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Abstract
The use of fermenters at large scale is usually hampered by sub-optimal conditions in terms of yield and productivity, along 
with the low tolerance of strains to process stresses, such as substrate and product toxicity, and other fermentation inhibitors. 
Attempts to improve the industrial efficacy of fermenters have been in the areas of genetic engineering to improve strain 
tolerance, but this usually involves detailed and unfeasible mechanistic studies. Statistical designs of experiments have also 
been used to optimize industrial fermenters but this again often results in local optima due to the relatively small-dimensional 
space covered by the experiments. Mathematical techniques have recorded great successes and regarding ethanol fermenta-
tion with sorghum extracts, previous work has modeled and established the presence of product inhibition, however, did not 
consider other degrees of freedom (temperature and pH) that minimize the effect of such inhibitions. This paper includes 
the description of a batch alcohol fermentation process that has been optimized using a technique based on the application 
of mathematical modeling and optimal control. Calculus of variation is introduced as a valuable tool to derive and solve the 
necessary conditions for optimality, and the obtained results show the optimal temperature and pH profiles for the fermen-
tation of sorghum extracts. A Simulink model of the fermentation process shows that using the proposed control strategy 
increases ethanol yield by 14.18%, cell growth by 71.96% decreases the residual substrate by 84.77%.

Keywords  Alcoholic fermentation · Mathematical modeling · Ethanol inhibition · Optimal control simulation · Sorghum 
extracts

List of symbols
Eg	� Activation energy for cell growth (cal∕mol)

Gs	� Yield coefficient of cell based on substrate utiliza-
tion ( g∕g h)

Kip	� Product inhibition coefficient on product forma-
tion ( 100 g∕g)

Ksp	� Substrate saturation (Monod) constant for product 
formation ( g∕100 g)

Ksx	� Substrate saturation (Monod) constant for cell 
growth ( g∕100 g)

Mp	� Specific rate of ethanol production by a mainte-
nance metabolism ( g∕g h)

Ms	� Specific rate of substrate consumption for cell 
maintenance ( g∕g h)

Tmax	� Maximum fermentation temperature (°C)
Tmin	� Minimum fermentation temperature (°C)
Yp	� Yield coefficient of cell based on substrate utiliza-

tion ( g∕g)
Yx	� Yield coefficient of cell based on substrate utiliza-

tion ( g∕g)
k1	� Empirical constant in pH model (mol∕l)

k2	� Empirical constant in pH model (mol∕l)

kd	� Cell death rate (h−1)
kg	� Pre-exponential Arrhenius constant for growth
pHmax	� Maximum pH in the fermenter
pHmin	� Minimum pH in fermenter
qmax	� Maximum specific rate of product formation ( h−1)
qp	� Specific rate of product formation (h−1)
�max	� Maximum specific growth rate ( h−1)
A	� Weight coefficient for product formation in opti-

mization problem (dimensionless)
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B	� Weight coefficient for temperature control in opti-
mization problem (dimensionless)

C	� Weight coefficient for pH control in optimization 
problem (dimensionless)

J	� Performance index for optimal control problem
P	� Concentration of product ( g∕100 g)

R	� Universal gas constant (cal∕K mol)

S	� Concentration of substrate ( g∕100 g)

X	� Concentration of biomass (Mcells∕0.1 ml)

t	� Batch fermentation time ( h)
T 	� Fermentation temperature (°C)
�	� Specific rate of cell growth (h−1)

Introduction

Sorghum, a cereal which belongs to the family Gramineae 
is now used in most breweries as locally available alterna-
tive to imported barley malt. In a generalized view of pro-
cessing and brewing sorghum, though involves several unit 
operations, the fermentation step is the crux of the process, 
regarded as the heart of the entire production where a near 
optimal environment is desired for microorganisms to grow, 
multiply and produce the desired product [3]. However, the 
use of fermenters at a large scale is usually hampered by 
sub-optimal conditions in terms of yield and productivity, 
resulting from low tolerance of strains to process stresses, 
such as substrate and product inhibition, and other fermenta-
tion inhibitors [10, 14, 17]. In several attempts to improve 
the industrial efficacy of fermenters, a variety of approaches 
have been proposed; genetic techniques involving detailed, 
mechanistic studies of metabolic pathways, inherently 
involving inverse problem that cannot be understood with 
certainty [7]; statistical design of experiments [3], which 
again requires the construction of expensive prototype sys-
tems and most often leads to local optima due to the rela-
tively small dimensional space covered by the experiments 
[3, 23].

