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Abstract

Background Increasing environmental awareness is

forcing waste creators to consider new options such as

biosorption for the disposal of colored wastewaters. Due to

prohibitive costs of commercially available activated car-

bon, low-cost biosorbents with high adsorption capacities

have gained increasing attention. The present investigation

deals with utilization of a low-cost, fungal biosorbent of

Rhizopus arrhizus NCIM 997 and optimization of condi-

tions for the removal of Reactive Orange 13 dye from an

aqueous solution using sequential statistically designed

experiments.

Results Plackett–Burman design with six independent

variables (pH, temperature, biosorbent dosage, dye con-

centration, contact time and speed of agitation) was used to

identify the most important factors influencing dye

biosorption. Path of steepest ascent and central composite

design were used to move toward the vicinity of the opti-

mum operating conditions and to determine the optimum

levels of the variables, respectively. The maximum

biosorption capacity (133.63 mg/g) was obtained under the

following conditions: pH 2.0, dye concentration 114 mg/L,

biosorbent dosage 0.8 g/L and speed of agitation 85 rpm.

Validation experiments and application of artificial neural

network showed excellent correlation between predicted

and experimental values.

Conclusions Response surface methodology using central

composite design was employed at the specified combi-

nations of four independent significant factors identified by

Plackett–Burman design. The fitted model was used to

arrive at the best operating conditions to achieve a max-

imum response. Sequential optimization was successfully

used to increase biosorption by 49.04 %. The study indi-

cated that the fungal biosorbent was an effective and eco-

nomical alternative for the removal of Reactive Orange 13

dye.

Keywords R. arrhizus � Reactive Orange 13 �
Biosorption � Response surface methodology � Artificial

neural network

Introduction

India’s dye industry produces various types of dyes, of

which 50 % are reactive dyes [1, 2]. Approximately, 70 %

of the synthetic dyes belong to the azo group and, unfor-

tunately, this class of dyes is the most unfavorable from the

ecological point of view, as the effluents are heavily col-

ored, contain high concentrations of salt and exhibit high

BOD/COD values. The release of these dyes is both es-

thetically unacceptable and presents an eco-toxic hazard

[2–4]. Currently, textile effluents are treated by physico-

chemical methods such as electrocoagulation, ion ex-

change, irradiation, ozonation and advanced oxidation,

which are of limited use due to constraints such as costs,

general applicability and production of solid wastes [5, 6].

Unfavorable conditions found in the textile dyeing efflu-

ents are known to inhibit the conventional biological

wastewater treatment processes. Removal of color from the

effluents is thus a major problem forcing industries to

consider new options for the effluent treatment and dis-

posal [3]. Among all the wastewater treatments, the ad-

sorption process has been recognized to be an effective and
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economical procedure for the removal of dyes from in-

dustrial effluents [7]. Activated carbon has an excellent

adsorption capacity for organic pollutants; its prohibitive

cost and inability to regenerate limit its commercial ap-

plication [8]. Hence, low-cost biosorbents with high ad-

sorption capacities such as waste materials from large-scale

industrial operations, natural materials derived from agri-

culture, microbial biosorbents such as Corynebacterium

glutamicum, Escherichia coli, Pseudomonas luteola and

Rhizopus arrhizus have gained attention [9, 10]. A major

advantage of biosorption is that it can be used in situ and

integrated with many systems in the most eco-friendly

manner [11].

Some of the most important parameters that affect the

efficiency of biosorbent are time, pH and temperature of

the solution and concentration of the dye as well as that of

the biosorbent. Hence, it is necessary to investigate the

combined effect of these factors on biosorption efficiency.

Designing of experiment and standardization of variables

affecting the system are very critical in the optimization

process. Generally, this optimization is carried out by using

traditional one factor at a time method, which though

simple consumes time and chemicals in large quantities.

Moreover, this method neglects the interaction effects of

process variables. Hence, in the present study, multi-vari-

ant experimental design based on statistical approach such

as response surface methodology (RSM) and artificial

neural network (ANN) approach was applied for process

modeling. RSM is a collection of statistical techniques used

to design experiments, build models, evaluate the effects of

various factors and search the optimum conditions for the

factors to achieve the desired responses. It has been widely

used for wastewater treatment processes. Its application in

the adsorption process can result in improved sorption,

reduced process variability, reduced development time and

overall costs [12, 13]. Recently, ANN methodologies are

being used in many areas of science and engineering to

solve environmental engineering problems such as

chromium removal [14] and textile dye removal [15, 16].

ANNs are considered as promising tool because of their

simplicity toward simulation, less time required for model

development than the traditional mathematical models

[17], accurate prediction ability with limited numbers of

experiments and identification of optimal operating con-

ditions for the plant operator [18].

