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Abstract
The twenty-first century is experiencing a wave of technologies and innovations making use of unique features of nanofluids, 
in applications such as industrial and process heating, air conditioning and refrigeration systems, heat pipes, solar energy, 
thermal storage systems, electronic cooling systems and others. Recent literature indicates that suspending solid nanoparticles 
in traditional working fluids can enhance heat transfer rates by increasing thermal conductivity and heat transfer coefficients. 
However, there is a wide variation in the extent of heat transfer enhancements reported in the literature. In this review, which 
mainly focuses on the research published within the last 5 years, experimental investigations from recent developments of 
nanofluids usage and performance in various heat transfer systems are summarised. In addition, heat transfer mechanisms 
in nanofluids, the challenges and future direction of nanofluids regarding heat transfer enhancement are discussed. Popular 
preparation methods of nanofluids and the models of thermophysical properties such as thermal conductivity and viscosity 
have been reviewed.
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Introduction

The knowledge and understanding of heat transfer are 
important for the design of a wide range of industrial, com-
mercial and domestic processes and appliances, including 
chemical processing, air conditioning and refrigeration, solar 
energy production and conversion, oil and gas industries and 
electronics cooling. In thermal engineering, the improve-
ment in the thermal performance of systems is termed ‘heat 
transfer enhancement’. Over the past decade, several tech-
niques have been proposed as ways of enhancing heat trans-
fer [1–3]. These techniques have been classified as passive 
or active (Table 1).

Figure 1 shows thermal conductivities of different materi-
als. Since the thermal conductivity of solids may be several 
orders of magnitude higher than the thermal conductivities 
of conventional heat transfer fluids such as water, oil or eth-
ylene glycol (EG), the addition of highly conducting solid 

particles to a fluid has the potential to increase the effective 
thermal conductivity of the fluid.

Choi and Eastman [5] introduced the term “nanofluids” to 
describe suspensions of copper nanoparticles in water. Their 
investigations revealed that the thermal conductivity of the 
fluid was enhanced by a factor of 1.5 and 3.5 compared to 
water at low volume fractions of 5% and 20%, respectively. 
Further experiments with copper nanoparticles in acidified 
ethylene glycol showed apparently anomalous increases in 
thermal conductivity [6]. However, they also observed that 
the thermal conductivity of copper/ethylene–glycol nano-
fluids decreased with time, which was most likely due to 
agglomeration and/or sedimentation of the nanoparticles.

Similar encouraging results were observed by other 
researchers and subsequently the use of nanofluids for heat 
transfer enhancement became a very active area of research 
[7–11]. However, to date, it does not appear that nanoflu-
ids have received widespread usage outside the research 
environment. In practice, the usage of nanoparticles in heat 
transfer equipment still faces a number of challenges arising 
from issues such as (1) lack of stability of the nanofluids, 
(2) high variation on reported physical properties and heat 
transfer enhancement effects in the literature, (3) lack of 
understanding about the mechanisms and forces that act on 
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the nanoparticles during and after suspension. These issues 
have slowed the process of standardisation and formulation 
of nanofluid technology. The aim of this paper is to review 
the recent developments and the future prospects for nano-
fluids in heat transfer systems.

Preparation of nanofluids

Nanoparticles used in nanofluids range in size from 1 to 
100 nm and different shapes such as nanospheres (spherical), 
nanoreefs, nanoboxes, nanoclusters and nanotubes. Some 
studies [12–15] have concluded that the morphology of nan-
oparticles is defined during synthesis, and the average size 
of nanoparticles plays a significant role in the enhancement 
of thermal conductivity a primary factor for heat transfer 
enhancement.

There are two popular methods used in the preparation of 
nanofluids: the single-step method and the two-step method 
[16] as shown in Fig. 2. The single-step method involves the 
simultaneous production of nanoparticles and suspension 
of the particles into the base fluid. For example, the nano-
particles may be formed by condensation from the vapour 
phase directly into the heat transfer liquid. This method has 
the advantage of producing minimal nanoparticle agglom-
eration; however, it is characterised by high costs, and is 

Table 1  Passive and active heat transfer enhancement techniques [4]

Passive Active

Treated surfaces Mechanical aids
Rough surfaces Surface vibration
Extended surfaces Fluid vibration
Displaced enhancement devices Electrostatic fields
Swirl flow devices Injection
Coiled tubes Suction
Surface tension devices Jet impingement
Additives for liquids
Additives for gases

Fig. 1  Thermal conductivity of 
some heat transfer materials
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therefore likely to be infeasible on an industrial scale. In 
contrast, in the two-step method, nanoparticles are pro-
duced in a separate process before being dispersed into the 
base fluid [17]. Stabilising agents such as surfactants can be 
added to reduce the interfacial forces between the nanopar-
ticles and base fluid molecules. Subsequently, the solution 
may be mixed using mechanical devices such as homogen-
iser, stirrer and ultrasonicator. The two-step method appears 
to have received the most widespread use, since it is gener-
ally less labour intensive and more cost effective [17–19].