Alternatively, design and optimization of bioreactors 
can be enhanced via validated mathematical models devel-
oped from mechanistic studies that lead to a more in depth 
understanding of process stresses such as ethanol inhibi-
tion [23]. In this regard, optimal temperature profiles have 
been determined to maximize beer flavor [19], maximize 
ethanol formation from sugarcane molasses (Marcus and 
Normey-Rico [13], minimize acetyl acetate production [9], 
maintain cell viability and reduce glycerol production [5]. 
However, the aforementioned as well as other studies have 
focused on temperature and rarely pH for optimization of 
batch fermentation processes. Fermentation principles con-
sist of exploiting the metabolic reactions that take place in 
the cell of a microorganism for the production of valuable 
products [16]. To activate the metabolic pathways of interest 

within the cell, specific environmental conditions (tempera-
ture, pH, nutrient concentration) are applied to enable the 
yeast cell grow and produce the required ethanol. In addi-
tion, due to the dynamic nature of the culture medium, yeast 
cells often suffer from various stresses resulting from both 
the environmental conditions, and from both product and 
or substrate imbibition [2]. To maximized ethanol yield, 
all the main aspect (ethanol inhibition kinetics, tempera-
ture and pH) should be considered simultaneously [8]. This 
paper presents the optimal pH and temperature profiles in 
the alcoholic fermentation of sorghum extracts using a linear 
product inhibition model developed in our previous study 
[1]. Optimal profiles of temperature and pH are important 
in the control these stresses, flavor active compounds such 
as esters and in the control of these stresses, compounds 
such as esters and higher molecular mass alcohols can be 
maximized which can lead to increase in alcohol (ethanol) 
yield [20, 22].

Bioreactor modeling and parameter 
estimation

The Monod equation for cell growth and product forma-
tion, respectively, was chosen to describe the kinetics of 
cell growth and product formation, as given in the follow-
ing equation:

In our previous study [1], we proposed a simple linear 
factor to describe product inhibition in the alcoholic fermen-
tation of sorghum extracts, expressed as

Introducing this effect on the specific rate of product for-
mation, Eq. (1b) becomes

The dynamic equations describing the cell growth, product 
formation and substrate utilization were developed by applying 
the principle of conservation of mass, resulting in the sys-
tems of first-order ordinary differential equations presented 
in Eqs. (4a, 4b, 4c). The change in substrate concentration 
depends on four terms: substrate assimilation into biomass 

(1a)�(S) =
�maxS

Ksx + S
,

(1b)qp(S) =
qmaxS

Ksp + S
.

(2)f =
(
1 − KipP

)
.

(3)qp(S) =
qmaxS

Ksp + S

(
1 − KipP

)
.
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( �X∕Yx ), substrate assimilation into extracellular product 
( qX∕Yp ), substrate utilization for cell growth ( GsX ) and sub-
strate utilization for maintenance energy ( MsX).

Introducing the expressions for � and q from Eqs. (1a) and 
(3), Eqs. (4a, 4b, 4c) becomes

Optimal control problem formulation

The objective of the control is to determine the optimal tem-
perature and pH profiles that will minimize the effect of eth-
anol inhibition on cell growth and hence maximize ethanol 
yield at the end of fermentation. The temperature dependency 
of the cellular activity was modeled using the following Arrhe-
nius-like equation:

Typical values for these parameters were taken from the 
literature [21].

A typical term, Eq. (7) that accounts for pH dependence 
was also introduced into the specific growth rate expression.