Application of dead fungal biomass obtained from R.

arrhizus to remove textile dyes from industrial waste water

is attractive due to its cheap and constant supply from in-

dustrial fermentation processes, high removal rates, easy

storage and regenerative potential [11]. Some researchers

have demonstrated the high dye binding capacity of R.

arrhizus which exceeds that of some commercial ion ex-

change resins or activated carbon [19–21]. Hence, the main

objective of the present study was to apply RSM and ANN

approach for techno-economical optimization of the re-

moval of Reactive Orange 13 (RO 13) dye, a mono-azo

reactive dye from an aqueous solution using the dead

biomass of R. arrhizus NCIM 997 as a low-cost biosorbent.

In this study, the optimum value of the parameters and

interactions between factors that influence the removal of

RO 13 dye were determined. RO 13 was chosen in this

study due to its extensive use in Indian textile industry for

dyeing and printing cotton, viscose, silk, wool and nylon

fabric.

Methods

Preparation of the biosorbent

Rhizopus arrhizus NCIM 997, obtained from National

Collection of Industrial Microorganisms (NCIM), Na-

tional Chemical Laboratory, Pune, India, was used as a

biosorbent. It was routinely maintained at 4 �C on

potato dextrose agar (PDA) (g/L: potato infusion from

200 g potatoes, dextrose 20, yeast extracts 0.1, agar 20,

pH 5.0). For experimental purposes, fungal mycelia

were obtained by aseptically transferring mycelia from

the PDA spread-plate cultures to 100 mL of potato

dextrose broth (PDB) containing 0.25 % Tween 80 (to

prevent sporulation) in 250 mL Erlenmeyer flasks. The

flasks were incubated at 30 ± 1 �C under static condi-

tions with intermittent shaking. The biomass harvested

after 7 days was washed thoroughly with generous

amounts of deionized distilled water and dried at 80 �C
in an oven for 24 h. Care was taken to keep the particle

size of the biomass uniform, by grinding into powder

and sieving through a 150-mesh sieve. The biomass was

stored in a desiccator until use for the biosorption ex-

periments [22].

Preparation of the dye solution

RO 13 (C.I. 18270, CAS 12225-85-3, chemical formula:

C24H15CIN7Na3O10S3, molecular weight: 762.04 g/mol)

was supplied by Colourtex Dyes Pvt. Ltd. (Mumbai, India)

and was used without further purification. A stock solution

of RO 13 dye (1000 mg/L) was prepared by dissolving the

required amount of dye powder in double deionized water.

The stock solution was diluted with double deionized water

as required to obtain the desired concentration ranging

from 40 to 100 mg/L. The required pH was adjusted by

0.1 N HCl or 0.1 N NaOH using a pH meter (Labotronics,

LT-10, India).
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Dye biosorption experiments

Biosorption experiments were conducted at the specified

combinations of physical parameters using sequential sta-

tistically designed experiments consisting of Plackett–

Burman design (PBD), path of steepest ascent (PSA) and

central composite design (CCD). The experiments were

carried out in 250 mL Erlenmeyer flasks with working

volume of 50 mL of the reaction mixture. The flasks were

withdrawn from the rotating orbital shaker (Labtop Quality

Lab Equipment, India) after shaking for the desired time of

reaction. The residual dye concentration in the solution was

determined after filtering the samples using Whatman No.

1 filter paper. The concentration of RO13 dye in the so-

lution was determined from the calibration curve prepared

by measuring the absorbance of different known concen-

trations of RO 13 dye at 489 nm using a UV–vis spec-

trophotometer (Shimadzu, Kyoto, Japan). A blank without

biosorbent was run simultaneously as a control. The con-

centration of the dye on the fungal biomass at the corre-

sponding equilibrium conditions was determined using a

mass balance equation expressed as specific uptake ca-

pacity (SUC):

q ¼ V C0 � Ceð Þ
m

;

where q is the amount of dye adsorbed per unit weight of

the biosorbent (mg/g); C0 the initial concentration of the

dye (mg/L); Ce the concentration of dye in solution at

equilibrium time (mg/L); V the solution volume (L); m the

dosage of the biosorbent (g). All the experiments were

carried out in duplicate and the mean values are presented.

Experimental design and data analysis

Screening of parameters using PBD

A 12-run PBD along with three runs at zero level (in du-

plicate) was used in the present study to screen the im-

portant variables that significantly influenced biosorption.

Six variables, viz. pH, dye concentration, biosorbent

dosage, temperature, speed of agitation and contact time,

were chosen as the independent input variables and the

efficiency of dye removal was used as a dependent re-

sponse variable. The center point replicates were chosen to

verify any change in the estimation procedure as a measure

of precision property. Each variable was examined at two

levels: -1 for the low level and ?1 for the high level

(Table 1) [23].

Independent variables, experimental range and levels for

RO 13 dye removal are given in Table 2.

