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Abstract Graphene, being a gapless semiconductor, can-

not be used in pristine form for nano-electronic applica-

tions. Therefore, it is essential to generate a finite gap in the

energy dispersion at Dirac point. We present here the tight-

binding model Hamiltonian taking into account of various

interactions for tuning band gap in graphene. The model

Hamiltonian describes the hopping of the p-electrons up to

third nearest-neighbours, substrate effects, Coulomb inter-

action at two sub-lattices, electron–phonon interaction in

graphene-on-substrates and high phonon frequency vibra-

tions, besides the bi-layer graphene. We have solved the

Hamiltonian using Zubarev’s double time single particle

Green’s function technique. The quasi-particle energies,

electron band dispersions, the expression for effective band

gap and the density of states (DOS) are calculated

numerically. The results are discussed by varying different

model parameters of the system. It is observed that the

electron DOS and band dispersion exhibit linear energy

dependence near Dirac point for nearest-neighbour hopping

integral. However, the second and third nearest-neighbour

hoppings provide asymmetry in DOS. The band dispersions

exhibit wider band gaps with stronger substrate effect. The

modified gap in graphene-on-substrate attains its maximum

value for Coulomb interaction energy UC ¼ 1:7t1. The

critical Coulomb interaction is enhanced to UC ¼ 2:5t1 to

produce maximum band gap in the presence of electron–

phonon interaction and phonon vibration. The bi-layer

graphene exhibits Mexican hat type band gap near Dirac

point for transverse gating potential. The other conclusions

for the present work are described in the text.

Keywords Graphene � Coulomb interaction � Electron–
phonon interaction � Bi-layer graphene

Introduction

Graphene is one-atom-thick two-dimensional structure with

carbon atoms packed in a honeycomb lattice. Its recent

experimental discovery has stimulated extensive investiga-

tions on every aspect of this novel material [1, 2]. The tight-

binding calculation for graphene shows that its conduction

and valence bands touch at six Dirac points in the Brillouin

zone [3] where energy dispersions are linear with respect to

momentum. This unique band dispersion in graphene leads

to graphene’s novel physical and electronic properties such

as room temperature quantum Hall effects and high charge

carrier mobility [4–6]. Graphene, being a gapless semi-

metal, cannot be used in pristine form for nano-electronic

applications. Therefore, it is necessary to open a finite gap in

the energy dispersions at K point by various mechanisms

[7, 8]. When graphene lies on born nitride (BN) substrate, a

small gap (*100 meV) is observed [9, 10]. Similarly, a band

gap of 250 meV is observed for silicon carbide substrate

[11, 12]. There is a great effort for producing a gap (*1 eV)

which is observed in germanium/silicon for the application

in digital electronics.

The recent work indicates that the carbon layer is co-

covalently bonded to the SiC sub-lattice [13–17]. The band
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gap opening for graphene-on-ruthenium metal also arises

due to symmetry breaking in the system [18, 19]. McCann

and Falko [8, 20] have proposed that bi-layer graphene can

develop a gap, when transverse electric field is applied

between two surfaces of the system acting as a gating.

Band gap in bi-layer graphene has been observed experi-

mentally by infrared spectroscopy [21, 22] and angle

resolved photo emission spectroscopy (ARPES) [23].

Hague [24, 25] has proposed a theoretical model calcula-

tion taking attractive interaction modified through phonons

in polarisable substrate for the strong enhancement of the

band gap in graphene substrates. The band gap of several

orders in eV can be prepared in Graphane [26] and Fluo-

rographene [27, 28] by chemical modification of the system

with hydrogen and fluorine, respectively. Atomic thick

boron nitride (BN) forms a honeycomb lattice where the p
orbitals on N sites are shifted up in energy by ?D and

decreased in energy of -D on B site causing a gap of 2D
[29]. The band gap of 5.56 eV is observed experimentally

on monolayer BN systems.

