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Abstract This research work concerns with the transes-

terification of castor oil with methanol to form biodiesel.

As the free fatty acid content in castor oil is more than 1%,

an acid catalyst namely, H2SO4 has been used for esteri-

fication. The experimental conditions were determined

using central composite design method and the experi-

ments were conducted in a 2 L working volume fully

controlled reactor. The input conditions namely, catalyst

concentration, methanol to oil molar ratio and temperature

were varied, and % fatty acid methyl ester (FAME) content

was determined. Based upon the experimental data, an

ANN model has been developed which is used to predict

%FAME yield for a given set of input conditions. The

experimental data and the data predicted by the ANN

model have been used to estimate the rate constants of a

kinetic model. The ANN model predicts the % FAME yield

within ±8% deviation, and the developed kinetic model

shows successfully the effect of methanol to oil molar ratio

on % FAME yield at 60 �C and 3% (v/v) catalyst loading.

Keywords ANN � Castor oil � Biodiesel � Parameter

estimation � Differential equation model

Introduction

Global energy consumption has been steadily increasing

since the beginning of the millennium and its demand is

expected to rise in the coming times. Thus, the general

awareness about alternative energy sources has increased

manifold, which have a lower impact on the environment

as a whole [1]. Sustainable sources of energy are to be

explored and used to decrease the overall dependence on

available primary sources of energy (fossil fuels) [2]. In

this context, biodiesel appears to be a feasible option as

its usage renders a reduction of above 90% in emissions

of total non-combusted hydrocarbons [3]. An excellent

review has been published [4] describing various veg-

etable oil feedstock sources used for producing biodiesel.

Biodiesel is mostly produced from the edible sources

such as sunflower [5], soybean [6], and rapeseed [7].

This practice is not favorable towards sustainability

because of the fact that it is competitive with food and

would increase the cost of both edible oil and biodiesel

[8]. Therefore, non-edible oils are preferred for this

purpose. Castor oil is one of the most promising non-

edible sources for the production of biodiesel [9]. Con-

ventional in situ transesterification of castor oil seeds has

been performed by Hincapie et al. [10]. Several catalysts

such as KOH, NaOH, KOCH3, HCl, etc. [11] have been

tried in its transesterification with ethanol. Reduction in

viscosity of castor methyl and ethyl ester blends have

been studied [12]. Kinetics of this process has been

investigated [13–17] by varying the alcohol to oil molar

ratio as well as the temperature. In one such process

[18], methanol to oil ratio was varied from 50:1 to 250:1

and temperature from 35 to 65 �C. Optimization of

castor oil transesterification reaction to produce biodiesel

has been reported by many authors, but optimization of
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tranesterification reaction by the use of ANN modeling

is rare in literature. It may be concluded that these

processes have not been investigated in the presence of

an acid catalyst from the point of view of kinetic

parameter estimation. ANN modeling can be a good

approach to optimize acid catalyzed reaction for bio-

diesel production as it is time saving, and we can opti-

mize biodiesel production on the pilot scale with the

experimental data optimized by using ANN. The FFA

content in castor oil should be less than 1% for using

alkaline catalyst [19]. If the limit of FFA is exceeded,

then soap formation occurs which inhibits the suppres-

sion of ester [20]. Boucher et al. [21] used significant

(50 wt%) amount of H2SO4 associated with 10.86–93.7

methanol to FFA molar ratio for the oil–fatty acid

mixture that contained 2–15% FFAs. Heterogeneous

catalyst (sulphonated polystyrene compounds) were

employed by Soldi et al. [22] and 85% conversion of

fatty acid into methyl ester was reported at a high

methanol to oil ratio of 100:1 and reaction time of 18 h.

In the present investigation, experiments were conducted

in a lab reactor; the experimental conditions were

determined by design of experiment method for metha-

nol to oil molar ratio = 6:1–25:1; catalyst amount

(vol%) = 1–3; temperature (�C) = 40–60 �C; time

duration of experiments = 4 h.

In recent years, artificial neural networks (ANNs) have

been widely applied to a wide range of applications such as

data prediction [23], fault detection [24], data rectification

[25], process control [26], etc. It is capable of handling

even incomplete data and is effective in executing fast

predictions and even for non-linear generalizations

[27, 28]. In 2011, performance of linear and non-linear

calibration techniques were compared in predicting bio-

diesel properties from near IR spectra by Balabin et al.