The effect of individual variable on biosorption was

calculated by Eq. (1)

E Xið Þ ¼ 2
X

Mþi�M� i

� �
=N; ð1Þ

where E (Xi) is the effect of the tested variable (Xi) and M?i

and M-i are responses (biosorption) of trials at which the

variable is at its high or low level, respectively. N is the

total number of trials. From the regression analysis, sig-

nificant factors affecting biosorption were determined and

the contribution of the factors toward the sorption of RO 13

dye was determined based on the t value (main effect). The

sign of the effect indicates the level at which it is consid-

ered for further improvement.

Table 1 Experimental range and levels of independent process

variables tested in Plackett–Burman design

Designation Variable Variable Values

-1 0 1

X1 pH 2.0 4.0 6.0

X2 Dye concentration (mg/L) 40 70 100

X3 Biosorbent dosage (g/L) 0.8 1.4 2.0

X4 Temperature (�C) 35 40 45

X5 Speed of agitation (rpm) 80 100 120

X6 Contact time (min) 30 75 120

Table 2 Plackett–Burman design of variables (in coded levels) with

experimental and predicted values of biosorption as response

Run no. Coded values SUC (mg/g)

X1 X2 X3 X4 X5 X6 Experimental Predicted

1. 1 -1 1 -1 -1 -1 0.64 0.34

2. 1 1 -1 1 -1 -1 47.63 47.66

3. -1 1 1 -1 1 -1 45.53 46.01

4. 1 -1 1 1 -1 1 0.43 0.59

5. 1 1 -1 1 1 -1 31.63 32.09

6. 1 1 1 -1 1 1 13.68 14.79

7. -1 1 1 1 -1 1 60.89 61.83

8. -1 -1 1 1 1 -1 16.36 16.24

9. -1 -1 -1 1 1 1 45.46 43.60

10. 1 -1 -1 -1 1 1 11.96 12.13

11. -1 1 -1 -1 -1 1 89.66 88.94

12. -1 -1 -1 -1 -1 -1 58.68 58.92

13. 0 0 0 0 0 0 34.36 35.26

14. 0 0 0 0 0 0 34.50 35.18

15. 0 0 0 0 0 0 34.66 35.19

X1 pH, X2 dye concentration (mg/L), X3 biosorbent dosage (g/L), X4

temperature (�C), X5 speed of agitation (rpm), X6 contact time
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Locating the region of optimum response by the PSA

The factors that were screened using the PBD were further

optimized using the PSA to move toward the vicinity of the

optimum results. To improve biosorption, concentrations of

variables were increased or decreased using stepwise units

according to the sign of the main effects. The zero level of

PBD was identified as the base point of PSA and, for every

point in the PSA, an experimental run was performed. The

step along the path was determined by practical experience.

Experiments were performed along the steepest ascent path

until the response showed no further increase. This point

would be near the optimal point and could be used as the

center point of CCD [24].

Optimization by response surface methodology

using CCD

The optimal levels of the significant factors and the inter-

actions of these variables on biosorption were analyzed by

using CCD [17]. A four-factor, five-level CCD with 30

runs was conducted in the optimum vicinity to locate the

true optimum values of pH (X1), dye concentration (X2),

biosorbent dosage (X3) and speed of agitation (X5) com-

bining factorial points (-1, ?1), axial points (-2, ?2) and

central point (0).

The factors were coded according to the following

Eq. (2):

Xi ¼
Xi� Xo

DX
; i ¼ 1; 2; . . .; k; ð2Þ

where Xi is the coded independent factor, xi the real inde-

pendent factor and x0 the value of Xi at the center point;

Dx is the step change value. For statistical calculations, the

variables Xi are coded as xi.
A second-order polynomial response equation (Eq. 3)

was proposed to correlate the dependent and independent

variables:

Y ¼ b0 þ Rbixi þ Rbiixi2 þ Rbijxixj; i ¼ 1; 2; 3; . . .; k;

ð3Þ

where Y is the predicted response, b0 is the intercept, xi and

xj are the coded independent factors, bi is the linear coef-

ficient, bii is the quadratic coefficient and bij is the inter-

action coefficient.

The quality of polynomial equation was judged by the

determination coefficient (R2) and its statistical sig-

nificance was checked by Fischer’s F test. Analysis of

variance (ANOVA) was conducted to determine the sig-

nificance of the model. The response surface plots of the

model-predicted responses were utilized to assess the in-

teractive relationships between the significant variables. To

verify the results obtained from the statistical analysis of

CCD, validation tests were performed in duplicate using

the predicted optimized conditions against the basal

conditions.

Data analysis

Minitab 16 (State College, PA, USA) and Design Expert

version 6.0.8 (Stat-Ease Inc., Minneapolis, USA) software

were used for designing experiments as well as for re-

gression and graphical analysis of the experimental data

obtained.