The role of Coulomb interaction in low-dimensional

systems provides unique opportunity for theoretical as well

as experimental studies. The graphene [30, 31], varieties of

semiconductor surfaces like Si, Ce, Sn, Pb [32], Bechgard

salt [33] and doped polymers [34, 35] display strong on-site

as well as inter-site Coulomb interactions. It is observed

that on-site Coulomb interaction in graphene is U = 3.3t1
and the nearest-neighbour Coulomb interaction is V ¼
2:0t1 where the nearest-neighbour hopping integral is

t1 = 2.8 eV [36]. It has been reported that the effective

Hubbard interaction is U ¼ 3:3t1 in the close vicinity of the

separation between conducting graphene and insulating

phases [37, 38]. The Coulomb interaction between mass-

less fermions appears to be unscreened in pristine gra-

phene. At present, it is not clear whether this type of

Coulomb interaction would lead to weak correlation in

graphene or strongly correlated electronic phases like an

insulator [39, 40]. The long ranged Coulomb interaction in

pristine graphene leads to unusual behaviour [41, 42]. The

on-site Coulomb interaction plays a crucial role for the

understanding of the defect induced magnetisation [43–45].

Earlier, we have reported the study of band gap

opening in graphene by a single impurity taking the tight

binding model up to the third nearest-neighbour hoppings

in the absence of Coulomb interaction [46], in presence of

Coulomb interaction [47], electron phonon interaction

[48] and bi-layer graphene [49]. In the present brief

review, we study the effect of all interactions on the band

gap opening of graphene. We propose a tight-binding

model Hamiltonian consisting of the site energy of the

carbon atoms and nearest- neighbour hopping of p elec-

trons of carbon atoms taking into account the substrate

effects, Coulomb interaction, electron–phonon interaction

effect on monolayer graphene and finally the effect of

gate potential on the band gap of bi-layer graphene. The

rest of the work is as follows. We describe the tight-

binding model Hamiltonian for different types of inter-

action. We briefly outline the single particle Green’s

function to calculate correlation functions, physical

parameters, quasi-particle energies and electron density of

states in the next section. Then we present the results and

discussion and finally the conclusion.

Tight-binding model

The graphene sheet is formed by carbon atoms arranged in

a non-Bravais honeycomb lattice with nearest-neighbour

C–C distance of a0 ¼ 1:43Å where the lattice constant is

a ¼
ffiffiffi

3
p

a0. The s, px and py orbitals hybridise to form sp2

bonds leading to high energy sigma bonds. The pz orbitals

in graphene form the p bond which is responsible for the

electronic properties of graphene. The 2D character of the

honeycomb lattice does not allow the overlap of the pz
orbital of carbon atom and s, px and py orbitals of its

nearest-neighbour carbon atoms. One can construct a

simple tight-binding model incorporating only the nearest-

neighbour hopping of electrons between the adjacent A and

B sub-lattices of honeycomb lattice to study the low energy

electron excitations and doping effect in pristine graphene.

Assuming the electron hopping up to the third nearest-

neighbours, the tight-binding Hamiltonian for electron in

graphene is written as

H0 ¼
X

i;r

�aa
y
i;rai;r þ �bb

y
i;rbi;r

� �

� t1
X

\i;j[ ;r

a
y
i;rbj;r þ b

y
j;rai;r

� �

� t2
X

�i;j�;r

a
y
i;raj;r þ b

y
j;rbi;r

� �

� t3
X

�\i;j�[ ;r

a
y
i;rbj;r þ b

y
j;rai;r

� �

ð1Þ

where a
y
i;rðai;rÞ creates (annihilates) an electron with spin r

(r = :,;) on site R~i on sub-lattice A. Similarly, b
y
i;rðbi;rÞ

creates (annihilates) an electron on sub-lattice B. Here,

t1 ¼ 2:5 to 3:0eVð Þ is the nearest-neighbour hopping

energy, t2 with 0:02t1 � t2 � 0:2t1 [36, 37] is the next-

nearest-neighbour hopping energy, t3 is the third nearest-

neighbour hopping integral with t3 ¼ 0:024 t1 eV and

eaðebÞ is the site energy at the sub-lattice site A (B). Fur-

ther, \i; j[ ; � i, j �, and �\ i, j[� stand for

nearest, next-nearest and next–next-neighbour hoppings

from site R~i to R~j.
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The Fourier transformed dispersion c1(k)for the nearest-
neighbour hopping is

