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Abstract
Removal of metals from wastewaters causes a big concern from the environmental point of view due to their extreme toxic-
ity towards aquatic life and humans. Application of As(III) from aqueous solution by ZnO nanorods as adsorbent has been 
investigated in the present study. The synthesized nanorods were characterized by XRD, FT-IR spectroscopy, SEM, and 
thermogravimetric analysis. Optimum biosorption conditions were determined with respect to pH, adsorbent dose, contact 
time, and temperature. The experimental data were examined using the Lagergren’s first-order, pseudo-second-order and 
intraparticle diffusion kinetic models. The results revealed that the pseudo-second-order kinetic model provided the best 
description of the data. Langmuir and Freundlich isotherm models were applied to the equilibrium data. The maximum 
As(III) sorption capacity of ZnO nanorods was found to be 52.63 mg/g at pH 7, adsorbent dose 0.4 g, contact time 105 min, 
and temperature 323 K. The calculated thermodynamic parameters, ΔGo (between − 5.741, − 5.342 and − 4.538 kJ/mol 
at 303–323 K), ∆Ho (13.75 kJ/mol) and ∆So (0.0616 J/mol K) showed that the sorption of As(III) onto ZnO nanorods was 
feasible, spontaneous and exothermic, respectively.
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Introduction

Water pollution due to the release of various toxic chemicals 
and dyes from industrialization and urbanization is a global 
problem [1–31]. Arsenic occurs naturally in the earth’s 
crust, and much of its dispersion in the environment stems 
from mining and commercial uses. In industry, arsenic is a 
byproduct of the smelting process (separation of metal from 
rock) for many metal ores such as zinc, lead and cobalt. It 

cannot be destroyed once it has entered the environment, so 
that the amounts that we add can spread and cause health 
effects to humans and animals. The effects of arsenic expo-
sure include discoloration of the skin, gangrene, intestinal 
problems, and carcinogenic effects include skin, lung, liver, 
kidney, and bladder cancers and ultimately death [32]. To 
reduce the health risks of human beings, the U.S. Environ-
mental Protection Agency (USEPA) revised the maximum 
contaminant level (MCL) for arsenic in drinking water from 
50 to 10 μg/L [33].

Arsenic occurs in the environment in several oxidation 
states such as − 3, 0, + 3 and + 5. Inorganic arsenic is gener-
ally found as trivalent arsenite or pentavalent arsenate form 
in the aqueous solution. As(III) is a hard acid and preferen-
tially complexes with oxides and nitrogen. Whereas As(V) 
behaves like a soft acid, forming complexes with sulfides 
[34]. The speciation of arsenic in water is usually controlled 
by redox conditions, pH, biological activity, and adsorp-
tion reactions [35, 36]. As(III) is more toxic than As(V) 
and it is very difficult to remove from water. As a result 
of heightened guideline of arsenic toxicity and regulatory 
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changes, prompting innovative research efforts towards effi-
cient removing arsenic from contaminated water is of critical 
importance.

Many technologies such as coagulation [37], ion exchange 
[38], membrane filtration [39, 40], and precipitation [41] 
have been employed for the removal of metal ions from 
aqueous solutions and effluents. However, these methods can 
prove to be too costly, impractical to apply over large scales, 
or unable to remove trace quantities of the metalloid. To 
overcome these drawbacks, adsorption is a good alternative 
to remove metal ions from aqueous environment. Different 
types of adsorbents [42–49] have been used for the removal 
of a variety of pollutants from water. Recently, the applica-
tion of nanomaterials, nanoadsorbents has come forth as a 
fascinating area of interest for the removal of metallic and 
dye pollutants from water [50–53]. A variety of nanoparti-
cles titanium dioxide suspensions [54], chitosan nanoparti-
cles [55], zinc oxide nanoparticles [56], Nickel/nickel boride 
nanoparticles-coated resin [57], zirconium oxide nanoparti-
cles [58],  MnFeO4 and  CoFe2O4 [59] have been used for the 
removal of metal ions from water. Nanoparticles are having 
high adsorption capacity due to its large surface area. In this 
connection, utilization of nanoparticles has greater attention 
in metal ion removal process. As per the literature survey, 
there are no studies on the adsorption of As(III) using ZnO 
nanorods. Therefore, in the present study, ZnO nanorods 
have been used for the removal of As(III) from aqueous 
solution.