Results and discussion

Screening of parameters using PBD

Plackett–Burman analysis is a two-level fractional factorial

design for screening and evaluation of critical variables

which might significantly affect the end response, while

eliminating the insignificant variables. It allows unbiased

estimation of main effects with smallest possible variance

of components [23, 25]. The data listed in Table 2 indicate

a wide variation in the specific uptake capacity (SUC) of

the biosorbent, ranging from 0.43 to 89.66 mg/g, in the 12

trials run in duplicate. Regression analysis was performed

on the results and the first-order polynomial equation was

derived by representing the sorption of RO 13 dye as a

function of the independent variables:

Y ¼ 35:29 þ �17:37 � X1ð Þ þ 13:26 � X2ð Þ
þ �12:01 � X3ð Þ þ �1:54 � X4ð Þ þ �7:73 � X5ð Þ
þ 1:76 � X6ð Þ; ð4Þ

R2 ¼ 99:94%;R2 predð Þ ¼ 99:83%;R2adj ¼ 99:91%.

Analysis of the regression coefficients and the t values

of six factors (Table 3) showed that the dye concentration

(X2) and contact time (X6) had positive effect on biosorp-

tion, whereas pH (X1), biosorbent dosage (X3), temperature

(X4) and speed of agitation (X5) had a negative effect on

biosorption. The corresponding probability values (P val-

ues) indicate the significance of each of the coefficients,

which in turn govern the patterns of interactions between

the variables. The smaller the value of P, the more sig-

nificant is the corresponding coefficient. Table 3 shows

that all the parameters were significant (P\ 0.001) in in-

creasing the sorption by the biosorbent. The model was

significant (P\ 0.01) and R2 = 0.9994 indicated that

99.94 % of the total variability in the response could be

explained using this model.
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The main effect plots of all the variables taken into

consideration in this work were used to plot data means and

also to compare magnitudes of marginal means as shown in

Fig. 1.

A main effect occurs when the mean response changes

across the levels of a factor. The points in the plot are the

means of the response variables at various levels of each

factor, with a reference line (center line) drawn across the

plot representing the grand mean of the response data. A

horizontal line (parallel to the x-axis) represents no main

effect, while a non-horizontal line indicates a main effect.

The steeper the slope of the line, the greater is the mag-

nitude of the main effect. From Fig. 1, it is clear that

though all the variables played an important role in the

adsorption of RO 13 dye, pH, biosorbent dosage, dye

concentration and speed of agitation seemed to be the

dominant factors and were considered in the experiments

of PSA and CCD. The grand mean of the response fell at

SUC of around 35 mg/g.

The maximum removal of RO 13 dye was obtained at

low pH (54.74 mg/g), while at higher pH the grand mean

of SUC dropped down to 17.98 mg/g. Solution pH deter-

mines the surface charge of the adsorbent and the degree of

ionization and speciation of the biosorbent, which affect

the adsorption of dyes. Upon dissolution, ionic dyes release

colored dye ions into the solution [25]. As the pH of the

solution decreases, more protons are available to protonate

the amino groups of chitosan molecules on the fungal cell

wall to form positively charged –NH3
? groups. This in-

creases electrostatic attraction between the anionic group

(–SO3-) of the dye and the protonated amino group

(–NH3
?) of chitosan, causing an increase in dye adsorption

[9]. This chemical affinity between the positive charge on

the biomass and negative charges in the structures of an-

ionic dye RO 13 weakens the resistance of the boundary

layer surrounding the adsorbent leading to more sorption

under acidic conditions [25]. The deprotonation of surface

groups in high pH range results in the electrostatic

642
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Fig. 1 Main effect plots of

parameters for RO 13 dye

removal using Plackett–Burman

design

Table 3 Linear multiple

regression analysis of Plackett–

Burman experiments

Variables Effect Coefficient Standard error t statistics P value prob[F

Intercept 35.36 0.14 248.4 0.00

Block -0.12 0.12 -0.91 0.37

pH -34.76 -17.38 0.14 -122.08 0.001

Dye concentration (mg/L) 26.52 -13.26 0.14 93.15 0.001

Biosorbent dosage (g/L) -24.03 -12.01 0.14 -84.39 0.001

Temperature (�C) -3.09 -1.55 0.14 -10.85 0.001

Speed of agitation (rpm) -15.47 -7.74 0.14 -54.34 0.001

Contact time (min) 3.53 1.77 0.14 12.41 0.001
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repulsion between the anionic dye and negatively charged

sites, contributing to the decreased uptake of RO 13 dye in

alkaline condition [26]. Furthermore, lower adsorption of

the dye in alkaline medium is also due the competition

from excess OH- ions with the anionic dye molecule for

the adsorption sites [27].

It was seen that more RO 13 dye was adsorbed at higher

dye concentration showing a positive effect on the system.

