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Abstract Unsteady flow of thin Cu-water nanoliquid film

over a horizontal rotating disk is studied numerically using

finite difference technique under the assumption of planar

interface. It is also assumed that the disk is cooling

axisymmetrically from below. The effects of the nanolayer

thickness and nanoparticle radius are considered for

investigation. It is found that the film thinning rate

decreases with increase of the nanoparticle volume frac-

tion. It is also found that thickness of liquid decreases with

increase of the thermocapillary parameter. The results

show that the rate of film thinning is more for the thermal

conductivity model of Yu and Choi [47] compared to the

model of Maxwell [46]. It is observed that the film thinning

rate increases with increase of nanolayer thickness but it

decreases with the nanoparticle radius. A curve R ¼
Rcðz; tÞ in R� z plane is delineated along which tempera-

ture gradient Tz is zero and positive or negative according

to R\Rc or R[Rc respectively. Furthermore, it is shown

that the region for Tz [ 0 enlarges with increase of the

nanoparticle volume fraction and the nanolayer thickness.

Keywords Nanoliquid � Thin film � Spin coating �
Thermocapillary parameter � Volume fraction �
Nanoparticles

Nomenclature

A Similarity variable for pressure (Pa/m2)

A1 Constant

a1; a2 Constants

B Similarity variable for pressure (Pa)

B1 Constant

b2 Constant

C Constant

c Grid cluster parameter

CP Heat capacity at constant pressure (J/kg

K)

D Constant

E Constant

F Similarity velocity along the radial

direction (s�1)

G Similarity variable along the cross-

radial direction (s�1)

H Dimensionless film thickness

h Film thickness (m)

h0 Initial film thickness (m)

hn Nanolayer thickness (m)

k Thermal conductivity (W/m K)

L Heat transfer coefficient (W/m2 K)

M Similarity variable for temperature (K/

m2)

N Similarity variable for temperature (K)

P1;P2 Constants

p Pressure of nanoliquid (Pa)

Pr Prandtl number

Q Dimensionless variable

Q1;Q2 Constants

R1;R2 Constants

r Radial coordinate (m)

ra Nanoparticle radius (m)

Re Reynolds number

Siði ¼ 1; 2; 3; 4Þ Constants

t Rotational time (s)
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tc Characteristic time (s)

T Nanoliquid temperature (K)

Tg Temperature in gas phase (K)

T0 Room temperature (K)

T1 Constant (K/m2)

u Radial velocity component (m/s)

U0 Characteristic velocity (m/s)

v Cross-radial velocity component (m/s)

w Velocity component perpendicular to

disk (m/s)

W Similarity velocity perpendicular to disk

(m/s)

z Coordinate perpendicular to disk (m)

Greek Symbols

a Thermocapillary parameter

b Ratio between nanolayer thickness and

nanoparticle radius

� Constant

g Spatial coordinate along z direction

dt Time step

dg Spatial step

DT Constant (K)

c Constant (K�1)

k Constant

l Dynamic viscosity (kg/m s)

m Kinematic viscosity (m2/s)

X Angular velocity of the disk (s�1)

/ Nanoparticle volume fraction

/1;/2 Dimensionless constants

q Density (kg/m3)

h Coordinate along the cross radial direction(rad)

r Surface tension (kg/s2)

r0 Surface tension at initial time (kg/s2)

Subscript

f Base fluid

j Spatial level discritization

nf Nanoliquid

s Nanoparticle

Superscript

n Time level discritization

^ Dimensionless quantities

Introduction

The process of development of thin liquid film over a

horizontal rotating disk by the action of the centrifugal

force is known as spin coating in the literature. This

technique is widely used in micro-electronics industry to

manufacture the integrated circuits, magnetic and optical

disks for data storage, colour television screens and optical

mirrors etc. The hydrodynamic flow of a thin liquid film on

a rotating disk was first modelled by Emslie et al. [1]. They

analyzed the flow of Newtonian liquid by assuming the

balance between the centrifugal driving force with the

viscous resisting force and neglecting the influence of the

other body forces. This pioneering work has been widely

employed in the subsequent investigations on spin coating.

For example, Acrivos et al. [2], Jenekhe and Schuldt [3]

extended the analysis of Emslie [1] to study the flow of a

power-law liquid on a rotating disk. Whereas Charpin et al.