c1 kð Þ ¼ eikxa0 þ 2e�
i
2
kxa0 � cos

ffiffiffi

3
p

2
kya0 ð2Þ

and dispersions for the next-and next-to-next-nearest-

neighbour hoppings are c2 kð Þ ¼
P

d2
eik
~:d~2 and

c3 kð Þ ¼
P

d3

eik
~:d~3 . where d2

!
and d3

!
are the corresponding

lattice vectors. Graphene deposited on silicon dioxide

(SiO2) substrate can be described by the 2D massless Dirac

fermions [3]. On the other hand, graphene deposited on

silicon carbide (SiC) substrate can be described by massive

2D Dirac electron. A substrate-induced potential thus

generated can break the symmetry of the honeycomb lattice

and generate gap in electron system. In this case, the

electron interacts with the static potential induced by the

substrates and hence A sub-lattice site acquires an energy

þD and the B site with energy �D leading to the symmetry

breaking between A and B sites. Such a symmetry breaking

Hamiltonian is written as

Hsub ¼ D
X

i;r

a
y
i;rai;r � D

X

i;r

b
y
i;rbi;r: ð3Þ

The system exhibits an insulating ground state with a

band gap 2D, while Fermi level lies in the gap in the un-

doped system. The Coulomb interaction forbids both the

electron occupancies at the same site. The Hubbard inter-

action representing the two sub-lattices with an effective

Coulomb energy U is written as

HU ¼ U
X

i

nai;"n
a
i;# þ nbi;"n

b
i;#

h i

ð4Þ

where ni,:
a (ni,;

a ) with a 2 A, B sub-lattices, represents the

occupation number with up(down) spin. For weak cou-

pling, the Hamiltonian can be decoupled by Hartree–Fock

mean-field approximation decoupling scheme, i.e. Unai;"n
a
i;# �

U\ nai;" [ nai;# þ U\nai;# [ nai;" � U\nai;" [\nai;# [ ,

where a : a, b corresponding to A and B site interactions.

The mean-field solutions are taken as
\na

i;" [þ\nb
i" [

2
¼ n and

\na
i;" [�\nb

i" [
2

¼ d and this leads to the condi-

tion,\nai;" [ ¼ nþ d and \nbi;" [ ¼ n� d where n rep-

resents the mean electron occupation and d, the deviation

from the mean occupation. Similar expression can be formed

for the down spin electron. The electron–phonon interaction

and lattice vibration are written as

He�ph ¼
X

a;i;j

f i� jð Þnai;rðb
y
j þ bjÞ ð5Þ

Hp ¼
X

j

x0 b
y
j bj: ð6Þ

Here He-ph describes electron–phonon interaction where the

electron density ni,r
a at sub-lattice site is coupled to the

phonon displacement uj ¼ b
y
j þ bj with phonon creation

(annihilation) operator b
y
j ðbjÞ at site j and f(i-j) is the

electron–phonon coupling. For high frequency phonons,

Eq. (5) represents the Holstein interaction. The Hamilto-

nian Hp represents the free phonon energy with phonon

frequency x0.

Calculation of Green’s functions and quasi-
particle bands

The Green’s functions for the electrons of A and B sub-

lattices are calculated by Zubarev’s Green’s function

technique [50]. The Zubarev’s double time single particle

retarded Green’s function is defined

Gr t; t
0

� �

¼� A Tð Þ;Bðt0 Þ �r

¼ �iH t� t
0

� �

\ A tð Þ; B t
0

� �h i

[ ð7Þ

where\…[ indicates the average over a grand canonical

ensemble. A tð Þ and Bðt0 Þ are Heisenberg representations of

the operators, while H = 1 for t[ t
0
and H = 0 for t\ t

0
.