Mechanism of heat transfer enhancement 
in nanofluids

Maxwell [20] proposed a model for determining the electri-
cal conductivity of a dispersion of spheres in a continuous 
medium that has subsequently been applied successfully to 
the prediction of thermal conductivities of heterogeneous 
materials [21, 22]. Maxwell’s model and derivatives may 
be thought of as ‘classic theory’ for thermal conductivity 
modelling [23]. However, the rise in popularity of nanofluids 
has largely been due to reports of experimentally determined 
thermal conductivities being many times higher than those 
predicted by classic theory [24, 25]. In the open literature, 
there does not appear to be any single theory that can explain 
the apparently anomalous heat transfer enhancement effects 
in nanofluids that have been reported by some researchers 
[6, 26]. However, a variety of mechanisms have been pro-
posed. For instance, in a review of metal-oxide nanoparti-
cles Suganthi et al. [27] concluded that Brownian motion 
plays a significant role in increasing thermal conductivity of 
nanofluids. The stochastic movement of nanoparticles in a 
fluid depends on temperature, diameter of the particles and 
viscosity of the fluid. Farzaneh et al. [28] suggested that in 
addition to Brownian motion, nanoparticles once suspended 
also experience drag, thermophoresis, Van der Waals and 
electric double layer forces. The study added that a combi-
nation of inter-particle Van der Waals and electric double 
layer forces produces a combined force called “DLVO”, 
which together with other forces play a significant role in 
the mechanism of heat transfer in nanofluids.

Kang et al. [29] proposed a mechanism based on the cross 
coupling of thermal and electric transports in nanofluids. 
They explained that due to the fact that nanoparticles have 
surface charges, a varying electric field can be generated to 
accompany the particle thermal motion. Therefore, the base 
fluid is heated by the nanoparticles through molecular col-
lision such that the nanoparticles may be considered as an 
internal heat source.

Sanukrishna et al. [30] reported that the mechanism of 
molecular layer formation inside evaporator tubes during 

evaporation could be the reason for heat transfer enhance-
ment in two-phase flow boiling.

However, to date, none of these theories have been used 
to produce models that can accurately predict heat transfer 
enhancement across a wide range of applications.

Thermophysical properties of nanofluids

The thermal properties that affect conduction and convection 
include thermal conductivity, specific heat capacity, density 
and viscosity. Therefore, any heat transfer model requires 
accurate thermal property data. For specific heat capacity 
and density, it is often assumed that a weighted arithmetic 
mean of the components’ base fluid and nanoparticle den-
sities or specific heat capacities can provide accurate pre-
dictions of the nanofluids density or specific heat capacity. 
However, determining the thermal conductivity and viscos-
ity of nanofluids is not as straightforward.

Thermal conductivity

Thermal conductivity is the most studied transport property 
in nanofluids, as it is commonly assumed that the significant 
increases in heat transfer rates observed with nanofluids are 
primarily caused by the increased thermal conductivity. For 
nanofluids, common thermal conductivity measurement 
methods include the transient hot-wire device [31] or the 
thermal property analyser [32].

Hemmat Esfe et al. [33] studied the efficiency of ferro-
magnetic nanoparticles suspended in ethylene glycol. They 
focussed on the effect of particle size, temperature and con-
centration to determine the thermal conductivity and viscos-
ity of the nanofluids with volume fraction of up to 3% in the 
temperature range of 26–55 °C. Their results showed that 
the efficiency of nanofluids increased with an increase in the 
temperature and solid volume fraction. They also concluded 
that the optimum particle size depended on the flow regime 
(i.e. the laminar vs. turbulent).

Deepak et  al. [15] developed a model to predict the 
thermal conductivity of nanofluids based on particle size 
distribution and multi-level homogenization. They mainly 
focused on the effects of Brownian motion, interfacial layer 
formation and particle clustering. Similarly, Lee et al. [12] 
reported that the efficiency of nanofluids was improved by 
increasing particle size and temperature. However, particle 
size variation was more noticeable than temperature varia-
tion for thermal conductivity and viscosity measurements.