[4] investigated the axisymmetric spin coating of power

law and Ellis fluids. The effect of solvent evaporation in

spin coating process was first included by Myerhofer [5].

Y. Mouhamad et al. [6] studied the effects of concentration

dependent viscosity and solvent evaporation on the devel-

opment of thin polymer film during spin coating process.

Middleman [7] studied the effect of induced air-flow on the

thinning of a liquid film over the rotating disk. Ma and

Hwang [8] considered the combined effects of centrifuga-

tion, surface roughness and air shear on the flow of a thin

spinning liquid film. The hydrodynamic approximations

used in these above models are typically those employed

by Emslie et al. [1]. The full Navier–Stoke equations for

unsteady film development was first considered by Hig-

gins [9] to study the flow problem from the initial stage of

film development through the match asymptotic analysis.

Later, Rehg and Higgins [10] obtained the numerical

solution of transient film flow on a rotating disk for large

value of Reynolds number and different spin-up protocols.

Dandapat and Ray [11, 12] investigated the effects of

heating/cooling on thin liquid film development over a

rotating disk in presence of the thermocapillarity at the free

surface and found that the film thins faster due to ther-

mocapillary effect for the cooling of the disk. Danda-

pat [13] studied numerically the development of thin liquid

film under the assumption of non-uniform rotation of the

disk. Usha and Ravindran [14] explored the development

of a heat conducting fluid film over a rotating disk which

cooled axisymmetric from below. Wu [15] studied both

numerically and theoretically the effects of the thermo-

capillarity and thermoviscosity on spin coating when a

radial temperature difference is applied to the disk surface.

In addition he has considered the effects of the external air

shearing and disjoining pressure. Recently, Cregan and

O’Brien [16] obtained the extended asymptotic solution to

the spin-coating model in presence of the small evaporation

from the free surface. Matsumoto et al. [17] and Kitamura

[18] first considered the nonuniform film development on

the center of the wetted surface of a disk. Dandapat

et al [19] investigated the effect of non-uniform heating of

the disk on the development of a thin liquid film. Recently,

Dandapat and Maity [20] studied the combined effects of
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external air flow and evaporation on the film development

over a rotating annular disk. Quinn and Cetegen [21]

analyzed the heat transfer from a horizontal heated rotating

disk to a thin water liquid film flowing over it. In this study,

they performed the several experiments to determine

Nusselt numbers on the disk both with and without evap-

oration from the surface of the liquid film. Lin and

Chen [22] investigated the stability of a thin incompress-

ible viscoelastic fluid during spin coating using the long-

wave perturbation method. Prieling and Steiner [23] con-

sidered the unsteady flow of thin liquid film over a rotating

disk at the large Ekman numbers using the integral

boundary layer method. McIntyre and Brush [24] explored

the axisymmetric model for the spin-coating of two

immiscible vertically stratified Newtonian thin liquid films

using the lubrication theory. Dandapat and Singh [25]

studied the unsteady two-layer liquid film flow on a hori-

zontal rotating disk using asymptotic method for small

values of Reynolds number. They showed that the viscous

force dominates over centrifugal force, and the upper layer

film thins faster than the lower layer at large time. Later,

they [26] also investigated the unsteady flow of thin two-

layer liquid film on a non-uniform rotating disk in presence

of uniform transverse magnetic field and found that the

thinning rate for both the layers slowdown with increase of

transverse magnetic field. Recently, Sahoo et al. [27]

demonstrated the axisymmetric flow of two-layer Newto-

nian liquid film over a rotating disk with the effects of

surface/interfacial tension and contact line evolution.

It is to be mentioned here that, all the above investigations

are primarily concerned about the flow of a clear liquid film or

polymeric solution of coatingmaterial. Recently, heat transfer

within nanoliquids has attracted researchers due to many

possible applications in industries. Nanoliquids are described

the liquids in which nanometer-sized particles suspended in

conventional heat transfer base liquids. Conventional heat

transfer liquids include water, oil and ethylene glycol.

Nanoliquids exhibit enhancement of the thermal conductivity

and heat transfer coefficient compared to the base liquids. For

this reason nanoliquids are useful in many heat transfer pro-

cesses including microelectronic chips cooling, fuel cells,

pharmaceutical processes and hybrid powered engines, etc.