The goal of this work is to investigate the sorption capac-
ity of ZnO nanorods as an adsorbent for the removal of 
As(III) from aqueous environment. The effects of varying 
parameters such as pH, dose, initial metal concentration, 
contact time and temperature on the adsorption process were 
examined. To clarify the sorption kinetics of As(III) by ZnO 
nanorods, Lagergren’s pseudo-first-order, pseudo-second-
order and intraparticle diffusion models were applied to the 
experimental data. The isotherms of adsorption have been 
studied and various isotherm models, such as Langmuir, and 
Freundlich models, have been tested. In addition, thermody-
namic parameters including the change in free energy (ΔGo), 
enthalpy (∆Ho) and entropy (∆So) were calculated to evalu-
ate the thermodynamic behavior of the biosorption process.

Materials and methods

Materials

All the reagents were of analytical grade with a purity of 
99% and used as received without further purification. 
 ZnSO47H2O (S. D. Fine chemicals limited), KOH (Quali-
gens fine chemicals) tetraethyl orthosilicate (Sigma Aldrich). 
The glassware used was soaked in 10%  HNO3 overnight 

before use and cleaned repeatedly with double distilled 
water. The stock solutions of As(III) were prepared by dis-
solving  As2O3 in double distilled water. Fresh dilutions were 
used for each study. The initial pH of each solution was 
adjusted with 0.1 M HCl and NaOH.

Synthesis of ZnO nanorods

ZnO nanoparticles were prepared by drop by drop addi-
tion of 0.3 M of KOH (19.03 g/100 mL) from a burette to 
0.017 M solution of  ZnSO47H2O (5 g/100 mL) with constant 
stirring (500 rpm). The reaction mixture was stirred at room 
temperature. Then, tetraethyl orthosilicate (capping agent) 
was added in a certain amount to the reaction mixture to 
inhibit the growth of zinc hydroxide crystallite during the 
course of the precipitation. The solution becomes milky 
white under the constant stirring. The precipitate is sepa-
rated by the filtration. After that, it washed several times 
with distilled water and absolute methanol until the impu-
rities are free from precipitate. Finally, it was dried in hot 
air oven for 1 h at 353 k. The ZnO nanorods were stored in 
airtight containers and kept in desiccators until further use.

Apparatus

The crystallinity and phase identification of adsorbent pow-
ders were determined by X-ray diffraction (XRD) using a 
Rigaku Ultima III system equipped with a Cu sealed tube 
(λ = 1.54178°A). FT-IR spectra of the pure, As(III) loaded 
ZnO nanorods were measured with an FT-IR spectropho-
tometer (Thermonicolet-200 series, Germany) under ambi-
ent conditions. The spectra were recorded from (4000 to 
500 cm−1) using a KBr pellet. The surface morphology of 
the samples was observed Scanning electron micrographs 
(Carl Zeiss, EVO MA 15, England). The pH of the As(III) 
solution is measured with a digital pH meter (Digisum 
D1-7007, India). Thermal gravimetric analysis (TGA) was 
carried out using on a Linseis L81-I TG–DTA instrument 
with a heating rate of 10 °C  min−1 under an  N2 atmosphere.