[29]. Evaluation of the intensification of biodiesel pro-

duction from waste goat tallow was performed using

response surface methodology (RSM) and ANN with

appreciable modeling efficiency by Chakraborty et al. [30].

This study on castor oil transesterification in presence of

acid catalyst aims to useANN formodeling the experimental

data obtained as decided by central composite design (CCD)

and then predicting fractional formation profile of FAME at

optimized conditions, determined by RSM. Further, the

developed ANN model has been used for developing a

kinetic model and estimating its rate constants by a suit-

able parameter estimation method. Broadly, the approach

adopted here is to use the available experimental data for

ANN model representation without imposing additional

requirements on the number of process measurements. The

available experimental data and those predicted using ANN

model have been used to estimate the kinetic parameters.

Materials and methods

Materials and methods as discussed in this section have

been described in detail in the doctoral thesis of Payal [31]

which is concerned with experimental and modeling stud-

ies of castor oil transesterification.

Chemicals

Pharmaceutical grade castor oil was purchased from the

local market through the authorized standard chemical

supplier of the institute. All chemicals; H2SO4 (97%),

anhydrous methanol, sodium bisulphate (Na2SO4) were of

analytical grade and were purchased from Merck India and

used without further purification. Pure standard methyl

esters were purchased from Sigma Aldrich, USA.

Experimental setup

A lab reactor (Applikon, Schiedam, The Netherlands,

stirred type, capacity: 3 L, ez control system) was used for

conducting the reaction. The reactor was 3 L double

jacketed borosilicate glass reactor having 2 L working

volume. The temperature was regularly monitored by the

display of the system. The reflux system was used to avoid

the vaporization of methanol from the reaction system. The

temperature of the reaction system was controlled by the

circulation of water through outer wall of the reactor ves-

sel. Mechanical stirring was used for the proper mixing of

the reaction mixture in the reactor.

Experimental procedure

Initially 1 L castor oil was transferred into the reactor and

heated till it reached the desired temperature. Appropriate

quantities of both methanol and catalyst (sulphuric acid)

were mixed thoroughly at the preset temperature sepa-

rately. The above mixture of catalyst and methanol was

then transferred to the reactor where the mixing was carried

out at a speed equivalent to relative centrifugal force

(rcf) = 32.29g for the preset reaction temperature and

time 4 h. The required mixing intensity (rcf = 32.29g)

was optimized prior to conducting the experiments at

constant methanol/oil molar ratio 6:1, catalyst concentra-

tion 1% and reaction temperature of 60 �C. The samples

were taken up to 4 h regularly at the 20 min time interval

and total 12 samples were collected during this time period.

The samples were collected in 15 mL centrifuge tubes,

filled with 5 mL of distilled water. Shaking and quenching

of the samples were done immediately, and the centrifuge

tubes with the sample were kept in an ice bath immedi-

ately. The samples were washed and centrifuged at
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rcf = 8949g for 20 min to separate ester layer. After

centrifuging the sample, two separate layers were formed;

the bottom one contained the glycerol and catalyst in water

phase while the upper layer is of ester.

Gas chromatography analysis

Analysis of all samples for methyl ester formation (FAME

content) was carried out using the gas chromatograph (GC)

(Nucon Gas Chromatograph, 5765, India), equipped with a

flame ionization detector (FID) and a capillary column with

dimension of 0.55 mm I.D 9 10 m length 9 0.50 m

thickness. Nitrogen was used as carrier gas. The column

temperature was kept at 170 �C for 1 min, heated at 10 �C/
min up to 240 �C and then it was maintained constant. The

temperature of the injector and detector was set at 220 and

240 �C, respectively. Methyl heptadecanoate was used as

internal standard for GC. The analysis was done by

injecting 1 lL sample into the column. Every sample has

been analyzed three times for % FAME yield and the

average of three values has been taken.

Quantitative analysis of % ME was done using Euro-

pean standard EN 14103:2003. The % ME yield (or %

FAME yield) was calculated using equation

% FAME yield ¼
P

A� AEI

AEI

� CEI � VEI

m
� 100;

where
P

A is the total peak area from methyl esters in

C14;0–C24;1, AEI is the peak area corresponding to methyl

heptadecanoate, CEI is the concentration of the methyl

heptadecanoate solution (mg/mL), VEI is the volume of

methyl heptadecanoate solution (mL) and m is the mass of

the sample (mg).

Experimental design

Central composite design (CCD) is one of the most com-

monly used techniques for the optimization of experiments.