Choi [28] first studied the enhancement of thermal conduc-

tivity by nanofluids. Subsequently, Choi et al. [29] showed

that the addition of a small amount (less than 1% by volume)

of nanoparticles to conventional heat transfer liquids increase

the thermal conductivity of the fluid up to approximately two

times. The earliest observations of thermal conductivity

enhancement in liquid were reported by Masuda et al.[30],

Xuan and Li [31], Eastman et al. [32]. Basic properties of

nanofluids and related studies are briefly discussed in Das

et al [33] and the review articles by Buongiorno [34], Wang

and mazumdar [35], Kakac and Pramuanjaroenkij [36].

Recently, Ahmad et al. [37] studied the heat transfer in MHD

three-dimensional flow of magnetic nanofluid (ferrofluid)

over a bidirectional exponentially stretching sheet. Ibanez

et al. [38] investigated effects of hydrodynamic slip,magnetic

field, suction/injection, thermal radiation, entropy generation

on the flow of a viscous electrically conducting nanofluid

through a microchannel. Ferdows et al. [39, 40] studied

numerically the Magnetohydrodynamic (MHD), mixed con-

vective boundary layer flow of a nanofluid over stretching

sheet. Beg et al. [41] analyzed the mixed convective hydro-

magnetic boundary layer flow of nanofluid over an unsteady

exponentially stretching sheet in presence of porous media.

Maity et al. [42] explored the study of thin nanoliquid film

development over an unsteady stretching sheet. Maity [43]

considered the development of thin nanoliquid film over an

unsteady stretching sheet in presence of the thermal radiation.

To the best of our knowledge, no theoretical study of thin

nanoliquid film development due to spinning of a horizontal

disk has been reported in the literature. In this present article,

we are interested to study the flow and development of a thin

nanoliquid film over a rotating disk. The thermophysical

properties like density, viscosity, heat capacity and thermal

conductivity of the nanoliquid are assumed to be the function

of the nanopartical volume faction. The thermal conductivity

of the nanoliquid is modelled base on the effective medium

theory. We have also assumed that the initially deposited

liquid film over the rotating disk is planar and remain planar

throughout film thinning process.

The rest of this paper is organized as follows. In Sect. 2, the

problem formulation is done using suitable similarity trans-

formation on the governing equations and the corresponding

boundary conditions. These transformed equations are then

expressed in suitable dimensionless form. The resulting set of

partial differential equations in one space coordinate and time

is solved numerically using finite-difference technique in

Sect. 3. The results and discussion and concluding remarks are

presented in Sects. 4 and 5, respectively.

Mathematical formulation

Consider an incompressible, viscous Cu-water nanoliquid

film of uniform thickness h0 on the surface of a horizontal

rotating disk whose radius is quite large compared with the

thickness of the film. At this stage of the nanoliquids

development, the enormous increase of thermal conduc-

tivity is not known precisely, but researchers proposed two

different models of nanoliquids to resolve this issue. The

first model considers the effects of the Brownian motion

and thermophoresis (see, Das et al [33], Buongiorno [34])

in the energy equation. Whereas other model is based on

the effective medium theory like the Maxwell-Garnett

theory for the electrical conductivity and dielectric constant
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of the medium. In this study, the later model is followed,

i.e., the thermophysical properties of the nanoliquid such as

density, viscosity, heat capacity and thermal conductivity

are expressed in terms of the properties and relative func-

tions of its components, namely liquid and the suspended

nanoparticles. The nanoliquid is assumed to be non-volatile

and thin so that evaporation and bouncy effect can be

neglected. It is also assumed that the base fluid water and

nanoparticles are in thermal equilibrium and no slip occurs

between them. We consider the cylindrical polar coordi-

nate system ðr; h; zÞ with the origin is fixed at the center of

the disk and the z axis is pointed vertically upwards coin-

ciding with the axis of the rotation of the disk (see Fig. 1).

