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Abstract In this study of ethidium bromide, adsorption

from aqueous matrices by graphene oxide as adsorbent was

investigated. Influencing parameters in the adsorption

study included contact time, temperature, and pH. The

optimum time was selected 17 min, and the best value of

pH was determined at 8. All adsorption experiments were

performed at 298 K temperature. The maximum wave-

length of ethidium bromide was 475 nm. The Elovich, four

types of the pseudo-second-order, the pseudo-first-order,

and intra-particle diffusion kinetic adsorption models were

used for kinetic study, and the results show that adsorption

of ethidium bromide on graphene oxide surface best

complied with type (I) of the pseudo-second-order kinetic

model.

Keywords Kinetics � Adsorption � Ethidium bromide �
Graphene oxide � Aqueous matrices

Introduction

Ethidium bromide (EtBr) is a potent mutagen and a toxic

chemical [1]. It is also one intercalating common agent

employed as a tag of fluorescent (nucleic acid stain) in

laboratories of molecular biology for techniques, such as

agarose gel electrophoresis [2]. Because the unique struc-

ture of EtBr resembles DNA, it can easily intercalate into

DNA strand. Therefore, in the life science field, it is

commonly used as nucleic acid fluorescent tag in various

techniques.

Graphene is the thinnest known material, i.e., a sheet of

carbon atoms could be arranged in hexagonal cells of only

a single atom thick and yet be stronger than diamond [3].

Since it was experimentally isolated in 2004, it has been

the object of intense theoretical and experimental research

[4, 5]. Graphene oxide (GO) is similar to graphene, but

presents oxygen-containing functional groups [5–8].

Recently, many studies have been done on the absorp-

tion process and have been compared with classical

adsorbents, such as CNTs [9, 10], clay [11], activated

carbon [12], graphene, and graphene derivatives, such as

graphene oxide [13]. Graphene and graphene derivatives

are more attractive recently because of their high selec-

tivity, favorable physicochemical stability, and structural

diversity. Extensive experiments have been conducted on

the adsorption of organic or inorganic contaminants on

graphene and graphene derivatives, such as Formaldehyde

Molecule [14], Uranium(VI) [15], 1-naphthol [16], dyes

[17], and adsorption of Pb(II) and Hg(II) [18]. Therefore,

graphene and graphene derivatives might be good sorbents

for the removal of contamination from water.

In this work, adsorption process was carried out for

17 min, 298 K, and pH 8 for removal ethidium bromide

(EtBr) from aqueous matrices by graphene oxide (GO)

& M. Rajabi

mrajabi93@iau-arak.ac.ir; mostafa_moshavere@yahoo.com

O. Moradi

moradi.omid@gmail.com; o.moradi@shahryaiu.ac.ir

1 Young Researchers and Elite Club, East Tehran Branch,

Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Shahr-e-Qods Branch, Islamic

Azad University, Tehran, Iran

3 Department of Chemistry, Science and Research Branch,

Islamic Azad University, Tehran, Iran

4 Department of Chemistry, Shahid Beheshti University, Evin,

Tehran, Iran

123

Int Nano Lett (2017) 7:35–41

DOI 10.1007/s40089-017-0199-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s40089-017-0199-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40089-017-0199-x&amp;domain=pdf


surface as adsorbent from aqueous matrices. Adsorption of

ethidium bromide on graphene oxide surface was inter-

preted well by type (I) of the pseudo-second-order kinetic

model.

Materials and methods

Materials

Ethidium bromide (EtBr) (C21H20BrN3) used here was

procured from Sigma-Aldrich Co. at 95% purity, and

molecular weight was 394.31. NaOH and HCl were used to

regulate the pH of the samples. The single-layer graphene

oxide was prepared from Graphene Supermarket, (USA)

with the following specifications: aqueous dispersion:

concentration: 500 mg/L, 175 ml; composition: carbon

(79%), oxygen (20%), flake size: 0.3–0.7 lm; thickness: 1

atomic layer–at least 80%; and brown color in all adsorp-

tion experiments as adsorbent. Specific surface area is

determined to be 133 m2/g (see Fig. 1).