Here, [A(t); B(t
0
)] indicates commutation or anti-commu-

tation depending on Boson or fermions operators. The

poles of the Green’s functions provide quasi-particle

energies.

The correlation function corresponding to Green’s

function Gr(t, t
0
) is defined as

\B t
0

� �

A tð Þ[ ¼
Z

1

�1

JkðxÞe�ixðt�t
0 Þdx ð8Þ

where the spectral density function Jk(x) is written as

Jk xð Þ ¼ i lim
g!0

1

e
x
h þ 1

Gr xþ igð Þ � Gr x� igð Þ½ � ð9Þ

where h = kBT with g as a small spectral width. Other

physical parameters can be calculated using the correlation

functions of the corresponding Green’s functions.

The density of states which is proportional to tunneling

conductance is calculated from the imaginary part of

Green’s function. The electron density of states for the 2D

graphene is given by the formula

DOS ¼ A

ð2pÞ2
ZZ

dk
�!

x dk
�!

yqk;rðxÞ ð10Þ

where A is the area of the honeycomb lattice in real space

and spectral function qk,r(x) is given by
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qk;r xð Þ ¼ �2p
X

r

Im Gr xþ igð Þð Þ½ � ð11Þ

with g as a small spectral width. Finally, the occupations

and their difference for sub-lattice electrons for different

spin orientations are calculated to study the magnetic effect

of Coulomb interaction in the gap formation in graphene.

All the energy parameters are scaled by the hopping inte-

gral t1.

Results and discussion

The band gaps can be induced in graphene near Dirac point

by the following techniques.

Effect of electron hopping

The electron density of states (DOS) and band dispersion

are numerically computed [46] and are shown in Figs. 1

and 2. The tight-binding calculations give the first-nearest-

neighbour hopping integral t1 = 2.5–3.0 eV [30, 31]. In

the present calculation, we have taken ea = eb = 0,-

, t2 ¼ �0:12 eV, t3 ¼ �0:068 eV. Here, the scaled hopping

integrals become ~t1 ¼ �1, ~t2 ¼ �0:043 and ~t3 ¼ �0:024.

The density of states (DOS) for electrons for the graphene

is plotted for different band energies (c) (see Fig. 1). The

DOS exhibits V-shaped gap structure at K-point (Dirac

point) for nearest-neighbour hopping energy ~t1 ¼ �1, i.e.

DOS shows linear dependence of band energy. When

second nearest-neighbour hopping (~t2 ¼ �0:043) is inclu-

ded, it still retains the V-shape, but shifts to lower energies

becoming asymmetric in nature with respect to Fermi level

(eF ¼ 0) at Dirac point (Fig. 1).

The inclusion of third neighbour interaction induces a

gap near K-point and the gap shifts further to lower ener-

gies. Figure 2 shows the electron energy dispersion for the

graphene and is plotted for different band hopping energy.

The energy band dispersion exhibits V-shaped nature at K-

point (Dirac point) for nearest-neighbour hopping energy
~t1 ¼ �1, i.e. band dispersion shows linear dependence of

band energy. When second nearest-neighbour hopping

(~t2 ¼ �0:043) is included, it still retains the V-shape, but

shifts to lower energies becoming asymmetric in nature

with respect to Fermi level (eF = 0) at Dirac point (Fig. 2).

The inclusion of third neighbour interaction induces a gap

near K points and the gap shifts further to lower energies.

Substrate effect

To study the substrate effect in band gap opening in gra-

phene, we compute DOS and electron band dispersion near

Dirac point using the expressions given in Eqs. (1) and (3) of

our earlier publications [46] and show the plots in Figs. 3 and

4. Figure 3 shows the DOS for different values of band gaps

d1 = 0.035–0.107 developing in graphene sheet due to

substrate effect [9, 11, 13, 18] and [32–34].With the onset of

substrate effect, the Dirac point moves towards the valence

band occupied by electrons and introduces a band gap below

Fermi level eF = 0. The gap is further enhanced with the

increase of d1. Figure 4 shows the enhancement of band gap

between lower electron occupied valence band and upper

hole band due to the increase of d1. The middle of the band

gap also moves down the Fermi level (eF = 0).