Ueki et al. [34] conducted an experiment on thermo-
physical properties of carbon-based material nanofluid. 
They concluded that nanoparticle geometry and temperature 
influenced thermal conductivity. In addition, they found out 
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that carbon black and carbon nanopowder enhanced thermal 
conductivity by 7% and 19%, respectively.

Lenin and Roy [35] reported that the critical concentra-
tion for thermal conductivity enhancement varies with the 
surfactant used, possibly due to the difference in the degree 
of aggregation of the nanoparticles and conformation of the 
surfactant molecules on the nanoparticle’s surface. They 
added that base fluids with lower thermal conductivity and 
dielectric constant showed larger enhancement in the ther-
mal conductivity relative to base fluids with higher thermal 
conductivities.

However, despite the many positive results, Hussein et al. 
[36] found that the effect of volume fraction, temperature 

and the size diameter on friction is not clearly elaborated 
in the literature yet, it is vital for developing correlations of 
thermal properties of nanoparticles. A large number of ther-
mal conductivity models that have been proposed (examples 
shown in Tables 2, 3), some of which consider the morphol-
ogy of nanoparticles, assume that all particles are spheri-
cal and introduce a variety of (mostly empirical) constants. 
Therefore, it is difficult to know which model should be 
used for particular nanofluids. To demonstrate, Fig. 3 shows 
predictions from the classical model of Maxwell [20], that 
are compared to those of Buongiorno et al. [37] and Maiga 
et al. [38] showing significant differences. Yang et al. [39] 
explained that factors such as particle parameters (particle 

Table 2  Summary of models 
for thermal conductivity of 
nanofluids

Author Empirical model Remarks

Maxwell [20] Knf =
[

Kp+Kbf+2�(Kp−Kbf )

Kp+Kbf+�(Kp−Kbf )

]

Kbf
Volume fraction of solid spherical particles

Pak and Cho [81] Knf = (1 + 7.74ϕ)Kbf Depends on spherical and non-spherical particles
Maiga et al. [38] Knf = (1 + 4.97ϕ2 + 2.72ϕ)Kbf Considered spherical particles
Boungiorno [37] Knf = (1 + 2.92ϕ − 11.99ϕ2)Kbf Titania spherical and non-spherical particles
Mintsa et al. [82] Knf = (1 + 1.7ϕ)Kbf –

Table 3  Summary of measured 
thermal conductivity data of 
nanofluids

Author Nanofluid Temperature (°C) Enhancement (%)

Ueki et al. [35] Carbon nanopowder–water 20 19
Carbon black–water 7

Jiang et al. [25] Ammonia–water 120 3–12
Murshed et al. [83] TiO2–water – 30–33
Parametthanuwat et al. [84] Ag–water 20–80 80
Hafiz et al. [85] TiO2–water 29.4 15.87
Karimi et al. [86] NiFe2O4–water 25–55 17.2
Mehrail et al. [87] Nitrogen-doped graphene–water 5–40 22.15–36.78
Kole et al. [88] Graphene–EG/water 10–70 15
Branson et al. [89] NanoDiamond–EG 10–80 11–12

Fig. 3  The effect of nanoparticle concentration on thermal conductivity (a) and viscosity (b) using different models for carbon–water nanofluid
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type, loading, size and shape) and environmental param-
eters (base fluid, pH value, temperature and the standing 
time) influence thermal conductivity. These aforementioned 
factors as well as preparation methods could be significant 
causes of the discrepancy in thermal conductivity enhance-
ment reported in the literature.  

Viscosity

In their landmark paper, Choi and Eastman [5] assumed that 
the addition of nanoparticles would not significantly affect 
the viscosity of the nanofluids; however, this is not neces-
sarily the case. For example, Namburu et al. [40] measured 
the viscosity of copper oxide nanoparticles dispersed in a 
mixture of ethylene glycol and water and found that the 
viscosity of 6.12% volume concentration of the nanofluids 
was four times the value of the base fluid. In addition, they 
concluded that the viscosity of nanofluids increases with 
increasing amounts of nanoparticles. Similarly, Hemmat 
et al. [41] found that the viscosity of zinc-oxide/ethylene 
glycol nanofluids increased considerably with particle vol-
ume concentration significantly, as did Mariano et al. [42] 
and Yu et al. [43], who also made the point that heat trans-
fer enhancement effects of the nanofluid were offset by the 
increased pumping power requirements.