Although this simple model cannot possibly explain pH 
dependence, the literature shows that it gives an adequate fit 
for many microorganisms [15]. The additional term is in the 
following form:

(4a)
dX

dt
= �X − kdX,

(4b)
dP

dt
= qX +MpX,

(4c)
dS

dt
= −

�X

Yx
−

qX

Yp
− GsX −MsX.

(5a)
dX

dt
=

�maxS

Ksx + S
X − kdX,

(5b)
dP

dt
=
(
1 − KipP

) qmaxS

Ksp + S
X +MpX,

(5c)
dS

dt
= −

�X

Yx
−

qX

Yp
− GsX −MsX.

(6a)� = f

{[
�max exp

(
−
Eg

RT

)]}
,

(6b)kd = f

{[
kd exp

(
−
Eg

RT

)]}
.

(7)� = f

⎛⎜⎜⎝
�max

1 +
k1

10−pH
+

10−pH

k2

⎞⎟⎟⎠
.

The values of k1 and k2 that were used for the numerical 
simulations are chosen to be in their typical ranges from the 
literature [15, 21]. Introducing the effect of temperature and 
pH into Eqs. (5a, 5b, 5c), we arrive at the following system 
of differential equation:

The optimal control problem to be maximized is then formu-
lated with Eqs. (8a, 8b, 8c). The general objective of the optimal 
control problem is to determine the control signals (temperature 
and pH) that will cause the controlled system (batch fermenta-
tion process) to satisfy the physical constraints (state equation, 
Eqs. (9b)–(9d) as well as temperature and pH bounds, Eqs. (9e) 
and (9f), at the same time, maximize the performance criterion 
( J)”, which has been defined in the Lagrangian form, Eq. (9a). 
The performance criterion ( J ) is a functional used for quantita-
tive evaluation of a system’s performance and can depend on 
both the control and state variables and on the initial and/or 
terminal times too (if not fixed) [12].

In this study, the final fermentation time is fixed and the 
performance criterion is formulated to depend only on the 
product concentration and the controlled variables.

Weights are introduced to differentiate the degree of 
dependence of the performance criterion on the state and 
controlled variables. The constants A,B,C are the respective 
weights of the product (state to be maximized), temperature 
and pH (controlled variables). In this study, all the variables 
were assumed to have the same importance and the weights 
were all given a unit value.

s.t.

(8a)

dX

dt
=

�maxkg exp
(
−

Eg

RT

)

1 +
k1

10−pH
+

10−pH

k2

S

Ksx + S
X − kd exp

(
−
Eg

RT

)
X,

(8b)
dP

dt
= qmax(1 − KipP)

S

Ksp + S
X +MpX,

(8c)

dS

dt
=

−�maxkg exp
(
−

Eg

RT

)

1 +
k1

10−pH
+

10−pH

k2

SX

Yx(Ksx + S)

−
qmaxS

(
1 − KipP

)
X

Yp
(
Ksp + S

) − X(Gs +Ms).

(9a)

J =

tf

∫
0

[
AP2 + B exp

(
−
Eg

RT

)
+ C

(
k1

10−pH
+

10−pH

k2

)]
dt,

(9b)dX

dt
=

�max exp
(
−

Eg

RT

)

1 +
k1

10−pH
+

10−pH

k2

S

Ksx + S
X − kd exp

(
−
Eg

RT

)
X,
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To facilitate subsequent mathematical manipula-
tions of the objective function, we define the following 
transformations:

Replacing these variables into Eqs. (9a, 9b, 9c, 9d, 9e, 
9f), we obtain the following equation:

s.t.