Effect of Coulomb interaction

The sub-lattice Coulomb interaction is treated within a

mean-field approximation. Using the Hamiltonian given in

Fig. 1 Plot of the electronic density of states (DOS) of ideal

graphene for different band energy with different hopping integrals,
~t1 ¼ �1 (solid line) for NN; ~t1 ¼ �1, ~t2 ¼ �0:043 (dotted line) for

NNN, ~t1 ¼ �1, ~t2 ¼ �0:043, ~t3 ¼ �0:024 (dashed line) for NNNN

Fig. 2 Plot of the electronic band dispersion of ideal graphene for

different band energy with different hopping integrals, ~t1 ¼ �1 (solid

line) for NN; ~t1 ¼ �1, ~t2 ¼ �0:043 (dotted line) for NNN, ~t1 ¼ �1,
~t2 ¼ �0:043,~t3 ¼ �0:024 (dashed line) for NNNN
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Eqs. (1), (3) and (4) of our earlier calculations [47], we

calculate the difference (d) in occupation numbers as

d ¼
X

k

�D f bx1k"
� �

� f bx2k"
� �� 	

ðx1k" � x2k"Þ
ð12Þ

where f is the Fermi distribution function and x1k;" and

x2k,: are the electron band dispersions. The modified gap

d2 Tð Þ ¼ ~D
t1
is plotted in Figs. 5, 6 for different Coulomb

energies and hopping parameters. The ferromagnetic

magnetizations and spin polarizations are reported [51].

The graphene acquires a band gap of D due to substrate

effect. The effective band gap then becomes �D ¼ Dþ U d
2

due to Coulomb interaction between electrons. We scale

the physical parameters by nearest-neighbour hopping

integral (t1) and hence the modified gap appears as

d2 ¼ d1 þ u d
2
. The temperature dependent difference (d) in

electron occupancies of A and B sub-lattices for up spin

electrons is computed numerically and self consistently and

hence the modified band gap (d2 ¼ �D
t1
) is computed for

different Coulomb correlation energies as shown in Fig. 5.

For lower Coulomb energies, the modified gap (d2) at t = 0

gradually increases with increase of u from 1 to 1.7 and

attains the maximum of d2 ¼ 0:182. On further increasing

to higher Coulomb energies, the modified gap (d2) at t = 0

decreases and attains the bare gap (d1) arising due to only

substrate effect for Coulomb energy u = 5.0. It is observed

that the magnetic gap vanishes for u = 5.0 indicating that

na" ¼ nb" in paramagnetic phase. The temperature depen-

dence of modified gap shows that the magnitude of gap for

lower ‘u’ gradually decreases with temperature. For higher

u, the modified gap increases with temperature, attains its

maximum and then decreases with temperature. However,

the maximum of modified gap nearly remains same for

higher value of ‘u’ at higher temperatures indicating that

d ¼ \na" [ �\nb" [ remains unchanged at very high

temperatures and high Coulomb interactions.

Figure 6 shows the effect of different hopping integrals

on temperature-dependent modified gap (d2). In the

absence of Coulomb interaction and electron hopping, the

Fig. 3 Plot of the variation of density of states (DOS) with energy

(c) for different substrates d1 = 0.035, 0.071, 0.089, 0.0107

Fig. 4 Plot of the variation of energy band dispersion with momen-

tum (k) for different substrates d1 = 0.035, 0.071, 0.089, 0.0107

Fig. 5 Plot of the variation of modified band gap (d2) with

temperature (t) for different values of Coulomb energy u = 1.0,

1.5, 1.7, 2.0, 2.5, 3.5, 4.5 and 5.0 for fixed substrate-induced band gap

d1 = 0.1

Fig. 6 Plot of the variation of modified band gap (d2) with

temperature (t) at u = 1.7 for different values of electron hopping
~t1 ¼ �1, ~t2 ¼ �0:043, ~t3 ¼ �0:024 for fixed substrate-induced band