It is also possible that the addition of nanoparticles 
and/or surfactants may cause the nanofluids to behave in 
a non-Newtonian manner, even though the base fluid may 
be Newtonian. While, Mariano et al. [42] reported that the 
viscosity of the nanofluids is ‘nearly independent’ of the 
shear rate, Kaggwa et al. [44] observed that the viscosity of 
carbon–water nanofluids decreased with an increase in shear 
rate and the viscosity of carbon–hexane nanofluids increased 
with the increase in shear rate. They concluded that base 
fluids, nanoparticle concentration as well as surfactants have 
a significant effect on viscosity measurements.

It can be difficult to model the viscosity of nanofluids. 
To illustrate, Fig. 3b shows two different viscosity models, 
the popular Einstein [45] model for mixture viscosity and 
the Krieger–Dougherty [46] model for nanofluids that pro-
duce widely differing predictions. The discrepancy between 

predictions is due to a number of factors. For example, Ein-
stein [45] assumed the particles to be rigid, uncharged and 
devoid of any attractive forces and in low concentration, 
whereas Krieger–Dougherty [46] considered the full range 
of particle volume fractions, the influence of aggregation 
and the formation of interfacial layers.

As with thermal conductivity, the viscosity of nanoflu-
ids remains to be an area requiring further investigation, 
particularly as the effect of the surfactant on viscosity is 
not always taken into consideration or reported in viscosity 
studies (Tables 4, 5).

Potential applications of nanofluids

Solar applications

As society makes attempts to combat climate change and 
provide sustainable energy access for all, solar energy stands 
out as a primary means of reducing global carbon emissions 
to the Earth’s atmosphere. In fact, Lewis et al. [47] pointed 
out that more energy from sunlight strikes the Earth in 1 h 
(4.3 × 1020 J) than all the energy consumed on the planet in 

Table 4  Summary of empirical models for viscosity of nanofluids

Author Empirical model Remarks

Einstein [45] μnf = (1 + 2.5∅)μbf Infinite dilution of spherical, and rigid nanoparticles devoid of any attractive forces
Mooney [90] �nf = exp

[

2.5�

1−(�∕�m)

]

�bf
Einstein’s model extended to apply to a suspension of finite concentration

Brinkman [91] �nf = exp
[

1

(1−�)2.5

]

�bf
Modified Einstein model of spherical particles extended up to 4% volume concentration

Batchelor [92] μnf = (1 + 2.5ϕ + 6.2)μbf Considered large nanoparticle concentration up to 10%
Krieger and Dough-

erty [46] �nf =
(

1 −
�

�m

)−��m

�bf

Considered the full range of particle volume fraction

Table 5  Summary of measured viscosities of nanofluids

Author Nanofluid Temperature 
(°C)

Viscosity ratio

Namburu et al. 
[40]

CuO–EG − 30 to 50 6.12

Mariano et al. 
[42]

Co3O4–EG 10–50 40

Hemmat et al. 
[41]

ZnO–EG 50 30

Yu et al. [43] SiC–water
Al2O3–water

25–70 8
6

Jiang et al. [25] Ammonia–
water

120 2–7

He et al. [93] TiO2–water 22 11
Ding et al. [94] CNT–water 25–40 –
Das et al. [95] Al2O3–water 20–60 45
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a year (4.1 × 1020 J). They added that 120,000 TW of radia-
tion arrives at the surface of the Earth, far exceeding human 
needs even in the most aggressive energy demand scenarios. 
However, many solar capture devices suffer from relatively 
low collection efficiencies. Recent studies [48, 49] indicate 
that nanofluids can be used specifically in low optical and 
thermal performance solar energy conversion systems to 
boost their performance.

Kabeel et al. [50] investigated thermal solar water heater 
with  Al2O3/H2O nanofluid in forced convection, and their 
results showed an increased solar collector efficiency of 11% 
for 3% nanoparticle concentration. An enhancement of 21% 
in average heat transfer coefficient was reported by Ebrahim-
nia et al. [51] after conducting laminar flow convective heat 
transfer experiments of water-based  TiO2 nanofluid flowing 
through a uniformly heated tube.