Transesterification of castor oil with ethanol was studied by

Cavalcante et al. [17] using a central composite rotat-

able design. Optimum reaction conditions were determined

as oil/ethanol molar ratio of 1:11, catalyst amount of 1.75%

KOH, and reaction time of 90 min and 86.32% of biodiesel

yield was obtained. To apply this design, the variation

levels for each variable must be specified clearly.

Accordingly, the variables are transformed into coded

variables bearing the following relationships [32]:

Xj ¼ ðxj � x0j Þ=Dxj; ð1Þ

x0j ¼ xmax
j þ xmin

j

� �.

2; ð2Þ

Dxj ¼ xmax
j � xmin

j

� �.

2; ð3Þ

where Xj: coded value of variable, x0j : basic level, xj: actual

value, Dxj: level of variation.
Central composite design is a factorial design with center

points, augmented with a group of axial points (also called

star points). As the distance of the factorial point from the

center of the design space is defined as ±1 unit for each

factor, the distance of a star or axial point from the center of

the design is ±a with (a)[ 1. In this study, the CCD was

used to optimize three parameters (methanol/oil molar ratio,

catalyst amount, and temperature) for enhancing the %

FAME yield. In CCD, the total number of experimental

combination was 2k ? 2k ? n, where ‘k’ is the number of

independent variables and ‘n’ is the number of repetitions of

experiments at the central axis point to reduce the pure error

[16, 33]. Totally, 20 experimentswere required for this work.

Here, the run numbers 18, 19, and 20 were not considered

because the experiment was not feasible to be performed

under these conditions as either catalyst amount or temper-

ature was low [34] and 6 were repeated experiments. The

dependent variables for this study were % FAME yield, Xc

(%) and the independent variables selected were: methanol/

oil molar ratio (x1), catalyst amount (x2), and temperature

(x3). The range and levels of individual variable factor have

been given in Table 1. The experimental data of the FAME

yield for various catalyst amounts, molar ratios, and tem-

peratures have been given in Table 2a, b. These data (col-

umns A–J in Table 2a, b) have also been used to train the

neural network for the kinetic modeling of the process.

Properties of the castor oil FAME produced were also

measured and are given in Table 3 [31, 35]. Except viscosity

and water content, all other properties of the FAME were

found to be satisfactory and within standard range of values

[36]. Therefore, this biodiesel may be used for blending with

other fuels.

Table 1 Independent variables

and levels used for CCD
S. no. Variables Coded symbols Range and levels

-1 0 ?1

1 Methanol/oil molar ratio x1 6 15.5 25

2 Catalyst amount (vol%) x2 1 2 3

3 Temperature (�C) x3 40 50 60
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Tables 2 Experimental results

on % FAME formation with

time

S. no. Time (min) % formation of FAME, Xc

A B C D E F

1/60/25:1 1/60/6:1 3/60/25:1 3/60/6:1 1/40/25:1 1/40/6:1

(a)

1 0 0 0 0 0 0 0

2 20 7.50 13.81 31.50 16.88 5.32 5.95

3 40 9.51 21.46 40.79 20.58 6.95 7.80

4 60 12.96 24.93 47.06 24.63 8.45 9.35

5 80 16.82 28.81 54.59 26.75 12.23 10.54

6 100 21.59 31.92 59.79 29.04 13.94 12.09

7 120 32.04 35.96 63.06 31.59 16.94 15.15

8 140 36.90 39.79 67.05 37.95 18.45 18.99

9 160 40.32 41.71 69.09 44.79 20.18 21.95

10 180 46.65 42.05 71.09 48.09 22.65 24.65

11 200 53.05 44.19 73.53 50.05 26.94 26.56

12 220 62.18 46.63 75.59 52.76 28.42 28.19

13 240 72.55 48.29 76.85 55.27 31.45 29.95

S. no. Time (min) % formation of FAME, Xc

G H I J K L

3/40/25:1 3/40/6:1 2/50/15.5:1 3.68/50/15.5:1 3/45/12:1 3/60/18:1

(b)