Initially the system is at room temperature T0. Simul-

taneously, the disk starts to rotate with angular velocity X
about its axis at time t ¼ 0. Let (u, v, w) and T are the

velocity components along ðr; h; zÞ directions and temper-

ature of the nanoliquid respectively. For the axisymmetric

motion, the governing equations are

ur þ
u

r
þ wz ¼ 0; ð1Þ

qnf ut þ uur þ wuz �
v2

r

� �
¼ �pr þ lnf urr þ ðu=rÞr þ uzz

� �
;

ð2Þ

qnf vt þ uvr þ wvz þ
uv

r

h i
¼ lnf vrr þ ðv=rÞr þ vzz

� �
; ð3Þ

qnf wt þ uwr þ wwz½ � ¼ �pz þ lnf wrr þ
1

r
wr þ wzz

� �
;

ð4Þ

ðqCpÞnf ½Tt þ uTr þ wTz� ¼ knf Trr þ
Tr

r
þ Tzz

� �
; ð5Þ

where p, qnf , lnf , ðqCpÞnf and knf are the pressure, den-

sity, dynamic viscosity, heat capacity and thermal con-

ductivity of the nanoliquid, respectively. Equation (1)

represents the equation of continuity and Eqs. (2)–(4) are

the Navier-Stokes equations. Equation (5) represents the

energy conservation equation.

The effective physical properties like density, viscosity,

and heat capacitance of the nanoliquid are defined as fol-

lows: (Ahmad et al. [37], Ibanez et al. [38], Maity

et al. [42], Maity [43], Narayana and Sibanda [44], Oztop

and Abu-Nada [45])

qnf ¼ ð1� /Þqf þ /qs; ð6Þ

lnf ¼
lf

ð1� /Þ5=2
; ð7Þ

ðqCpÞnf ¼ ð1� /ÞðqCpÞf þ /ðqCpÞs; ð8Þ

here suffixes f and s stand for the properties of the base

fluid and nanoparticle respectively and / is the nanopar-

ticle volume fraction.

There are many models proposed for estimating the effec-

tive thermal conductivity of nanofluids. In this investigation,

we have considered two different models to estimate the

effective thermal conductivity of the nanoliquid and namely,

these are Maxwell [46] model and Yu and Choi [47] model.

Based on the Maxwell’s work [46], the effective thermal

conductivity of solid particles suspended in thebased liquid for

low volume fraction of spherical particles is given by

knf

kf
¼ ks þ 2kf � 2/ðkf � ksÞ

ks þ 2kf þ /ðkf � ksÞ
; ð9Þ

where kf is the thermal conductivity of the host medium

(base liquid), ks is the thermal conductivity of the

nanoparticles.

Yu and Choi [47] modified Maxwell [46] model with the

assumption that the base fluid molecules closed to the solid

surface of the monosized spherical particles from a solid like

structures. Hence the nanolayer works as a thermal bridge

between the bulk liquid and the solid nanoparticles, and this

will enhance the effective thermal conductivity of the nano-

liquids. They have assumed that the particle volume concen-

tration in the base fluid to be very low such that there is no

overlap of these equivalent particles. Based on the assump-

tionsYuandChoi [47]modified theMaxwell equation (9) into

knf

kf
¼ ks þ 2ks þ 2/ðks � kf Þð1þ bÞ3

ks þ 2kf � /ðks � kf Þð1þ bÞ3
; ð10Þ

where b ¼ hn
ra
is the ratio between the nanolayer thickness

hn and the original nanoparticle radius ra. Here, hn and ra
are assumed to be constants.

The thermophysical properties like density q, heat capacity
at constant pressureCp and thermal conductivity k of the base

liquid water and Cu nanoparticles are given in Table 1.

The boundary conditions associated with the problem

are

On the surface of the disk at z ¼ 0,
Fig. 1 Schematic diagram of the flow problem
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u ¼ 0; v ¼ rX; w ¼ 0; T ¼ T0 �
r2

2
T1; ð11Þ

where T0 and T1 are the positive constant.

At the free surface z ¼ hðtÞ,
�pþ 2lnf wz ¼ 0; ð12Þ

lnf ðwr þ uzÞ ¼
or
oT

Tr; ð13Þ

lnf vz ¼
or
oT

Tz; ð14Þ

Tz þ LðT � TgÞ ¼ 0; ð15Þ

dh

dt
¼ w: ð16Þ

Here, L and Tg denote the heat transfer coefficient at the

free surface and the temperature in the gas phase, respec-

tively. Equation (12) represents the vanishing of the normal

stress at the free surface. Equations (13) and (14) represent

that the shear stress balanced with the thermal stress at the

free surface. r is the surface tension which varies linearly

with the temperature as r ¼ r0½1� cðT � T0Þ� (see [11]).