The mean increased from 22.10 to 48.62 mg/g with an

increase in dye concentration. Increased biosorption at

higher concentration of RO 13 dye can be attributed to a

combination of factors, i.e., increase in the driving force of

the concentration gradient of the dye resulting in higher

probability of collision between dye ions and the active

sites on the biomass, and availability of functional groups

on the surface of the biomass surrounded by a greater

number of RO 13 ions leading to increased ability to bind

dye ions [28–30]. Figure 1 also shows the adsorption of RO

13 as a function of biosorbent dosage. It was seen that

increasing the biosorbent dosage in the system decreased

the biosorption capacity, i.e., it had a negative effect on the

system. The mean decreased from 47.37 to 23.35 mg/g

when the biosorbent dosage was increased to ?1 level. The

increase in the biosorption at lower biosorbent dosage can

be attributed to increased biosorbent surface area and the

availability of more adsorption sites. Various reasons have

been suggested to explain the reduced uptake capacity at

higher biosorbent dosages such as competition of the ions

for limited available sites, overlapping or aggregation of

adsorption sites resulting in a decrease in the total adsor-

bent surface area, interference between binding sites and

reduced mixing at higher biomass densities, and an in-

crease in diffusion path length [31–35].

The uptake of RO13 dye appeared to be temperature

dependent, showing maximum removal at lower tem-

perature. This can be attributed to the decrease in the

surface activity suggesting that adsorption between RO 13

dye on the dead biomass of R. arrhizus was an exothermic

process [36]. A decrease in the biosorption of RO 13 dye at

higher temperature can be related to the increasing Brow-

nian movement of molecules in solution leading to the

breaking of existing intermolecular hydrogen bonding be-

tween RO 13 dye and the biosorbent [37].

The speed of agitation showed a negative effect on the

biosorption of RO 13 dye, decreasing the SUC from

43.09 mg/g at lower speed of agitation to 27.62 mg/g at

higher speed of agitation. A decrease in the sorption ca-

pacity at higher speed of agitation may be attributed to

improper contact between the dye ions and the binding

sites on the biomass, as the suspension is no longer ho-

mogenous due to vortex formation, which makes the ad-

sorption of dye ions difficult [38, 39]. The effect of contact

time on the removal of RO 13 dye indicated that a longer

contact time favored the reaction toward the equilibrium

Table 4 Experimental design

and response value of path of

steepest ascent

Sr. no. Items X1 X2 X3 X5 SUC

mg/g

1. Base point 5 70 1.4 100

2. Origin step unit 3 30 0.6 20

3. Slope 17.32 13.29 11.96 7.78

4. Corresponding range 51.98 398.79 7.17 155.7

5. New step unit 1.55 11.96 0.21 4.67

6. New step unit with decimal 1 11 0.2 5

Experiment no. 1 5 70 1.4 100 10.15

Experiment no. 2 4 81 1.2 95 7.56

Experiment no. 3 3 92 1.0 90 63.97

Experiment no. 4 2 103 0.8 85 124.02

Experiment no. 5 1 114 0.6 80 114

X1 pH, X2 dye concentration (mg/L), X3 biosorbent dosage (g/L), X5 speed of agitation (rpm)

Table 5 Experimental ranges

and levels of the independent

process variables in the central

composite design

Factor Variable Range and level

-2 -1 0 ?1 ?2

X1 pH 1.0 1.5 2.0 2.5 3.0

X2 Dye concentration (mg/L) 92.0 97.5 103.0 108.5 114.0

X3 Biosorbent dosage (g/L) 0.6 0.7 0.8 0.9 1.0

X5 Speed of agitation (rpm) 80.0 82.5 85.0 87.5 90.0
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between the dye and the adsorbent. This may be due to the

availability of the uncovered surface area on the biosorbent

and the progressive occupation of active binding sites over

a longer period of time.

The highest response of SUC of 89.66 mg/g after run-

ning Plackett–Burman experiments was obtained under the

following conditions: pH 2.0; dye concentration 100 mg/L;

biosorbent dosage 0.8 g/L; temperature 35 �C; speed of

agitation 80 rpm; and contact time 120 min.

Locating the region of optimum response by the PSA

In the current investigation, PSA was employed to move

from the current operating conditions to the optimum region

in the most efficient way by using the minimum number of

experiments. PSA was based on the zero level of the PBD

and moved along the direction in which the dye concen-

tration increased and pH, biosorbent dosage and speed of

agitation decreased. The less significant factors, viz. tem-

perature, was used in all trials at its -1 level (35 �C) for its

negative contribution, while contact time was kept at its ?1

level (120 min) for its positive contribution. The ex-

perimental design and results are shown in Table 4.

The highest response was found to be SUC of

124.02 mg/g with pH 2.0, dye concentration 103 mg/L,

biosorbent dosage 0.8 g/L and speed of agitation 85 rpm.

This point was concluded to be near the optimal point and

was chosen for optimization by RSM using CCD.