If the state, control, and static parameters can each be 
written in component form as

(9c)
dP

dt
= qmax(1 − KipP)

S

Ksp + S
X +MpX,

(9d)

dS

dt
=

−�max exp
(
−

Eg

RT

)

1 +
k1

10−pH
+

10−pH

k2

SX

Yx(Ksx + S)

−
qmaxS

(
1 − KipP

)
X

Yp
(
Ksp + S

) − X(Gs +Ms),

(9e)Tmin ≤ T(t) ≤ Tmax,

(9f)pHmin ≤ pH(t) ≤ pHmax,

x1 = X, x2 = P, x3 = S p1 = �max, p2 = qmax

p3 = Ksx, p4 = Ksp, p5 = Yx, p6 = kd

p6 = Gs, p7 = Ms, p9 = Mp, p10 = Kip p11 = Yp

u1 = exp

(
−
Eg

RT

)
, u2 =

k1

10−pH
+

10−pH

k2

(10a)MaxJ =

tf

∫
0

[
Ax2(t)

2 + Bu1(t)
2 + Cu2(t)

2
]
dt,

(10b)
dx1

dt
=

p1

1 + u2

u1x3

p3 + x3
x1 − p6u1x1,

(10c)
dx2

dt
= (1 − p10x2)

p2x3

p4 + x3
x1 + p9x1,

(10d)

dx3

dt
=

−p1u1

1 + u2

x3x1

p5(p3 + x3)
−

p2x3
(
1 − p10x2

)
x1

p11
(
p4 + x3

) − x1
(
p7 + p8

)
,

(10e)u1min ≤ u1(t) ≤ u1max,

(10f)u2min ≤ u2(t) ≤ u2max,

(11)x(t) =

⎡⎢⎢⎣

x1(t)

⋮

x3(t)

⎤⎥⎥⎦
; u(t) =

⎡⎢⎢⎣

u1(t)

⋮

u2(t)

⎤⎥⎥⎦
; p(t) =

⎡⎢⎢⎣

p1(t)

⋮

p10(t)

⎤⎥⎥⎦
;

where

Then optimal control problem can be simply written as 
follows:

Subject to

Referred to as the Lagrangian form of an optimal control 
problem.

Solution technique by calculus of variations

In an indirect method, calculus of variations is applied to deter-
mine the first-order optimality conditions first-order necessary 
conditions for an optimality conditions and the first-order nec-
essary conditions for an optimal trajectory. These conditions 
can be obtained by using the augmented Hamiltonian ( H ) 
defined by equation (17)

where �(t) ∈ ℝ
n is the costate or adjoint state. In the case of 

a single phase optimal control problem with no static param-
eters, the first-order optimality conditions of the continuous-
time problem are given as follows:

(12)
f
�
x(t), u(t), t; p

�
=

⎡
⎢⎢⎣

f1
�
x(t), u(t), t; p

�
⋮

f3
�
x(t), u(t), t; p

�
)

⎤
⎥⎥⎦
,

(13)f1
[
x(t), u(t), t; p

]
=

p1

1 + u2

u1x3

p3 + x3
x1 − p6u1x1,

(14)f2
[
x(t), u(t), t; p

]
=
(
1 − p10x2

) p2x3

p4 + x3
x1 + p9x1,

(15)

f3
[
x(t), u(t), t; p

]
=

−p1u1

1 + u2

p−1
5
x3x1

(p3 + x3)

−
p2x3

(
1 − p10x2

)
x1

p11
(
p4 + x3

) − x1
(
p7 + p8

)
.

(16a)Max J(u) =

tf

�
t0

[x(t), u(t), t; p]dt.

(16b)ẋ(t) = f
[
x(t), u(t), t; p

]

(16c)umin ≤ u(t) ≤ umax,

where [x(t), u(t), t; p] = [
Ax2(t)

2 + Bu1(t)
2 + Cu2(t)

2
]

(17)H(x, �, u, t; p) =  + �Tf ,

(18a)ẋ =
[
𝜕H

𝜕𝜆

]T
,

(18b)𝜆̇ = −
[
𝜕H

𝜕x

]T
,
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where U is the feasible control set
The systems of differential equations presented in Eqs. (18a, 

18b) are referred to as the Hamiltonian system, derived from 
the differentiation of a Hamiltonian [6, 11]. Furthermore, the 
optimal control profile to the system is determined from the 
application of the Pontryagin’s minimum principle (PMP) 
resulting in Eq. (19) and this is the classical method of deter-
mining the control [18]. The Hamiltonian system, together 
with the boundary, transversality, is referred to as a Hamilto-
nian boundary-value problem (HBVP) [4, 6] and the solution 
to such a system is called an extremal.