Al-Waeli et al. [52] conducted an experimental inves-
tigation of SiC/water nanofluid as a working fluid for a 

photovoltaic/thermal (PV/T) system (Fig. 4). They con-
cluded that the thermal conductivity was enhanced by up to 
8.2% for the temperature range of 25–60 °C, and the thermal 
efficiency of the collector was increased by up to 100.19% 
compared to the efficiency when water was used as the work-
ing fluid.

Luo et  al. [53] investigated thermal energy storage 
enhancement of a binary molten salt nanoparticles. They 
observed 4.71% enhancement of the total storage capacity 
at temperature range of 160–300 °C. Their results also indi-
cated an improvement in specific heat of the nanosalt by 
11.48%.

With these promising results, it seems likely that solar 
energy capture devices may be one of the first applications 
to have the wide spread uptake of nanofluids technology, 
although the stability of nanofluids remains a significant 
barrier.

Fig. 4  A schematic diagram of the experimental rig [52]. Reproduced 
with permission from Elsevier

Fig. 5  Thermal conductivity (a) and heat transfer rate (b) as function of nanoparticle volume fraction, Fadhilah et al. [60]

Fig. 6  Comparison of the coefficient of performance, Sanukrishna 
et al. [30]. Reproduced with permission from Springer
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Nanorefrigerants

The refrigeration industry is progressively making efforts 
to replace traditional refrigerants with ones that have less 
impact on the environment. However, studies on potential 

replacements such as R1234ze or R1234yf or R450A have 
indicated that they yield lower heat transfer performance 
than the refrigerants they are intended to replace [54, 55]. 
Therefore, the suspension of solid nanoparticles in low per-
forming heat transfer refrigerants produces a solution termed 

Fig. 7  Experimental setup 
for condensation–evaporation 
alternation, Lin et al. [61]. 
Reproduced with permission 
from Elsevier

Table 6  A summary of additional research on nanorefrigerants

Author Nanorefrigerant Results

Lim et al. [58] Al2O3/water–EG Convective heat transfer coefficient enhanced by 25.4%
Redhwan et al. [96] Al2O3/PAG

SiO2/PAG
Enhancement was 1.04 times higher than the base lubricant

Wang et al. [97] Al2O3/R-22 Nanoparticles can enhance the heat transfer characteristic of the refrigerant, 
and the bubble size diminishes and moves quickly near the heat transfer 
surface

Jiang et al. [98] CNT-R-113 Measured thermal conductivities of four kinds of 1.0 vol. % CNT– R113 
nanorefrigerant increase to 82%, 104%, 43% and 50%, respectively

Tazarv et al. [99] TiO2/R-141B Enhancement of convective heat transfer coefficient and higher vapour qualities
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‘nanorefrigerant’ that can enhance refrigeration system per-
formance. Several experimental and numerical investigations 
[56–59] have concluded that nanorefrigerants improve thermo-
physical properties, energy efficiency and the overall system 
performance. For instance, Fig. 5 indicates that the thermal 
conductivity and heat transfer of nanorefrigerant (CuO/R-
134a) are higher than R-134a alone [60].

Sanukrishna et al. [30] dispersed copper oxide nanoparti-
cles in R-134a and polyalkylene glycol. Their results revealed 
12.67% increase in thermal conductivity and a flow boiling 
heat transfer enhancement of 37%. The coefficient of perfor-
mance (COP) of nanorefrigerant was 7.5% higher than pure 
refrigerant as shown in Fig. 6.

However, Lin et al. [61] carried out an experiment (Fig. 7) 
to evaluate the degradation of a nanolubricant–refrigerant mix-
ture during continuously alternating condensation and evapo-
ration processes. They discovered that the mixture degrades 
by 28–77% after 20 cycles for nanoparticle concentrations of 
0.2–1.0%, heating and temperature of 50–80 °C and 5–15 °C, 
respectively. They concluded that degradation would be 
reduced by low heating and cooling temperatures, and low 
nanoparticle concentrations.

Lin et al. [62] conducted an experiment using  TiO2 nano-
particles and concluded that only a small fraction of the total 
number of nanoparticles circulate by migration from the mix-
ture to vapour with refrigerant dry-out process. Lee et al. [63]. 

concluded that nanoparticles should not be used in two-phase 
micro-channel heat sinks due to the clustering phenomenon 
that propagates upstream to fill the entire channel, thus pre-
venting coolant from entering the heat sink and causing cata-
strophic failure of the cooling system.