Optimization of significant variables using CCD

CCD was employed at the specified combinations of four

independent significant factors (pH, dye concentration,

biosorbent dosage and speed of agitation) at five levels

(-a, -1, 0, ?1, ?a) to study the interactions between

them and to determine their optimum levels (Table 5).

The levels of temperature and contact time were kept

similar to the trial runs in PSA.

The design matrix of tested variables in 30 experimental

runs along with the experimental results and the results of

theoretically predicted responses (using the model equa-

tion) are shown in Table 6.

R2 ¼ 97:7%;R2Adj ¼ 95:37%:

The SUC of the biomass increased to 133.63 mg/g after

running the response surface design using the following

conditions: pH 2.0, dye concentration 114 mg/L, biosor-

bent dosage 0.8 g/L and speed of agitation 85 rpm. Mul-

tiple regression analysis was used to analyze the data to

obtain an empirical model for the best response and thus a

second-order polynomial equation (Eq. 5) was derived as

follows:

Y ¼ 125:29 þ �5:12 � X1ð Þ þ 4:76 � X2ð Þ þ �7:45 � X3ð Þ
þ 1:46 � X5ð Þ þ X1 � X2 ��0:78ð Þ þ X1 � X3 ��0:5ð Þ
þ X2 X3 � 1:97ð Þ þ þX1 � X5 ��4:19ð Þ
þ X2 � X5 � 2:12ð Þ þ X3 � X5 � 1:67ð Þ
þ X1 � X1 ��4:92ð Þ þ X2 � X2 ��0:35ð Þ
þ X3 � X3 ��3:75ð Þ þ X5 � X5 � 1:28ð Þ þ match blockð Þ:

ð5Þ

The mathematical expression of the relationships be-

tween the independent variables and dependent response is

given in terms of uncoded factors. Apart from the linear

effect of the parameter for the dye removal, the RSM also

gives an insight into the quadratic and interaction effect of

Table 6 Central composite design matrix with experimental and

predicted values

Run no. X1 X2 X3 X5 SUC (mg/g)

Experimental Predicted

1. -1 -1 -1 -1 127.58 126.32

2. 1 -1 -1 -1 124.04 127.03

3. -1 1 -1 -1 124.16 129.21

4. 1 1 -1 -1 127.86 126.80

5. -1 -1 1 -1 100.87 100.75

6. 1 -1 1 -1 100.22 99.46

7 -1 1 1 -1 113.45 111.53

8. 1 1 1 -1 107.41 107.12

9. -1 -1 -1 1 128.94 130.05

10. 1 -1 -1 1 113.04 113.98

11. -1 1 -1 1 129.67 130.12

12. 1 1 -1 1 121.3 122.24

13. -1 -1 1 1 111.09 111.18

14. 1 -1 1 1 97.33 93.10

15. -1 1 1 1 132.63 130.46

16. 1 1 1 1 108.97 109.25

17. 0 0 0 0 123.99 124.15

18. 0 0 0 0 123.99 124.15

19. 0 0 0 0 123.99 124.15

20. 0 0 0 0 123.99 124.15

21. -2 0 0 0 116.05 115.68

22. 2 0 0 0 94.67 95.19

23. 0 -2 0 0 113.67 114.21

24. 0 2 0 0 133.63 133.25

25. 0 0 -2 0 120.60 123.32

26. 0 0 2 0 99.45 103.94

27. 0 0 0 -2 128.74 127.34

28. 0 0 0 2 131.65 133.21

29. 0 0 0 0 127.70 127.32

30. 0 0 0 0 127.58 127.32

X1 pH, X2 dye concentration (mg/L), X3 biosorbent dosage (g/L), X5

speed of agitation (rpm)
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the parameters. These analyses are done by means of

Fisher’s F test and Student’s t test. Student’s t test is used

to determine the significance of the regression coefficients

of the parameters. In general, the larger the magnitude of

t and smaller the value of P, the more significant is the

corresponding coefficient term [25]. The regression coef-

ficient and the F and P values for all the linear, quadratic,

and interaction effects of the parameters are given in

Table 7.

From very small P values, it was observed that the co-

efficients for the linear, quadratic and interaction effects of

the factors were highly significant except the quadratic

effect for dye concentration (P = 0.550), interaction ef-

fects for pH and dye concentration (P = 0.314), and pH

and biosorbent dosage (P = 0.514). These measures indi-

cated that the accuracy and general ability of the polyno-

mial model were good and that analysis of the response

trends using the model was reasonable. The statistical

significance of the ratio of the mean square variation due to

the regression and mean square residual error was also

tested using analysis of variance (ANOVA) as shown in

Table 8.