Now applying calculus of variations to Eqs. (10a, 10b, 
10c, 10d, 10e, 10f), the Hamiltonian can be written as 
follows:

State equations

If we differentiate the Hamiltonian, Eq. (17) with respect to the 
co-states, Eq. (18a), we obtain the following state equations:

Costate equations

If we differentiate the Hamiltonian, Eq. (17) with respect to 
the states, Eq. (18b), we obtain the following state equations:

(19)u∗ = argmin
u∈U

H,

(20)

H = Ax2(t)
2 + Bu1(t)

2 + Cu2(t)
2

+ �1

(
p1u1x1

1 + u2
M − p6u1x1

)

+ �2
(
p2Nx1 + p9x1

)

+ �3

(
−p1u1x1

1 + u2

M

p5
−

p2Nx1

p11
− x1(p7 + p8)

)
,

where M =
x3

p3 + x3
and N = (1 − p10x2)

x3

p4 + x3
.

(21a)
dx1

dt
=

p1

1 + u2

u1x3

p3 + x3
x1 − p6u1x1,

(21b)
dx2

dt
= (1 − p10x2)

p2x3

p4 + x3
x1 + p9x1,

(21c)

dx3

dt
=

−p1u1

1 + u2

x3x1

p5(p3 + x3)
−

p2x3
(
1 − p10x2

)
x1

p11
(
p4 + x3

) − x1
(
p7 + p8

)
,

(22a)

d�1

dt
= �1

(
p6u1 −

p1u1M

1 + u2

)
− �2

(
p9 + p2N

)

+ �3

(
p1u1M

p5
(
1 + u2

) +
p2N

p11
+ p7 + p8

)
,

Optimal control equations

The optimal control equations are obtained by applying the 
Pontryagin’s minimum principles in Eqs.  (17)–(15). The 
Hamiltonian gradient can be represented by differentiating 
the Hamiltonian with respect to the controls to obtain the fol-
lowing equations:

The necessary optimality conditions for a local maximizer 
are that this gradient should be equal to zero as shown by the 
following equations:

The expressions for temperature and pH can then be writ-
ten as Eqs. (25) and (26), respectively, and the optimal control 
trajectories become Eqs. (27) and (28).

(22b)

d�2

dt
= −2Ax2 +

p2p10x1N(
1 − p10x2

)
(
�2 +

�3

p11

)
,

(22c)

d�3

dt
= −�1

(
p1

1 + u2

)
p3u1Q − �2Zp4p2

− �3

(
−p1u1

1 + u2

)(
p3Q

p5

)
+ �3

Zp4p2

p11
,

where Q =
x1(

p3 + x3
)2 and Z =

(
1 − p10x2

) x1(
p4 + x3

)2 .

(23a)
dH

du1
= 2Bu1 + �1

(
W

1 + u2
− p6x1

)
− �3

W

p5
(
1 + u2

) ,

(23b)
dH

du2
= 2Cu2 − �1

u1W(
1 + u2

)2 + �3
u1W

p5
(
1 + u2

)2 ,

W =
p1x1x3

p3 + x3
.

(24a)2Bu∗
1
+ �1

(
W

1 + u∗
2

− p6x1

)
− �3

W

p5
(
1 + u∗

2

) = 0,

(24b)2Cu∗
2
+

u∗
1
W

(
1 + u∗

2

)2
(
−�1 +

�3

p5

)
= 0.