1 0 0 0 0 0 0 0

2 20 7.23 16.28 9.93 33.45 18.41 20.50

3 40 9.59 19.15 14.56 38.56 23.95 34.16

4 60 12.81 23.92 21.72 42.69 26.49 40.15

5 80 18.12 24.56 26.92 46.44 28.85 45.96

6 100 22.42 26.65 30.59 51.56 30.91 50.55

7 120 23.59 27.05 34.49 55.69 33.18 54.72

8 140 28.65 28.53 38.95 58.91 35.39 57.86

9 160 31.95 29.75 43.65 60.08 37.98 60.98

10 180 34.03 30.07 45.96 62.15 40.18 63.85

11 200 36.95 33.05 47.56 63.95 42.59 65.97

12 220 44.15 35.84 49.62 65.67 45.19 66.89

13 240 47.36 37.71 52.25 67.89 46.15 67.56

1/60/25:1 means catalyst amount in % v/v, temperature in �C and methanol to oil molar ratio respectively

Table 3 Properties of FAME

produced from castor oil
S. no. Property Determined in present study Standard value/range

Canoira et al. [36]

1 Kinematic viscosity (mm2/s at 40 �C) 18.55 3.5–5.00

2 Density (kg/m3) 920.5 860–900

3 Acid Value (mg KOH/g) 0.25 \0.50

4 Flash point (�C) 170 [120

5 Water content (%) 0.006 \0.0005 or\500 mg/kg

6 Calorific value (MJ/kg) 39.5 37.27–38.22

7 Oxidation stability at 110 �C (h) 8 [6.0

8 Sulfur content (mg/kg) 0.3 \10
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Modeling of experimental observations through

ANN

ANNs are useful for the study of complex phenomena for

which we have appropriate data but a poor understanding

of the mathematical relationship between them [37]. There

are several modeling strategies in ANNs, which have var-

ious applications in designing and analyzing existing pro-

cesses. Choosing the right network architecture is one of

the most important tasks prior to the modeling process. A

feed-forward neural network architecture was selected for

the model development owing to its powerful non-linear

mapping ability between inputs and outputs [38], which

consisted of an input layer, an intermediate hidden layer

and an output layer. In a typical feed-forward network

every node in each layer is connected to all the nodes in the

following layer. The neurons in the hidden layer often

consist of sigmoidal neurons. A sigmoid function is a

bounded differentiable real function that is defined for all

real input values and has a positive derivative at each point.

Tangent sigmoid function was preferred as the activation

function in the hidden layer for all neural network

computations.

tan sigðxÞ ¼ 2=ð1þ expð�2xÞÞ � 1: ð4Þ

A total of 156 experimental datasets were used to train

(130 datasets; columns A–J in Table 2a, b) and to test (26

datasets; columns K and L in Table 2b) the performance of

the developed ANN. Each dataset includes four input

variables namely, methanol to oil molar ratio (mr), catalyst

amount (c), temperature (T) and time (t). Scaling of the

input and output variable is usually recommended [39].

Therefore, each input variable was scaled in the range {0,

1} by dividing them with their maximum values, respec-

tively, in Table 4. These scaled variables were applied to

the input neurons to carry out the ANN modeling. The

available data was distributed into three different sets for

the training method, i.e., 70% for the training set, 15% for

the validation set and remaining 15% for the test set.

The Levenberg–Marquardt algorithm works on the

principle of error-back propagation, and was used to train

the neural network [40]. Mean square error (MSE) was

chosen as the performance function for observing

deviations between experimental data and calculated data

from the network’s output layer.

For the present study, MSE was given by:

MSE ¼
PN

k¼1

X
exp

k

100
� Xcal

k

100

� �2
,

N; ð5Þ

where N: number of datasets, Xk
exp: experimental value of

the FAME percentage yield, Xk
cal: calculated value of the

FAME percentage yield.

Parameter estimation

Parameter estimation has been carried out for the data

obtained experimentally and others generated by using

ANN model. Several physical and kinetic parameters

appear in the process model developed for transesterifica-

tion of castor oil. The physical parameters, like the reactor

volume and species densities were fixed based on the

process knowledge. Each kinetic parameter has a pre-ex-

ponential factor and activation energy associated with it.

The activation energies (E) have been fixed as the tem-

perature (T) and catalyst concentration was taken to be the

same for all the molar ratios.

k ¼ k0e
� E

RTð Þ; ð6Þ

where k: reaction constant at given temperature (T), k0:

reaction constant at reference temperature.