For most of the liquids, surface tension decreases with

temperature, i.e. c is a positive constant. r0 is the surface

tension at initial time. Equation (15) represents Newton’s

law of cooling. Equation (16) represents the kinematic

condition at the free surface.

The initial conditions at t ¼ 0 are given by

u ¼ v ¼ w ¼ 0; T ¼ T0; hð0Þ ¼ h0: ð17Þ

Now, we introduce the following similarity variables ( see,

Rehg and Higgins [10], Dandapat and Ray [11], Usha and

Ravindran [14])

uðr; z; tÞ ¼ rFðz; tÞ; vðr; z; tÞ ¼ rGðz; tÞ;wðr; z; tÞ ¼ Wðz; tÞ
ð18Þ

p ¼ � r2

2
Aðz; tÞ þ Bðz; tÞ; ð19Þ

Tðr; z; tÞ ¼ T0 �
r2

2
Mðz; tÞ � Nðz; tÞ; ð20Þ

where the functions M(z, t) and N(z, t) appearing in

Eq. (20) are clearly compatible with the temperature

boundary condition given in (11). It is assumed that the

Eq. (20) holds for large but finite value of r so that

T(r, z, t) can never tend to 1 or �1. Substituting (18)–

(20) into the governing set of Eqs. (1)–(5) and equating the

like order terms of r from both sides, we get

2F þWz ¼ 0; ð21Þ

qnf ½Ft þ F2 � G2 þWFz� ¼ Aþ lnf Fzz; ð22Þ

qnf ½Gt þ 2FGþWGz� ¼ lnf Gzz; ð23Þ

qnf ½Wt þWWz� ¼ lnfWzz � Bz; ð24Þ

Az ¼ 0; ð25Þ

ðqCpÞnf ½Mt þ 2FM þWMz� ¼ knfMzz; ð26Þ

ðqCpÞnf ½Nt þWNz� ¼ knf ½Nzz þ 2M�; ð27Þ

Using the same similarity transformation to the boundary

conditions (11)–(16) and initial condition (17), we get:

at z ¼ 0,

F ¼ 0; G ¼ X; W ¼ 0; M ¼ T1; N ¼ 0; ð28Þ

at z ¼ hðtÞ,

A ¼ 0;B ¼ 2lnfWz; ð29Þ

Fz ¼
cr0
lnf

 !
M; ð30Þ

Gz ¼ 0;Mz ¼ 0;Nz ¼ 0; ð31Þ

Mz þ LM ¼ 0;Nz þ LðN þ Tg � T0Þ ¼ 0; ð32Þ

dh

dt
¼ w; ð33Þ

at t ¼ 0,

F ¼ 0; G ¼ 0; W ¼ 0; h ¼ h0; M ¼ 0; N ¼ 0: ð34Þ

For consistency with the Eqs. (31) and (32) we have

assumed L ¼ 0.

Integrating Eq. (25) using the boundary condition (29),

we get A ¼ 0. B(z, t) can be found by integrating Eq. (24)

with respect to z from z to z ¼ hðtÞ, thus we can calculate

the pressure from Eq. (19).

The following dimensionless variables

t̂ ¼ t

tc
; ẑ ¼ z

h0
; Ĥ ¼ h

h0
; F̂ ¼ h0F

U0

; Ĝ ¼ G

X
; Ŵ ¼ W

U0

; M̂ ¼ h20M

MT
; N̂ ¼ N

MT

ð35Þ

are introduced into the Eqs. (21)–(23) and (26)–(27). The

hat over the variable in Eq. (35) denotes the dimensionless

quantities. Here, tc ¼ mf =h20X
2 is the characteristic time

scale at which the viscous and centrifugal forces balance

each other, U0 ¼ h0
tc

is the characteristic velocity and

MT ¼ h20T1.