(25)T =
1

R
ln

kg

u∗
1

,

(26)pH =
1

ln 10
ln

⎛⎜⎜⎜⎝

k2u
∗
2
+

��
k2u

∗
2

�2
− 4k1k2

2k1k2

⎞⎟⎟⎟⎠
,
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Numerical simulations and control 
validation

The states, costate and optimal control equations are referred 
to as the Hamiltonian boundary-value problem (HBVP) with 
boundary conditions given by the following equation:

A collocation method based on the Labatto IIIA for-
mula was used to simulate the HBVP, and a Matlab code 

(27)T∗ = min(Tmax, max
(
Tmin, T

)
,

(28)pH∗ = min(pHmax, max
(
pHmin, pH

)
,

(29)�
�
tf
�
=

⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦

x
�
t0
�
=

⎡
⎢⎢⎣

0.1

0.7

16.8

⎤
⎥⎥⎦
.

was written to implement this algorithm using the Matlab 
routine ‘bvp4c’. The collocation polynomial provides a 
C1-continuous solution that is fourth-order accurate uni-
formly in [a b]. Mesh selection and error control are based 
on the residual of the continuous solution. The numerical 
solution for the necessary optimality conditions, Eqs. (24a, 
24b) is obtained using the Matlab routine ‘fsolve’, which 
finds the roots for systems of nonlinear equations. In validat-
ing the controls, the alcohol fermentation model described 
in section III was implemented in the SIMULINK environ-
ment. This implemented model includes the objective func-
tion to be maximized.

Results and discussion

Figures 1 and 2 present the optimal temperature and pH pro-
files optimize the fermentation process. Simulation using the 
Simulink model, Fig. 7 shows that the optimal temperature 

Fig. 1   Optimal temperature 
profile

Fig. 2   Optimal pH profile
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and pH profiles obtained an increment in cell growth of 
71.96%, product formation by 14.18% and substrate utiliza-
tion by 84.77% compared to using the conventional tempera-
ture and pH values used by the industry. This improvement 

in process performance observed can be explained by the 
fact that due to the dynamic nature of the culture medium, 
yeast cells often suffer from various stresses resulting from 
both the environmental conditions, and from both product 
and or substrate imbibition as the fermentation proceeds.

Optimal profiles (and not constant values) of temperature 
and pH are important in the controlling these stresses, and 
ensure that the culture medium conditions stays constant, 
hence maximizing yield [20]. The increase in substrate uti-
lization did not balance up with product formation because 
some of the substrate was utilized for cell growth and main-
tenance. Table 1 presents the values of the final states and 

Table 1   Final states for optimal and conventional conditions

Final state Optimal Conventional

Biomass (Mcells/0.1 ml) 0.3219 0.1872
Product (g/100 g) 7.748 6.785
Substrate (g/100 g) 5.872 10.85
Performance index 5.593e+05 5.455e+05

Fig. 3   Experimental and model 
results

Table 2   Simulated kinetic 
parameter values

Parameter �max qpmax kd mp Kip Ksx Ksp Yx Yp ms Gs

Value 2.200 0.436 0.072 0.686 0.335 246.266 3.063 0.086 0.759 0.002 0.003
Model error 0.8940

Fig. 4   Dynamics of cell growth 
with optimal and conventional 
controls
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cost functional for both the Optimal and the conventional 
operation conditions. Figure 3 presents the fitting for the 
model taking into consideration the death rate and Table 2 
the parameter values. Table 1 presents the values of the final 
states of both the optimal and conventional operation condi-
tions. Figures 4, 5, 6, and 7 compare the optimal and con-
ventional operating strategies, clearly depicting increase in 
process performance.      

Conclusion and recommendations

This paper presented the modeling of a batch alcoholic 
fermentation process using sorghum extracts, followed by 
the application of optimal control to determine the optimal 
temperature and pH profiles that maximizes yield. Since 
the model was developed using industrial scale fermen-
tation data, the results obtained in the simulations can 
satisfactorily represent a real operation unit. From the 
comparative results presented in the simulations, it is con-
cluded that the proposed strategy can be used in practice 
to improve the performance of industrial scale alcoholic 
fermentation using sorghum.

Fig. 5   Dynamics of product 
formation with optimal and 
conventional controls

Fig. 6   Dynamics of substrate 
utilization with optimal and 
conventional controls
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