Various parameter estimation techniques such as maxi-

mum likelihood estimation [41], prediction error minimiza-

tion (PEM) [42], trust-region SQP algorithm [43] etc. have

been used previously by researchers to estimate parameters of

a model. Further, Hosten and Emig [44] have developed

sequential experimental design procedures for precise

parameter estimation in ordinary differential equations. In this

work, parameter estimation technique based on a prediction

error minimization (PEM) framework has been used. A cen-

tral point in the PEM approach is to design a predictor, which

is a function that returns a predicted value of the output of the

system for given parameter values and a sequence of mea-

surements. Comparison of the predicted value with an actual

measurement gives the prediction error,whichcan be seen as a

function of the system parameters. The prediction errors are

squared and summed together. This function minimization

with respect to the parameters is a way of finding good

parameter estimates. Similar works have been performed by

Mjalli and Ibrehem [42] and Mallikarjunan et al. [45] where

they have used optimal hybrid modeling approach for poly-

merization reactors using PEM technique.

In this work, the parameters values were estimated using

MATLAB 7.6 (R2008a). The MATLAB code consisted of

optimization tool ‘fminsearch’. The differential equation

was solved symbolically using ‘dsolve’ command.

Table 4 Maximum values of input and output variables

S. no. Variables Maximum value

1 Molar ratio (–) 25:1

2 Catalyst amount (% v/v) 3.68

3 Temperature (�C) 60

4 Time (min) 240

5 FAME yield (%) 100
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Xci;j ¼ gðti;j; k1; k2;CA0i ;MiÞ: ð7Þ

The function which has been minimized is as follows:

XN

i¼1

XM

j¼1

� Xci;j � gðti;j; k1; k2;CA0i ;MiÞ
� �2

; ð8Þ

where Xci;j : values obtained experimentally and predicted

through ANN, M: number of data points and N: number of

molar ratios.

The function ‘fminsearch’ finds the minimum of a scalar

function of several variables, starting at an initial estimate.

This is generally referred to as unconstrained nonlinear

optimization. ‘fminsearch’ uses the simplex search method.

This is a direct searchmethod that does not require numerical

or analytic gradients. If n is the length of x, a simplex in n-

dimensional space is characterized by the n ? 1 distinct

vectors that are its vertices. In two-dimensional space, a

simplex is a triangle; in three-dimensional spaces, it is a

pyramid. At each step of the search, a new point in or near the

current simplex is generated. The function value at the new

point is comparedwith the function’s values at the vertices of

the simplex and, usually, one of the vertices corresponding to

worst value of function is replaced by the new point, giving a

new simplex. This step is repeated until the size of the sim-

plex is less than the specified tolerance [46].

Results and discussion

Training of the ANN network

The feed-forward network was developed by training it

with various number of combinations of sigmoidal neurons

in one and two hidden layers. The MSE was calculated for

all uni-layered architecture and a decreasing behavior was

observed for the training MSE when hidden layer size was

increased (Fig. 1a).

When hidden neurons are increased beyond a certain

level, over fitting occurs and network adapts to the noisy

training data [47]. Over fitting easily leads to the distur-

bance of the network and predictions often lie outside the

range of considered variables in a multilayered network

even if the input data are totally noise free [48].

Different weight initializations have been used to train

to prevent the network from converging to a local mini-

mum which gives erroneous results. The optimal value of

the number of neurons employed in the single hidden layer

was set at 12 beyond which training and testing MSE start

to diverge uncontrollably on further increase in the number

of hidden neurons. Since, we have four different scaled

input variables and one variable (fractional formation of

FAME) as our desired output, our chosen topology for the

FF-ANN bears a 4–12–1 relationship (Fig. 2).

Training of the chosen network was stopped when val-

idation gradient started to overshoot. The best validation

performance that gave the overall global minima of the

system, was reported as 0.0045476 for the network at 17th

epoch during the training (one epoch describes the time it

takes to train the network once using the back propagation

algorithm), Fig. 1b. The desired outputs were obtained

from the output layer of the network.

An overall regression coefficient of 0.953 was obtained

for the network which showed that the network had been

satisfactorily trained (Fig. 3). A few outliers were observed

which are common in any neural network development due

to various factors such as experimental error, observational

error etc. This trained network was further used for the

validation and testing procedures (Sects. 3.2, 3.3).