It appears, therefore, that the use of nanofluids in two-phase 
flow has more technological hurdles to overcome than for sin-
gle-phase applications (Table 6).

Current challenges and the future 
of nanofluids

Despite the promising heat transfer enhancement poten-
tial observed by many researchers, there are several bar-
riers to widespread implementation in industrial settings. 
Most studies on nanofluids largely rely on commercially 
available nanoparticles. Nanoparticles are not cheap and 
there is no standard price for these particles as at present 
(for example, at the time of writing, 100 g of the com-
monly studied alumina or copper oxide nanoparticles cost 
$492.00 and $80.00 US dollars, respectively [64]). In addi-
tion, it seems that the properties of nanoparticles differ 
according to the manufacturer, which adds to the uncer-
tainty of physical property data. Equally important, some 
nanomaterials are toxic and therefore extra measures taken 
in preparation increase production cost. Mahian et al. [65] 
explained that challenges such as the high cost of nanopar-
ticles, instability and agglomeration, pumping power and 
pressure drop, erosion and corrosion of components make 
nanofluid usage commercially unattractive. However, they 
concluded that the general application of nanofluids is still 
in its infant stages and, therefore, future investigations will 
increase the potential applications of nanofluids.

Nanofluids experience a number of effective forces during 
and after suspension such as drag, thermophoresis, Brown-
ian, Van der Waals and electric double layer forces. Interfa-
cial layers (Fig. 8) can build bridges between nanoparticles 
within the base fluid molecules, reducing their effectiveness 
[66]. This is a major challenge with no solution cited in the 

Fig. 8  Structure of nanoparticle in the base fluid. Molecules of the 
liquid (1) can form a specific, highly ordered layer (2) near the nano-
particle surface (3) [66]. Reproduced with permission from ACS pub-
lications

Fig. 9  Suspension and stability 
of nanoparticles
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current literature, yet is one of the primary factors that many 
researchers think it contributes to aggregation and subse-
quent sedimentation [67–69].

The sedimentation of nanoparticles over time (Fig. 9) is 
still a major challenge [70–73] that needs to be overcome 
before there can be widespread uptake of nanofluids [48]. 
Simple methods have been proposed such as adding stabilis-
ing agents (surfactants) to the base fluid before the suspen-
sion of nanoparticles to lower the interfacial forces between 
the fluid molecules and the nanoparticles. However, even 
with the addition of surfactants there is no guarantee of per-
manent stability.

In short, the use of nanofluids in a wide range of appli-
cations appears to be growing steadily. However, currently 
it appears that material scientists and chemists perform 
most investigations of nanofluids characterisation, whereas 
thermal and mechanical engineering researchers carry the 
experiments on the application of nanofluids, and there is 
not always close collaboration or communication between 
the two groups, which may contribute to the agreements 
of results. Yu et al. [74] suggested that a systematic sum-
mary of dispersing strategies of nanofluids in thermal 
applications is needed to provide general guideline on the 
preparation and characterization of stably dispersed ther-
mal nanofluids, and also to help bridge the gap between 
researchers in different disciplines.

Despite the fact that the field of nanofluids is still in the 
infancy, the future of nanofluids seems promising. Apart 
from solar and refrigeration applications, industrial and 
research institutions have progressively gained interest in 
the usage of nanofluids in other applications [75] includ-
ing drug delivery for cancer treatment [76] and surface 
and subsurface defect sensors [77]. It is clear based on the 
review of the recent literature that significant efforts con-
tinue to be devoted to theoretical and experimental studies to 
improve the general performance and potential applications 
of nanofluids. In addition, efforts are being made to reduce 
the production costs of nanofluids by developing large-scale 
production methods [17, 78], and to improve the stability of 
nanofluids [79, 80].

Conclusion

This paper has reviewed experimental and theoretical devel-
opments of nanofluids in different applications. The chal-
lenges and the future insights about the potential usage of 
nanofluids have been discussed. The following major con-
clusions are drawn from this review study:

• There are wide ranges in heat transfer enhancements data 
reported by different studies.

• There is no universal formulation of nanofluids which 
may contribute to the wide range of physical property 
data reported, as well as wide ranges in price.

• Stability tests reveal there is currently no solution to the 
sedimentation of nanoparticles over time; however, sta-
bilising agents, such as surfactants, have been shown to 
improve stability significantly.

• Nanofluids have a wide range of potential applications 
for heat transfer enhancement, with solar thermal, and 
refrigeration applications in particular currently being 
the focus of many studies.
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