ANOVA is a statistical technique that subdivides the

total variation in a set of data into component parts asso-

ciated with specific sources of variation for the purpose of

testing hypothesis on the parameters of the model. The

ANOVA of the quadratic regression model demonstrated

that the model was highly significant, as was evident from

the low P value of the Fisher’s F test (Fmodel, 32.90)

[(Pmodel[F) = 0.000]. The coefficient of variation is the

error expressed as a percentage of the mean. For the pro-

posed model to be a good predictor of the experimental

results, the Fmodel value should be greater than the

calculated value of the F distribution for a certain number

of degrees of freedom in the model at the level of sig-

nificance a. The lower calculated F14,14 value (8.99) than

the tabulated F value even at the 0.0001 confidence level

showed a statistically insignificant lack of fit. The model

was found to be adequate for prediction within the range of

variables employed. The coefficient of determination

R2 = 0.9770 implied a good agreement between the ex-

perimental and predicted values of biosorption, which can

be attributed to the given independent variables. R2 also

indicated that only 2.30 % of the total variations could not

be explained by the model. The pred-R2 of 0.94 was in

reasonable agreement with adj-R2 of 0.93, indicating that

the model was significant. The adjusted coefficient of de-

termination represents the proportion of the variation in the

response explained by the regression model. It is thus en-

visaged that Eq. (5) can capture 93 % of the variation in

Table 7 Estimated regression

coefficients and corresponding

t and P values of the central

composite design

Term Coefficient SE coefficient t P

Constant 125.297 1.2372 101.271 0.000

Block -0.274 0.5797 -0.472 0.644

pH -5.124 0.6110 -8.385 0.000

Dye concentration 4.761 0.6110 7.792 0.000

Biosorbent dosage -7.455 0.6110 -12.200 0.000

Speed of agitation 1.467 0.6110 2.400 0.031

pH 9 pH -4.925 0.5716 -8.616 0.000

Dye concentration 9 dye concentration -0.350 0.5716 -0.613 0.550

Biosorbent dosage 9 biosorbent dosage -3.757 0.5716 -6.574 0.000

Speed of agitation 9 speed of agitation 1.285 0.5716 2.248 0.041

pH 9 dye concentration -0.782 0.7484 -1.045 0.314

pH 9 biosorbent dosage -0.501 0.7484 -0.669 0.514

pH 9 speed of agitation -4.197 0.7484 -5.609 0.000

Dye concentration 9 biosorbent dosage 1.973 0.7484 2.637 0.020

Dye concentration 9 speed of agitation 2.124 0.7484 2.838 0.013

Biosorbent dosage 9 speed of agitation 1.674 0.7484 2.236 0.042

Table 8 ANOVA for response surface quadratic model

Source DF Seq SS Adj SS Adj MS F P

Blocks 1 2.00 2.00 1.999 0.22 0.644

Regression 14 4126.92 4126.92 294.780 32.90 0.000

Linear 4 2559.36 2559.36 639.841 71.41 0.000

Square 4 1092.60 1092.60 273.151 30.48 0.000

Interaction 6 474.95 474.95 79.158 8.83 0.000

Residual Error 14 125.45 125.45 8.961

Lack of fit 10 125.44 125.44 12.544 6272 0.000

Pure error 4 0.01 0.01 0.002

Total 29 4254.36

R2 = 0.9770; Adj-R2 = 0.93; Pred-R2 = 0.94; CV = 2.46 %; Yield

Predicted P\ 0.0001
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the measured values of SUC as function of the four inde-

pendent conditions within the ranges considered in the

present study. The coefficient of variation is the error ex-

pressed as a percentage of the mean. It indicates the degree

of precision with which the treatments are compared. The

value of CV (2.46 %) demonstrated that the performed

experiments were reliable.‘‘Adeq Precision’’ measures the

signal to noise ratio. A ratio greater than 4 is desirable. A

ratio of 17.602 obtained in this study indicated an adequate

signal. Therefore, this model can be used to navigate the

design space. The ANOVA thus indicated that the second-

order polynomial model for Eq. 4 was highly significant

and adequate to represent the actual relationship between

the response (SUC mg/g) and variables, with P\ 0.000

and a high value of the coefficient of determination

(97.7 %).

The graphical representations of the regression model,

called the 3D surface plots, were obtained to explain the

interaction of variables and to determine the optimum level

of each variable (pH, dye concentration, biosorbent dosage

and speed of agitation) for maximum response (SUC)

(Fig. 2a–d).