ANN model validation

The optimizedANNmodelwas validated using two different

sets of experimental data other than those used in developing

ANN model having 13 data each. For this purpose,

MATLAB 8.1(2013a) neural network toolbox [49] was

Fig. 1 a Training MSE behaviour for uni-layered topology. b Per-

formance plot for the chosen architecture
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employed. These additional data were obtained by con-

ducting experiments on the same lab reactor at 45 and 60 �C,
respectively (columns K and L in Table 2b). Comparison

between ANN predictions and experimental data for these

two separate validation sets show that all the model predic-

tions are within±8% deviation. The three-layered FF-ANN

with 12 hidden neurons (4–12–1) was capable of predicting

the output of the process and yielded a very good approxi-

mation to the castor oil transesterification process.

From the above investigation, it may be concluded that

the network accounts well for the variation in input vari-

ables and the developed ANN model can be successfully

applied in predicting the FAME yield at conditions in the

range of considered variables.

Predictions using ANN model

The ANN model which was trained and tested against

experimental data (see Sects. 3.1, 3.2) was used to predict

FAME yields at different input datasets. It was considered

appropriate to develop a kinetic model at optimized con-

ditions, determined earlier for the lab reactor used [31].

Therefore, predictions were made using the developed

ANN model at the conditions (catalyst = 3% v/v, tem-

perature = 60 �C, time = 0–4 h) to study the effect of

molar ratio on FAME yield. Predictions for different molar

ratios 9:1, 12:1, and 15:1 are shown in Fig. 4. The results

obtained for these conditions from the ANN model have

been used in the following Sect. (3.4) to develop the

kinetic model.

Kinetic modeling

General reaction model

In the preceding section, profiles for fractional formation of

FAME with time have been obtained using developed

ANN model for methanol to oil molar ratios namely, 9:1,

Fig. 2 The 4–12–1 network

topology used for modeling

Int J Ind Chem (2017) 8:253–262 259
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12:1, and 15:1, and experimental profiles for molar ratio

18:1 and 25:1 are already available at optimum catalyst

amount and temperature. This section concerns the devel-

opment of suitable kinetic model on the basis of these five

profiles so that effect of change in molar ratio on fractional

formation of FAME can be studied. The CA0 values cor-

responding to different molar ratios used for fitting are

given in the Table 5.

Following kinetic model was used to fit the data

obtained by ANN. The kinetic model is in general rever-

sible reaction model, in which both forward and backward

reactions are second order, first order with respect to each

of the reactants and products.

dXc=dt ¼ k1CA0ð3� XcÞðM � XcÞ � k2CA0X
2
c ; ð9Þ

with Xc = 0 at t = 0. Where CA0 initial concentration of

castor oil (mol/L), Xc: fractional formation of FAME, M:

molar ratio of methanol to castor oil, k1, k2: rate constants

(L min/mol).

Fig. 3 Regression plots for the

network for a training,

b validation, c test, d overall
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Estimation of parameters

The values of k1 and k2 were estimated using the procedure

discussed in Sect. 2. The values estimated are

k1 = 0.000262 and k2 = 0.023178 (L min/mol), respec-

tively. The correlation coefficients and normalized % stan-

dard deviations for different molar ratios i.e. 9:1, 12:1, 15:1,

18:1 and 25:1 were obtained as (0.933453, 8.783124%),

(0.989036, 3.637967%), (0.994593, 2.760923%),

(0.983285, 4.831601%), and (0.974017, 5.589103%),

respectively. Higher values of correlation coefficient

([0.93) and lower values of normalized % standard devia-

tion (\9%) testify the goodness of fit of the kineticmodel. To

compare the accuracy of model, all the predicted values of

fractional formation of FAME, Xc Predicted, by kinetic

model, and its experimental values and generated values by

ANNmodel,Xc experimental, have been plotted in Fig. 5 for

all five molar ratios. From this figure, it is obvious that most

of the predictions lie within ±10% deviation.

Conclusion

In this researchwork, experiments have been conducted at 12

sets of operating conditions. A FF-ANNmodel (4–12–1) has

been developed on the basis of these data. The model is

capable of predicting fractional formation of FAME (Xc) at

other operating conditions. In this work, Xc have been

computed using the developed ANN model at 9:1, 12:1 and

15:1 methanol to oil molar ratio at 60 �C and 3% catalyst

loading. Further, a kinetic model has also been developed

using the experimental and computed data at 60 �C and 3%

catalyst loading. The kinetic model considers the transes-

terification reaction to be a second order reversible, first

order with respect to each of the reactants and products, and

is applicable to methanol to oil molar ratios varying between

9:1 and 25:1. Estimated values of kinetic constants k1 and k2
are 0.000262 and 0.023178 L min/mol, respectively.
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