Preparing GO surface

Graphene oxide was prepared from Graphene Supermarket,

USA, and scanning electron microscopy of microstructures

of GO surface used in this work is shown in Fig. 2.

Adsorption process study

Adsorption experiments were performed by adding 0.5 mg

of graphene oxide (GO) surface as adsorbent into 20 mL of

ethidium bromide (EtBr) solutions with known concentra-

tions of 0.5 mg L-1. The samples were collected, and the

concentration of ethidium bromide in the aqueous matrices

was determined after a specified period of time at 2, 5, 8,

11, 14, 17, and 20 min by applying the spectrophotometer

of UV–VIS (Thermo Electron Corporation, Aquamate) at

475 nm, respectively. Thereupon, to study adsorption

kinetic parameter (qt), in mg/g, for ethidium bromide at

time t Eq. (1) was used [19].

qt ¼
C0 � Ct

W

� �
� V ; ð1Þ

where C0 (mg L-1) was the initial ethidium bromide con-

centration, Ct (mg L-1) was the ethidium bromide con-

centration at time t, qt (mg/g) was ethidium bromide

adsorption capacity at time t, W (g) was adsorbent mass,

and V (L) was the volume of ethidium bromide solution.

Adsorption time curve for removal of ethidium bromide by

GO as adsorbent is shown in Fig. 3.

The graphene oxide adsorption experiments were per-

formed using the batch technique to determine the ethidium

bromide adsorption capacity. After 17 min, no noticeable

change was observed in the amount of absorption capacity

of EtBr on the GO surface as adsorbent. Therefore, 17 min

was selected as optimum time for removal of ethidium

bromide by graphene oxide surface as adsorbent in all

adsorption experiments.

Fig. 1 Structure of ethidium bromide (EtBr)

Fig. 2 SEM image of graphene oxide surface prepared from

graphene Supermarket, (USA)
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Fig. 3 Contact time effect of the adsorption ethidium bromide onto

GO surface as adsorbent, initial concentration: 0.5 mg L-1; dosage of

adsorbent: 0.5 mg; temperature: 298 K and pH: 8
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Result and discussion

GO characterizations

Graphene oxide surface was prepared from (Graphene

Supermarket, USA), and scanning electron microscopy of

microstructures of GO surface used here is presented in

Fig. 2.

The effect of pH

Removal of ethidium bromide from solution by graphene

oxide adsorbent was carried out at 17 min as optimum time

at temperature 298 K, and to also for find the optimum

value of pH, experiments of ethidium bromide adsorption

onto graphene oxide surface were performed at different

pH values from 2 to 10. With increasing the initial pH

value of solution from 2 to 8, removal of EtBr by GO

surface as adsorbent increased, and maximum amount of

adsorption of (EtBr) on (GO) surface was at pH 8. Then, as

shown in Fig. 4, with increasing initial pH value of solu-

tion from 8 to 10, (EtBr) removal by (GO) surface

decreased.

Adsorption kinetics study

Adsorption kinetics experiments were conducted to obtain

the resulting kinetic parameters and to investigate the

effects of contact time. Figure 3 presents the variation in

the adsorption of ethidium bromide by graphene oxide

surface as adsorbent and as a function of contact time. It

was noticed that after 17 min, no noticeable change was

observed in the amount of absorption capacity of EtBr on

the GO surface as adsorbent. Therefore, 17 min was

selected as optimum time for removal of ethidium bromide

by graphene oxide surface as adsorbent in all adsorption

experiments. The adsorption kinetics of ethidium bromide

was plotted using the Elovich, four types of the pseudo-

second-order, the pseudo-first-order, and the intra-particle

diffusion kinetic models.