Batch adsorption studies

To obtain the performance of sorbent material, batch experi-
ments were conducted. The pH of the solutions was adjusted 
by adding 0.1 M HCl and NaOH. A total of 0.4 g of adsor-
bent (ZnO nanorods) was mixed with 50 mL of As(III) solu-
tion in 125 mL of Erlenmeyer flasks. The pH of the solu-
tions was adjusting by 0.1 M of HCl or NaOH. Then, the 
flasks were shaken at room temperature (303 K) for 2 h to 
reach equilibrium in shaking incubator. After that the sam-
ples were withdrawn from the shaking incubator and filtered 
through whatman filter paper 41 to remove As(III) from the 
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solution. The amount of As(III) ions in the filtered solution 
was estimated.

where qe (mg/g) was the adsorption capacity at equilibrium, 
Ci and Ce are initial and equilibrium concentration (mg/L) 
of As(III) in the aqueous phase, respectively, M (g) is the 
biosorbent dosage, and V (L) is the volume of the aqueous 
phase.

Results and discussion

Characterization of the adsorbent material

XRD analysis

XRD spectra of pure and As(III) loaded ZnO nanorods are 
shown in Fig. 1. The peaks were seen at 31.96, 34.62, 36.44, 
47.74, 56.79 and 63.05, which can be assigned to diffrac-
tion from (100), (002), (101), (102), (110) and (103) planes, 
respectively. This revealed that the resultant nanoparticles 
were of pure zinc oxide with a hexagonal structure.

FT‑IR analysis

The functional groups of the synthesized ZnO nanorods 
were analyzed using the FT-IR spectrum. FT-IR spec-
tra of pure and As(III) loaded ZnO nanorods are shown 
in Fig. 2. The major bands for the ZnO nanorods can 
be assigned as follows: The broad and strong bands 
at 3378 cm−1 (are due to the overlapping of –OH and 
–NH2 stretching vibrations), 1659 cm−1 (–NH2 bending 

(1)qe =
(Ci − Ce)V

M

vibrations), 1370 cm−1 (–CH symmetric bending vibra-
tions in ZnO–OH), 1019 cm−1 (–CO stretching vibra-
tion in –COH). In addition, a broad absorption peak 
about 400–590 cm−1was assigned to the inorganic Zn–O 
stretching band. After As(III) loaded, the broad band 
at 3415 cm−1 which is concerned with –OH and –NH2 
stretching vibrations increases after sorption process. 
This may be attributed to the deformation of –OH and 
–NH2 bands as a result of interaction between the func-
tional groups and metal ions. The intensity of the band 
at 1659 cm−1 is substantially decreased to 1618 cm−1 
after As(III) loaded. The shift of the peak from 1019 to 
1032 cm−1 suggests the involvement of the C–O group in 
binding As(III).

SEM analysis

Surface morphology of the adsorbent is the most important 
one and the adsorption capacity mainly depends on the sur-
face structure and surface porosity. Figure 3 shows the SEM 
images of (a) ZnO nanorods and (b) As(III)-loaded ZnO 
nanorods. From Fig. 3a, it is clearly observed that the pure 
ZnO nanorods are formed. After As(III) loaded (Fig. 3b), the 
nanorods are fully covered with the metal. It can be observed 
that the surface morphologies of ZnO are different before 
and after As(III) loaded.

TGA analysis

The TGA graph (Fig. 4) shows weight loss up to 450 °C and 
after this point there was no significant weight loss detected. 
The first weight loss occurred at 120 °C, representing the Fig. 1  X-RD spectra of pure ZnO nanorods

Fig. 2  FT-IR spectra of a pure ZnO nanorods and b As(III)-loaded 
ZnO nanorods
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dehydration of samples due to desorption of physically 
adsorbed water molecules on the surface of ZnO nanorods. 
The second weight loss occurred between 250 and 350 °C, 
indicating the loss of  OH− and  CO3

2−.