gap d1 = 0.1. The band dispersions for different hopping are also

given in inset of the figure
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band gap in graphene is d1 = 0.1 which arises due to

substrate effect only. This band gap at temperature 0 K is

enhanced to d2 = 0.167 due to the onset of a critical

Coulomb energy uc = 1.7 for the nearest-neighbour hop-

ping energy of t1 = -1.0. This gap at temperature 0 K is

further enhanced to d2 = 0.181 for the same critical Cou-

lomb energy uc = 1.7 and for hopping integrals taken up to

third nearest neighbours. It appears that the contributions of

third nearest-neighbour hopping integrals and beyond have

little effect on the band gap. The temperature-dependent

modified gap shows that the gap is the highest at very low

temperatures and gradually decreases with increase of

temperature. This effect of hopping integrals on the mod-

ified gap is also seen in the band dispersions shown in the

inset of the Fig. 6.

Effect of electron–phonon interaction

The electrons on graphene sheet interact strongly with the

phonons on the polarized surface of substrates. Applying

Lang–Firsov canonical transformation [48] to Eqs. (1), (3),

(4), (5) and (6) in high frequency limit of localized pho-

nons, we calculate the effective Coulomb energy ~U ¼
ðU � 2k~t1Þ and effective hopping (~t1) which is a function

of phonon frequency x0, electron–phonon coupling (k) and
NN hopping integral (~t1). The temperature-dependent

modified gaps are plotted in Figs. 7 and 8.

The effect of Coulomb interaction (u) on the modified

gap d2 for high phonon frequency (x0) vibration is shown

in Fig. 7. For given value of lower Coulomb interaction,

the modified gap gradually increases with phonon fre-

quency. With further increase of Coulomb energy, the

modified gap gradually increases from d1 = 0.1 and attains

maximum value d2 = 0.165 for given Coulomb interaction

u = 2.0. With further increase in Coulomb interaction, the

modified gap gradually increases with phonon frequency

x0 attains a maximum flat peak with d2 = 0.165 for crit-

ical Coulomb interaction uc = 2.5 for critical phonon fre-

quency x0c & 0.35. Thus, it is clear that modulated gap is

maximized for critical Coulomb interaction uc = 2.5 and

critical phonon frequency x0c = 0.35 for given values of

electron–phonon coupling al = 0.2. The critical Coulomb

interaction UC = 2.5t1 for producing maximum modified

gap is slightly higher than the critical Coulomb interaction

Uc ¼ uct1 ¼ 1:7t1 obtained earlier in the absence of elec-

tron–phonon interaction and phonon frequency [47].

The effect of phonon frequency (x0) on gap is shown in

Fig. 8. For a given low electron–phonon coupling al ¼ 0:2

and relatively low phonon frequency x0 = 0.2, the modi-

fied gap becomes d2 = 0.13 gap at temperature t = 0. With

increase of phonon vibrational frequency, the modified gap

is enhanced to the higher value, i.e. d2 = 0.165 at tem-

perature t = 0 for vibration frequency x0 = 1. However,

for a given phonon vibration frequency, the modified gap

decreases with temperature and remains nearly constant at

higher temperatures. Thus, it is clear that phonon vibration

frequency enhances the gap near room temperature.

Effect of bi-layer graphene (BLG)

Experiments [8, 20, 23] show the evidence of band gap

opening in graphene in BLG by gating between two layers.

We have proposed model Hamiltonian consisting of intra-

layer and inter-layer hopping integrals t1 and t\, respec-

tively, in the presence of gating potential V [49, 52, 53].