The intra-particle diffusion kinetic model

For kinetic study, the constant rate for intra-particle dif-

fusion is given by [20]:

Qt ¼ kiðtÞ1=2 þ C; ð2Þ

where ‘Qt’ (mg/g) was the amount of ethidium bromide

adsorbed on graphene oxide surface at different times t;

C (mg/g) was a constant for the intra-particle diffusion

model that gives an idea about the thickness of the

boundary layer, and ‘k’ (mg/g min1/2) was the intra-particle

diffusion rate constant [21], determined by plotting. Fig-

ure 5 shows qt versus plot t
1/2 qt.

The Elovich kinetic model

At kinetic study the Elovich model is generally expressed

as equation [22]:

dqt

dt
¼ a expð�bq2Þ: ð3Þ

Elovich model liner form is expressed as Eq. (4)

[22, 23]:

Qt ¼
1

b
ln ðabÞ þ 1

b
ln t; ð4Þ

where ‘b’(g/mg) was the extent of surface coverage,

‘Qt’(mg/g) was the amount of ethidium bromide adsorbed

on graphene oxide surface at different times t, and ‘a’ (mg/

g min) was the initial adsorption rate. The intercept and

slope at the linear relationship of the plot of qt versus ln

t were used to determine a and b. Figure 6 shows the plot

of qt versus ln t.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12

q 
(m

g/
g)

pH

Fig. 4 Effect of pH on the adsorption ethidium bromide onto GO

surface as adsorbent, initial concentration: 0.5 mg L-1; dosage of

adsorbent: 0.5 mg; temperature: 298 K and pH: 8
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Fig. 5 Intra-particle diffusion adsorption kinetic of ethidium bromide

on GO adsorbent. Conditions: initial concentration: 0.5 mg L-1;

dosage of adsorbent: 0.5 mg; temperature: 298 K and pH: 8
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The pseudo-first-order kinetic model

In general, at kinetic studies, the pseudo-first-order kinetic

model equation is expressed as [24–26]

dqt

dt
¼ k1ðqe � qtÞ: ð5Þ

The integrated form of the pseudo-first-order kinetic

model equation is as [27]

logðqe � qtÞ ¼ logðqeÞ � k1t; ð6Þ

where qe and qt were the amounts of ethidium bromide

removed by graphene oxide adsorbent at equilibrium and

t time, respectively. k1 was the constant rate. By plotting

values of log (qe-qt) versus t, qe and k1 can be determined

from the intercept and slope, respectively. Figure 7 shows

the plot of log (qe-qt) versus t.

The pseudo-second-order kinetic model

In general, at kinetic studies, the pseudo-second-order

kinetic model equation is expressed as Eq. 7 presented by

Ho in 1995 demonstrated how the rate depended on the

adsorption equilibrium capacity [28, 29]:

dqt

dt
¼ k ðqe� qtÞ2: ð7Þ

An integrated pseudo-second-order rate can be obtained

from Eq. (7) for the boundary conditions qt = 0 to qt = qt
and t = 0 to t = t, which is given by [30]

1

ðqe � qtÞ
¼ 1

qe
þ kt: ð8Þ

By rearranging, Eq. (8) can take a linear form as

t

qt
¼ 1

k2qe2
þ t

qe
; ð9Þ

where k2 (g mg-1 min-1) was the equilibrium rate constant

of pseudo-second-order model; t (min) was the reaction

time; qe (mg g-1) was the amount of adsorbate at equi-

librium; and qt (mg g-1) was the amount of adsorbate at

time t.

In this study, four types of linear forms of the pseudo-

second-order kinetic model [31, 32] were used. Figures 8,

9, 10, 11 show the plots of four types of linear forms of the

pseudo-second-order kinetic model.

The Chi-square statistic (v2) was used to evaluate the

fitness of kinetic equations to the experimental data [13].