Influence of solution pH

The pH of the solution is considered to be one of the most 
important factors affecting the biosorption process. The pH 
affects not only the solution chemistry of the metals but 
also the ionization state of the functional groups present 
on the surface of the sorbent. The effect of initial pH on 
the biosorption of As(III) onto ZnO nanorods was evalu-
ated within the pH range of 2–9 (Figure not shown). At low 
pH values, protons occupy most of the sorption sites on the 
sorbent surface and less As(III) could be sorbed because 
of electrostatic repulsion. When the pH values increased, 
adsorbent surfaces were more negatively charged and the 
sorption of metal ions (positive charge) increased and 
reached maximum at pH 7.0 for As(III). Decreased sorption 
at higher pH (pH > 7.0) was due to the formation of soluble 
hydroxylated complexes of the metal ions and their competi-
tion with the active sites, and as a consequence, the retention 
had been decreased again. For this reason, the optimum pH 
was selected to be 7.0 for further experiments.

The effect of pH can also be explained in terms of  pHpzc 
of the biosorbent. The  pHPZC is an important characteristic 
for adsorbents to determine the pH at which the surface has 
net electrical neutrality. The initial pH of each solution was 
adjusted with 0.1 M HCl and NaOH. At pH < PZC, the 
surface charge of the adsorbents is positive which results in 
low As(III) sorption. At pH > PZC, the surface charge of the 
adsorbents is negative and the As(III) ions in solution were 
attracted to the surface to a greater extent. The PZC value 
of the ZnO nanorods is found to be 6.5.

Effect of agitation speed

The agitation speed experiments were undertaken with dif-
ferent agitation speeds of (30, 60, 90, 120, 150, 180, and 
210) rpm keeping constant the other process variables. The 
amount of As(III) adsorption increases with an increase 
of the agitation speed from (30 to 210) rpm and the high-
est amount of As(III) (96% removal and the figure was not 
shown) was obtained with an agitation speed of 180 rpm. 
Lower speeds probably caused inefficient dispersion of 
adsorbent particles in water that led to agglomeration of 
particles. At higher agitation speed (> 180 rpm), the As(III) 
amount decreases. Hence, the optimum speed of 180 rpm 
has been selected for further study.

Influence of adsorbent dose

The amount of the adsorbent is an important parameter 
because it determines the adsorption capacity of an adsor-
bent for a given initial concentration of the adsorbate. The 
effect of adsorbent dose has been studied with various 
amounts of sorbent (0.1–0.6 g), while keeping all the other 

Fig. 3  SEM images of a pure ZnO nanorods, b As(III)-loaded ZnO 
nanorods

Fig. 4  TGA graph of ZnO nanorods
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parameters constant at their optimum values (i.e., pH, agi-
tation speed, temperature and contact time). From results 
(Fig. 5), the removal percentage of As(III) increases with 
increasing higher dosages. This is attributed to the increased 
adsorbent surface area and more available adsorption sites 
or functional groups because of the increase in adsorbent 
quantity. Beyond 0.4 g, there was no appreciable increase 
in the percentage adsorption, which indicates the saturation 
of the active adsorption sites in the biopolymer composite. 
An adsorbent content of 0.4 g was selected for all further 
experiments because of the high adsorption efficiency and 
acceptable adsorption capacity at this value.

Influence of initial metal ion concentration and contact 
time

Contact time is one of the important parameters for suc-
cessful biosorption application. To examine the effect of 
the initial metal concentration, the biosorption experi-
ments were carried out at different initial metal concentra-
tions (30, 50, 70, and 90 mg/L) at the optimum temperature 
and pH. The initial As(III) ion concentration was varied 
(30–90 mg/L) with varying contact times (15–120 min). 
The removal percentage increases with increasing the metal 

ion concentration (Figures not shown) and then it remained 
unchanged by further increase in initial metal ion concen-
trations. These results suggest that the available sites on the 
biosorbent are the limiting factor for the As(III) adsorption. 
It was observed that the sorption process reached equi-
librium at 105 min. Afterwards, there were no significant 
changes in As(III) onto ZNO nanorods. Hence, the con-
tact time of 105 min is selected for As(III) ions for further 
studies.

Kinetic models

Adsorption kinetics is important from the point of view that 
it controls the efficiency of the process and the models cor-
relate the adsorbate uptake rate with its bulk concentration.