The four bands for BLG are written as

xa;s; kð Þ ¼ �l� ð�1Þs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½V2

2
þ 2e2k þ e2k;? � ð�1Þa

ffiffiffi

R
p

�
2

s

ð13Þ

Fig. 7 Plot of the variation of modified band gap (d2) vs. phonon

frequency x0 for different values of Coulomb potential u ¼
0:5; 1:0; 1:5; 2:0; 2:5 for fixed electron–phonon coupling constant

al ¼ 0:2, temperature ðtÞ ¼ 0:01 and substrate-induced gap d1 = 0.1

Fig. 8 Plot of the variation of modified band gap (d2) vs. temperature

(t) for different values of phonon frequency x0 ¼
0:2; 0:4; 0:6; 0:8; 1:0 for fixed electron–phonon coupling constant

al = 0.2, Coulomb interaction ðuÞ ¼ 1:7 and substrate-induced gap

(d1) = 0.1
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R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2=2þ 2e2k þ e2k?
� �2�4 V2=16þ e2kV

2=2þ e2k?V
2=4þ e4k

� �

q

ð14Þ

where s; a ¼ 1; 2. The band dispersion is plotted in Fig. 9

which shows four bands xa;sk of which x11k and x22k are

high energy bands and x12k (conduction) and x21k (va-

lence) bands are the low lying dispersion bands near Dirac

point with zero energy. In the absence of gate potential

v ¼ V
t1
¼ 0, low energy bands touch at Dirac point. For low

electric potential (v ¼ 0:054), the low energy bands show a

Mexican hat shape with a gap energy of 0.054 as observed

experimentally [8, 23].

Conclusions

The pristine graphene is a gapless semiconductor. It is

necessary to induce a band gap in graphene near the Dirac

point for its application in several electronic devices. We

present here different model calculations for band gap

opening in monolayer and bi-layer graphenes taking elec-

tron hoppings up to third nearest-neighbours, substrate

effect, on-site Coulomb correlation effect and finally

electron–phonon interaction along with lattice vibration

effect. All the calculations are done using Zubarev’s double

time single particle Green’s function. The expression for

modified band gap, dispersions and density of states (DOS)

are calculated and computed numerically. The results are

discussed varying different model parameters. The DOS

exhibits a V-shaped gap near Dirac point with linear energy

dependence for nearest-neighbour hopping t1. The DOS

retains its V-shape for second and third nearest-neighbour

hoppings except that the DOS shifts towards low energy

valence band. Similar result is concluded from band dis-

persions for different hopping integrals.

The DOS exhibits wider gap near Dirac point with the

increase of band gap arising due to substrate effect. Similar

conclusion is derived from the band dispersions also. The

substrate-induced gap is modified due to Coulomb inter-

action energy. The modified gap is enhanced at tempera-

ture T = 00K with the increase of Coulomb interaction.

The effective gap attains its maximum value, d2 = 0.182 at

t = 0 for critical Coulomb interaction UC = 1.7t1. On

further increase in the Coulomb energy to U ¼ 5:0t1, we

observe that the modified gap d2 = d1 indicating that the

electron occupancies of both sub-lattices becoming same

(i.e. na" ¼ nb") in paramagnetic phase. We have calculated

the modified band gap taking the electron–phonon inter-

action between the graphene layer and the substrate in high

frequency limit of the localized phonon. In the presence of

electron–phonon interaction and phonon vibration, the

modified gap attains its maximum value (i:e: d2 ¼ 0:165)

for a critical Coulomb interaction Uc ¼ 2:5t1 which is

higher than the critical Coulomb interaction Uc ¼ 1:7t1
obtained earlier in the absence of electron–phonon inter-

action and phonon vibration [47]. Here, we have proposed

tight-binding model calculation for AB-stacked bi-layer

graphene taking intra-layer and inter-layer hopping in the

presence of transverse gating potential. We have obtained

four quasi-particle bands of which the inner two bands

touch each other at Dirac point. A band gap opens near

Dirac point due to application of the gating potential. These

two inner bands exhibit Mexican hat shape for gating

potential V ¼ 0:054t1. Since we have considered disper-

sion for full Brillouin zone in both the layers, we can take

any gating potential higher than the gating potential V ¼
0:054t1 applied to bi-layer systems experimentally [8, 23].
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