Chi-square statistic can be defined as

y = 0.0968x + 0.1448
R² = 0.9884
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Fig. 6 Elovich adsorption kinetic of ethidium bromide on GO

adsorbent. Conditions: initial concentration: 0.5 mg L-1; dosage of

adsorbent: 0.5 mg; temperature: 298 K and pH: 8
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Fig. 7 Pseudo-first-order kinetic of ethidium bromide on GO adsor-

bent. Conditions: initial concentration: 0.5 mg L-1; dosage of

adsorbent: 0.5 mg; temperature: 298 K and pH: 8
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Fig. 8 Type 1 of pseudo-second-order kinetic of ethidium bromide

on GO adsorbent. Conditions: initial concentration: 0.5 mg L-1;

dosage of adsorbent: 0.5 mg; temperature: 298 K and pH: 8
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Fig. 9 Type 2 of pseudo-second-order kinetic of ethidium bromide

on GO adsorbent. Conditions: initial concentration: 0.5 mg L-1;

dosage of adsorbent: 0.5 mg; temperature: 298 K and pH: 8
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v2 ¼
XN

i

qe;exp � qe;cal
� �2

qe;cal
: ð10Þ

v2 will be a small number if the data from the experi-

mental data are similar to the model, and v2 will be a large
number if they are different. N is the number of observa-

tions in the experimental data, and the subscripts ‘‘calc’’

and ‘‘exp’’ show the calculated and experimental values,

respectively.

According to the results of kinetic study listed in

Tables 1 and 2, removal of ethidium bromide (EtBr) by

graphene oxide (GO) surface as adsorbent from solution

was well interpreted by pseudo-second-order kinetic model

the type (I) because of low value of the Chi-square statistic

(v2) and high value of the correlation coefficients (r2).

Conclusions

In summary, adsorption capacity of ethidium bromide

(EtBr) on graphene oxide (GO) surface as solution adsor-

bent was investigated. To remove ethidium bromide by

graphene oxide adsorbent, 17 min was selected as optimum

time as after 17 min, no noticeable change was observed in

the amount of absorption capacity of EtBr on the GO

surface. The results of pH effect showed that high amount

of adsorption capacity of (EtBr) on (GO) surface was at pH

8; therefore, solution pH was fixed at pH 8. All adsorption

experiments were performed at temperature 298 K. For

kinetic study and to test adsorption experimental data the

Elovich, the pseudo-first-order, the intra-particle diffusion,

and the pseudo-second-order kinetic models were used.

The results of kinetic study showed that adsorption of

ethidium bromide on graphene oxide surface was well

y = -2.5809x + 0.4709
R² = 0.9874
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Fig. 10 Type 3 of pseudo-second-order kinetic of ethidium bromide

on GO adsorbent. Conditions: initial concentration: 0.5 mg L-1;

dosage of adsorbent: 0.5 mg; temperature: 298 K and pH: 8
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Fig. 11 Type 4 of pseudo-second-order kinetic of ethidium bromide

on GO adsorbent. Conditions: initial concentration: 0.5 mg L-1;

dosage of adsorbent: 0.5 mg; temperature: 298 K and pH: 8

Table 1 Pseudo-first-order,

Elovich and intra-particle

diffusion kinetic parameters for

adsorption ethidium bromide on

GO adsorbent

Model Equation Parameters EtBr

q (mg/g) 0.350

Pseudo-first-order logðqe � qtÞ ¼ logðqeÞ � k1t k1 (1/min) 0.060

r2 0.991

v2 4.99

a 0.100

Elovich qt ¼ 1
b ln abþ 1

b ln t b 10.42

r2 0.988

v2 5.14

Intra-particle diffusion C 0.080

qt ¼ kit
0:5 þ C ki (1/min) 0.084

r2 0.966

v2 6.71

Conditions: initial concentration: 0.5 mg L-1; dosage of adsorbent: 0.5 mg; temperature: 298 K and pH: 8
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interpreted by type (I) of the pseudo-second-order kinetic

model because of the low value of the Chi-square statistic

(v2) and high value of the correlation coefficients (r2).
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