To analyze the adsorption rate, pseudo-first-order [60], 
pseudo-second-order [61] and intraparticle diffusion mod-
els [62] were used to investigate the adsorption kinetics of 
As(III) onto the ZnO nanorods.

The linear form of pseudo-first-order rate equation is gen-
erally expressed as follows:

where qe (mg/g) and qt (mg/g) are the amounts of As(III) 
sorbed at equilibrium and at time t. K1 (min−1) is the rate 
constant of first-order biosorption process. The pseudo-first-
order kinetic constants were determined from slope of the 
plot of log (qe − qt) versus t (Figure not shown) and the val-
ues are shown in Table 1.

The pseudo-second-order kinetic model of McKay and 
Ho can be expressed as:

where qe and qt are the amount of the As(III) removal per 
unit mass of biosorbent (mg/g) at equilibrium and at time 
t (min), and K2 (g/mg.min) is the pseudo-second-order rate 
constant. The biosorption rate constant (K2) is obtained 
from linear plot of t/qt versus t (Figure not shown) and the 
values are included in Table 1. As shown in Table 1, the 
R2 values for pseudo-second-order kinetic model at all the 

(2)log
(

qe − qt
)

= log qe −
K1

2.303
t

(3)
t

qt
=

1

K2q
2
e

+
1

qe
t

Fig. 5  Effect of adsorbent dose for the removal of As(III) from aque-
ous environment

Table 1  Kinetic parameters for 
the removal of As(III) onto ZnO 
nanorods at different As(III) 
concentrations

As(III) 
Conc. 
(ppm)

Pseudo-first-order Pseudo-second-order Weber and Morris

K1 (1/min) R2 SSE K2 (g/mg min) R2 SSE Kid 
(mg/g min−0.5)

R2 SSE

30 0.020 0.995 0.973 0.0087 0.999 0.1844 0.142 0.986 0.8197
50 0.027 0.992 0.971 0.0091 0.999 0.1272 0.171 0.977 0.4768
70 0.029 0.986 0.978 0.0058 0.989 0.1477 0.251 0.975 0.3319
90 0.036 0.959 0.985 0.0087 0.999 0.0303 0.336 0.941 0.1852
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concentrations studied are higher than pseudo-first-order 
model. It was suggested that the pseudo-second-order model 
is more suitable for describing the sorption of As(III) onto 
ZNO nanorods.

The intraparticle diffusion model is based on the theory 
proposed by Weber and Morris

where qt (mg/g) is the amount adsorbed at time t (min), Kid is 
the intraparticle diffusion rate constant (mg/g min−0.5) and C 
is the intercept that gives an idea about the thickness of the 
boundary layer. The intraparticle diffusion model coefficient 
values are calculated from the plot of qt versus t0.5 (Figure 
not shown) and are given in Table 1. It can be deciphered 
that these plots of  qt versus t0.5 have three distinct regions. 
The initial region of the curve relates the adsorption on 
the external surface. The second region corresponds to the 
gradual uptake, which reflects the intraparticle diffusion as 
the rate-limiting step. The final plateau region indicates the 
equilibrium uptake. It denotes that the intraparticle diffusion 
is not the only rate-controlling step.

In addition, the sum of square error (SSE) test was carried 
out to predict the best fit.

where qt,e and qt,m are the experimental biosorption capaci-
ties of metal ions (mg/g) at time t and the corresponding 
values that are obtained from the kinetic models. SSE values 
for all kinetic models are calculated and are summarized in 
Table 1. Pseudo-second-order model has the lowest SSE val-
ues when compared with the pseudo-first-order and intrapar-
ticle diffusion models. Based on the low SSE values, it can 
be concluded that biosorption As(III) onto ZNO nanorods 
follows pseudo-second-order model.

Equilibrium isotherms

The capacity of an adsorbent can be described by sorption iso-
therms, which can help to explore the adsorption mechanism 
much more thoroughly. The sorption data have been subjected 
to different sorption isotherms, namely the Langmuir [63] and 
Freundlich [64].

