062 22.3798 23.2237 23.4508

Model-PSDT (Reddy 1984) 6.1067 10.6507 12.5331 18.3221 19.7621 21.8063 22.3798 23.2236 23.4507

Model-Swaminathan (Swaminathan

and Patil 2008)

5.5674 10.0731 11.9465 17.8773 19.4064 21.6229 22.2554 23.1949 23.4499

(45�/-45�)4 Present model 1 6.3049 10.9870 12.9697 19.2659 20.8885 23.2390 23.9092 24.9046 25.1745

Present model 2 6.3140 10.9906 12.9720 19.2660 20.8885 23.2388 23.9091 24.9046 25.1745

Model-PSDT (Reddy 1984) 6.2836 10.9905 12.9719 19.2659 20.8884 23.2388 23.9091 24.9046 25.1744

Model-Swaminathan (Swaminathan

and Patil 2008)

5.9234 10.7473 12.7523 19.1258 20.7784 23.1829 23.8713 24.8959 25.1741
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Fig. 8 Variation of dimensionless fundamental frequency of

antisymmetric angle-ply (45/-45)n square laminates versus thickness

ratio (Material 3, E1/E2 = 40)
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a/h ratio equal to 4 and the fiber orientation equal to 30�,
the buckling load values predicted by Reddy (1984), and

present model are 18–2 % lower as compared to the values

obtained by Ren (1990). The results computed using all the

five models are in a good agreement with those reported by

Ren (1990) for thin plates (a/h = 100). The effect of

modulus ratio on nondimensionalized uniaxial buckling

load of simply supported two-layer (45/-45) square

laminate is presented in Fig. 12 (G12 ¼ G13 ¼ 0:6E2;

G23 ¼ 0:5E2; m12 ¼ 0:25; a=h ¼ 10).

Conclusions

A refined higher order shear deformation theory of plates

has been successfully developed for the static, buckling,

and free vibration of simply supported laminated plates.

The theory allows for a square-law variation in the

transverse shear strains across the plate thickness and sat-

isfies the zero-traction boundary conditions on the top and

bottom surfaces of the plate without using shear correction

factors. The equations of motion were derived from

Hamilton’s principle. The accuracy and efficiency of the

present models have been demonstrated for static and free

vibration behaviors of anti-symmetric cross-ply and angle-

ply laminates. The conclusions of this theory are as

follows:

• The deflection load obtained using present models (a

simpler version of present theory with four unknowns)

and other higher-order theories found in the literature

(five unknowns) are almost identical.

• Compared to the three-dimensional elasticity solution,

the present models give more accurate results of static

and dynamic load than the height order shear defor-

mation theory.

Table 6 The non-dimensional

fundamental frequency of the

simply supported square plate

(h/�h/…) (E1/E2 = 40)

Layers Theory a/h

10 20 50 100

(5/-5/5/-5/5/-5) Present model 1 15.9840 18.0774 18.8394 18.9568

Present model 2 15.9841 18.0774 18.8393 18.9568

Model-PSDT (Reddy 1984) 14.848 17.619 18.753 18.935

Model-Xiang (Xiang et al. 2011) 15.405 17.943 18.942 19.206

(30/-30/30/-30/30/-30) Present model 1 18.3356 21.7196 23.0815 23.2988

Present model 2 18.3353 21.7194 23.0814 23.2988

Model-PSDT (Reddy 1984) 18.170 21.648 23.067 23.295

Model-Xiang (Xiang et al. 2011) 19.075 22.304 23.579 23.968

(45/-45/45/-45/45/-45) Present model 1 19.0252 22.8770 24.4802 24.7392

Present model 2 19.0249 22.8768 24.4802 24.7392

Model-PSDT (Reddy 1984) 19.025 22.877 24.480 24.739

Model-Xiang (Xiang et al. 2011) 20.027 23.623 25.061 25.478

Table 7 Nondimensional uniaxial buckling load of simply supported

antisymmetric cross-ply (0/90/…) square laminates (a/h = 10)

Number of layers Theory N

4 Present model 1 22.5821

Present model 2 22.5790

Model-exact (Noor 1975) 21.2796

Model-Reddy (Reddy 1984) 22.5790

6 Present model 1 24.4605

Present model 2 24.4596

Model-exact (Noor 1975) 23.6689

Model-Reddy (Reddy 1984) 24.4596

10 Present model 1 25.4223

Present model 2 25.4225

Model-exact (Noor 1975) 24.9636

Model-Reddy (Reddy 1984) 25.4225
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Fig. 10 The effect of side-to-thickness ratio on nondimensionalized

uniaxial buckling load of simply supported antisymmetric cross-ply

(0/90)n square laminates
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• Compared to the three-dimensional elasticity solution,

the present theories give more accurate results of

deflection and dynamic load than the height order shear

deformation theory found in the literature.

• The natural frequencies obtained by the proposed

model with four unknowns are almost identical to

those predicted by the shear deformation theories

containing five unknowns.

• The buckling load obtained using present0s model (a

simpler version of present theory with four unknowns)

and height order shear deformation Reddy’s theory

(Reddy 1984) (five unknowns) are comparable.

• Compared to the three-dimensional elasticity solution,

the present model gives more accurate results of

buckling load than the height order shear deformation

theory.

It can be concluded that the present models proposed

prove to be accurate in solving the static, buckling, and

dynamic behaviors of anti-symmetric cross-ply and angle-

ply laminated composite plates and efficient in predicting

the vibration responses of composite plates.
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