A surface plot can be used to explore the relationship

between three variables. Here, each response surface plot

represented the effect of two independent variables, hold-

ing the other variables at zero level. These surface plots

provide a method to predict the biosorption efficiency

for different values of the tested variables. As seen in

Fig. 1a–d, each response surface yield showed a clear peak

suggesting that the optimum point was inside the design

boundary. The surface plot was based on independent

variables, i.e., dye concentration (X2) and biosorbent

Fig. 2 Three-dimensional response surface plots of RO 13 dye

removal by dead fungal biomass of R. arrhizus showing variable

interactions between a biosorbent dosage and dye concentration,

b speed of agitation and biosorbent dosage, c speed of agitation and

dye concentration and d speed of agitation and pH
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dosage (X3), while the other independent variables pH (X1)

and speed of agitation (X5) were kept at zero level as shown

in Fig. 2a. An increase in SUC could be achieved when the

dye concentration increased from 97.5 to 108.5 mg/L, and

beyond this SUC decreased sharply even for a tiny increase

in dye concentration. The SUC increased when the

biosorbent dosage decreased from 0.8 to 0.73 g/L. The

profile observed in Fig. 2b with speed of agitation (X5) and

biosorbent dosage (X3) suggests that the SUC of the system

increased with increasing biosorbent dosage, while change

in speed of agitation showed very little effect on SUC. The

two-dimensional contour plot showed a clearly elongated

line running diagonally on the plot, suggesting that the

interaction between speed of agitation (X5) and biosorbent

dosage (X3) was significant on SUC. The response surface

plot shown in Fig. 2c suggested an increase in SUC with an

increase in speed of agitation from 85 to 87.3 rpm, and dye

concentration from 103 to 108.5 mg/L. The effect of pH

(X1) and agitation speed (X5) on biosorption while keeping

dye concentration (X2) and biosorbent dosage (X3) constant

is depicted in Fig. 2d. A slight increase in SUC could be

achieved with increase in speed of agitation from 85 to

87.3 rpm and decrease in pH from 2.0 to 1.78.

Validation of the experimental model

The special feature of the RSM tool, ‘point prediction’, was

employed to find the optimum value of the combination of

the four factors for maximum biosorption. The predicted

optimal conditions were as follows: pH 1.78, dye concen-

tration 108.5 mg/L, biosorbent dosage 0.73 g/L and speed

of agitation 87.3 rpm. Validation experiments were per-

formed to verify the accuracy of the model. The results

showed that the predicted values were in accordance with

the experimental results. The biosorption was 133.0 mg/g,

which was in excellent agreement with the predicted value

(133.97 mg/g). The result showed good correlation be-

tween statistically predicted and experimental values,

which confirmed the model’s authenticity and the existence

of an optimum point. Therefore, response surface opti-

mization could be successfully used to optimize the process

parameters and evaluate the performance of R. arrhizus as

a biosorbent and to achieve an overall 49.04 % increase in

biosorption.

Artificial neural network (ANN)

JMP (version 10) computing environment was chosen to

generate a neural network to test and validate the model.

ANNs are inspired by biological neural systems. In this

approach, weighted sum of inputs arriving at each neuron is

passed through an activation function (generally nonlinear)

to generate an output signal. Each input node represents an

independent variable, while the output nodes give the de-

pendent variables [32]. A fully connected holdback net-

work with the input, hidden and output layers is shown in

the Fig. 3.

Input layer and hidden layer have nonlinear activation

neurons, and the output layer has linear neurons in network

topology [22]. Each node in the input layer represents the

value of one independent variable, while the output nodes

indicate the dependent variables [38]. The model consisted

of three layers: an input layer with four neurons (initial pH,

dye concentration, biosorbent dosage and speed of agita-

tion), a hidden layer with three neurons and an output with

one neuron (4-3-1). Figure 4 shows a comparison between

experimental and predicted values of SUC using the neural

network model. From Fig. 4, it was observed that the

simulated result using ANN showed a satisfactory

Fig. 3 Architecture of optimized artificial neural network with three

layers with four input and one output layer

Fig. 4 Regression plot (actual vs. predicted) using four input

variables, three processing elements in the hidden layer and one

output variable using the ANN model

102 Int J Ind Chem (2015) 6:93–104

123



correlation with the experimental result. The trained net-

work gave a mean square error (MSE) of 0.02 with cor-

relation coefficient (R2) of 0.83, indicating that the ANN

model reproduced the adsorption well in this system.

Conclusion

A low-cost biosorbent prepared from dead fungal biomass

of R. arrhizus NCIM 997 was successfully applied for the

removal of RO 13 dye, a reactive mono-azo dye from

aqueous solution using sequential optimization strategy.

The statistical approach consisting of Plackett–Burman

design, path of steepest ascent and central composite de-

sign helped in rapidly identifying important factors,

studying the interactions between them and determining

their optimum levels. Development of a polynomial model

showed significant results for optimizing biosorption con-

ditions for the RO 13 dye. This study clearly showed that

the RSM is an effective tool for optimization of process

parameters to maximize the dye removal. The optimum

values of pH, dye concentration, biosorbent dosage and

speed of agitation were found to be 2.0, 0.8 g/L, 114.0 mg/L

and 85 rpm for the removal of RO 13 dye, respectively.

The experimental values were in good agreement with the

model-predicted values. ANN results showed that neural

network modeling could effectively simulate and predict

the behavior of the process. Optimal conditions obtained in

this experiment have laid a solid foundation for further use

of this microorganism in the treatment of reactive azo dyes

containing effluents.
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