(4)qt = Kidt
0.5 + c

(5)SSE =
∑ (qt,e − qt,m)

2

q2t,e

The Langmuir model assumes that the uptake of metal ions 
occurs on a homogeneous surface by monolayer adsorption 
without any interaction between adsorbed ions. The linearized 
form of this isotherm can be expressed as:

where qe is the equilibrium metal ion concentration on the 
sorbent (mg/g), Ce is the equilibrium metal ion concentra-
tion in the solution (mg/L), qm is the monolayer biosorption 
capacity of the sorbent (mg/g), and K is the Langmuir con-
stant related to the free energy of sorption.

As seen from Table 2 the R2 values indicates that the 
Langmuir isotherm model fits well to the experimental data. 
The maximum adsorption capacity qmax was calculated from 
the Langmuir equation indicating the qmax of As(III) with 
ZnO nanoparticles 52.63 mg/g, respectively. For the Lang-
muir isotherm, a dimensionless separation factor can be 
expressed by the following equation:

where b is the Langmuir constant (L/mg) and Co is the initial 
biosorbent concentration of As(III) ions (mg/L). The value 
of RL indicates the shape of isotherm to be either unfavora-
ble (RL > 1), Linear (RL = 1), Favorable (0 < RL < 1), or 
irreversible (RL = 0). In this study, the RL values lie between 
0 and 1. This indicates that the biosorption of As(III) onto 
ZNO is favorable.

The Freundlich isotherm is used for modeling the 
biosorption of metal ions on heterogeneous surfaces and the 
linearized form of the isotherm is as follows:

where Kf (mg/g) is a constant relating the biosorption capac-
ity and 1/n is an empirical parameter relating the biosorption 
intensity. The values of Freundlich constants Kf and 1/n are 
included in Table 2. The values of Freundlich constants Kf 
and 1/n were obtained from the plots of log Ce versus log qe 
(Figure not shown) and the values are included in Table 2. 
It is clear that the R2 values are not closer to unity compared 
to Langmuir model. This value indicates the degree of non-
linearity between solution concentration and adsorption as 

(6)
1

qe
=

1

qmK

[

1

Ce

]

+
1

qm

(7)RL =
1

(1 + bC0)

(8)log qe = logKf +
1

n
logCe

Table 2  Langmuir and 
Freundlich isotherm constants 
and correlation coefficients 
for the removal of As(III) onto 
ZnO nanorods at different 
temperatures

Temp. (K) Langmuir isotherm Freundlich isotherm

qm (mg/g) KL (L/mg) R2 χ2 Kf (mg/g) 1/n R2 χ2

303 38.46 9.76 0.999 4.34 9.79 0.471 0.990 25.30
313 41.66 7.79 0.999 6.32 9.84 0.510 0.993 24.70
323 52.63 5.42 0.999 14.11 6.50 0.617 0.996 54.78
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follows: if n = 1, then adsorption is linear; if n < 1, then 
adsorption is a chemical process; if n > 1, then adsorption 
is a physical process. The n value in Freundlich equation 
was found to be 2.12, 1.96, and 1.62 for ZnO nanorods at 
three different temperatures (303, 313 and 323 K). Since n 
lie between 1 and 10, this indicates the physical adsorption 
of As(III) onto ZnO nanorods.

Chi square (χ2) analysis

Chi square (χ2) test was adopted to find the suitability of an 
isotherm that fits best the experimental data. The Chi square 
(χ2) statistics is basically the sum of the squares of the dif-
ference between the experimental and calculated data from 
models, with each squared difference divided by correspond-
ing data obtained by calculation. The equation for evaluating 
the best fit model is as follows:

where qe,m is the equilibrium capacity obtained from the 
model (mg/g) and qe is the experimental equilibrium capac-
ity (mg/g). From Table 2, lower χ2 values of Langmuir iso-
therm model show that the experimental data correlate well 
with the Langmuir isotherm than the Freundlich isotherm.

Effect of temperature

Temperature plays key roles on the biosorption process. 
Biosorption experiments were conducted at 303, 313 and 
323 K to investigate the effect of temperature, with initial 
As(III) concentration of 125–225 mg/L, adsorbent dosage of 
0.4 g/L, pH 7 and contact time of 105 min. It was observed 
that the maximum adsorption capacity of As(III) ion reached 
up to 52.63 mg/g at 323 K. The sorption capacity increased 
when temperature of the solution was increased, indicat-
ing that the process was endothermic. This may be a result 
of an increase in the mobility of As(III) ions with increas-
ing temperature. An increasing number of molecules may 
also acquire sufficient energy to undergo an interaction with 
active surface sites of the adsorbent.

Thermodynamic parameters, such as of Gibbs free energy 
change (ΔGo), enthalpy change (∆Ho) and entropy change 
(∆So), were used to evaluate the thermodynamic feasibility 
of the process and to confirm the nature of the biosorption 
process. The parameters were determined using the follow-
ing equations:

(9)�
2 =

∑ (qe − qe,m)
2

qe,m

(10)ΔGo = −RT lnKL

(11)lnKL = −
ΔHo

RT
+

ΔSo

R

where R is the universal gas constant (8.314 J/mol K), T 
is the temperature (K) and K is obtained by multiplying 
Langmuir constant b and qm. The negative values (− 5.741, 
− 5.342 and − 4.538 kJ/mol) of ΔGo indicate the spontane-
ous nature the adsorption of AS(III) at (303, 313, 323 K), 
respectively. The positive ΔHo value (13.75 kJ/mol) sug-
gested that the AS(III) adsorption is endothermic in nature. 
The positive ΔSo value (0.0616 J/mol K) reveals the increase 
in randomness at the solid-solution interface during the fixa-
tion of the antimony ion on the active sites of the adsorbent.

Comparison of ZnO with other adsorbents

Table 3 shows a comparison of the maximum adsorption 
capacity of different materials reported in the literatures [17, 
65–70] as adsorbents for As(III) from aqueous media under 
different experimental conditions. The  qmax (52.63 mg/g) 
value of for ZnO nanorods was much higher than those 
materials used for removing As(III) ions. Also, it is con-
cluded that ZnO is a novel sorbent for the removal of As(III) 
from aqueous solutions.

Conclusion

ZnO nanorods have been successfully synthesized from zinc 
acetate using KOH as a reducing agent at room temperature. 
The morphological studies were conducted using SEM indi-
cating that the As(III) adsorption was done on the surface of 
the adsorbent. Pseudo-first-order, pseudo-second-order and 
intraparticle diffusion kinetic models were used to describe 
the kinetic data and the rate constants were evaluated. The 
result of the kinetic study shows that the adsorption of 
As(III) could be described by the pseudo-second-order equa-
tion. The equilibrium behavior of As(III) with a stronger 

Table 3  Comparison of adsorption capacity of various adsorbents for 
As(III) ions from aqueous solution

Adsorbent Adsorption 
capacity (qmax) 
mg/g

Reference

Biochar (derived from rice husk) 19.3 [17]
Fe7S8 nanoparticles 14.3 [65]
Fe-SM (iron-coated S. muticum) 4.2 [66]
Calix [4] pyrrole 15.28 [67]
CeeFe mixed oxide MWCNT 28.74 [68]
Zero valent iron/mesoporous carbon 26.8 [69]
Activated carbon–alumina com-

posites
14.28 [70]

ZnO nanorods 52.63 Present study
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affinity toward ZnO nanorods could be fitted very well by 
the Langmuir isotherm. The thermodynamic functions were 
calculated, and it can be concluded that the adsorption of 
As(III) over ZnO nanorods is an endothermic and spontane-
ous process. Hence, it may be concluded that ZnO nanorods 
exhibit as a good adsorbent for the treatment of aqueous 
solutions containing As(III) ions.
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