Table 1 Thermo-physical properties of water and Cu nanoparticles

(Narayana and Sibanda [44], Oztop and Abu-Nada [45])

qðkg=m3Þ CpðJ=kgKÞ kðW=mKÞ

Pure water 997.1 4179 0.613

Copper(Cu) 8933 385 400
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The final set of dimensionless equations after dropping

the hat over the dependent variables are

2F þWz ¼ 0; ð36Þ

Re/1ðFt þ F2 þWFzÞ ¼ Fzz þ G2; ð37Þ

Re/1ðGt �WzGþWGzÞ ¼ Gzz; ð38Þ

RePr/2ðMt �WzM þWMzÞ ¼
knf

kf
Mzz; ð39Þ

RePr/2ðNt þWNzÞ ¼
knf

kf
ð2M þ NzzÞ; ð40Þ

where Re ¼ U0h0
mf

, Pr ¼ mf ðqCPÞf
kf

are the Reynolds number

and Prandtl number respectively. The constants /1 and /2

that depend on the nanoparticle volume fraction are

respectively given by /1 ¼ ð1� /Þ2:5 ð1� /Þ þ / qs
qf

n oh i
,

/2 ¼ ð1� /Þ þ / ðqCPÞs
ðqCPÞf

n oh i
:

The corresponding dimensionless boundary conditions

are:

at z ¼ 0;

F ¼ 0; G ¼ 1; W ¼ 0; M ¼ 1; N ¼ 0; ð41Þ

at z ¼ HðtÞ;

Fz ¼ að1� /Þ2:5M;Gz ¼ 0;Mz ¼ 0;Nz ¼ 0;
dH

dt
¼ W ;

ð42Þ

where a ¼ cr0MT
Xh0lf

is the thermocapillary parameter.

The dimensionless form of the initial conditions at t ¼ 0

are

F ¼ G ¼ W ¼ 0; M ¼ N ¼ 0; H ¼ 1: ð43Þ

Equations (36)–(40), boundary conditions (41)–(42) and

initial conditions (43) reduce to the equations obtained by

Dandapat and Ray [11] in case of the pure liquid film (i.e.,

/ ¼ 0).

Numerical solution

The coupled nonlinear system of partial differential

Eqs. (36)–(40) with boundary and initial conditions can be

solved efficiently by the finite difference method. As the

film thickness continuously decreases with time, the con-

ventional finite difference method can not be used directly

in this problem. For this reason, the time dependent

physical domain has to be transformed to a fixed compu-

tational domain [0, 1] such that the film height will always

remain fixed into the computational domain. It is to be

mentioned here that the fine grid distribution is needed for

large velocity gradient near the surface of the disk when the

Reynolds number is large. It is to be pointed out that the

said transformation will be useful for the fine as well as

uniform grid distribution. Following Robert [48], we used

the transformation (44) which shift the physical domain

[0, h(t)] into the fixed computational domain [0, 1].

gðtÞ ¼ 1� a1 ln
a2HðtÞ � z

b2HðtÞ þ z

� �
; 1\c\1: ð44Þ

where a1 ¼ ½lnða2=b2Þ��1
, a2 ¼ cþ 1 and b2 ¼ c� 1. The

parameter c controls the grid spacing in the physical

domain and the small values of c cluster grid points at the

surface where large values make the grid spacing uniform

throughout the liquid film. The Crank-Nicholson scheme is

used to solve the transformed non-linear system of

Eqs. (36)–(40) after approximating the non-linear terms

according to the Newton’s linearization technique

(Fletcher [49]). Computation is carried out in each time

level with following linear tridiagonal system of algebraic

equations.

P1F
nþ1
j�1 þ Q1F

nþ1
j þ R1F

nþ1
jþ1 ¼ ðS1Þnj ; ð45Þ

P1G
nþ1
j�1 þ Q1G

nþ1
j þ R1G

nþ1
jþ1 ¼ ðS2Þnj ; ð46Þ

P2M
nþ1
j�1 þ Q2M

nþ1
j þ R2M

nþ1
jþ1 ¼ ðS3Þnj ; ð47Þ

P2N
nþ1
j�1 þ Q2N

nþ1
j þ R2N

nþ1
jþ1 ¼ ðS4Þnj ; ð48Þ

where

P1 ¼
B1 � A1

4Mg
� C

2ðMgÞ2
;

Q1 ¼
1

Mt
þ C

ðMgÞ2
þ 2Fn

j ;

R1 ¼
A1 � B1

4Mg
� C

2ðMgÞ2
;

9>>>>>>>=
>>>>>>>;

ð49Þ

ðS1Þnj ¼ Fn
j�1

A1 � B1

4Mg
þ C

2ðMgÞ2

" #
þ Fn

j

1

dt
þ Fn

j �
C

ðMgÞ2

" #

þ Fn
jþ1

B1 � A1

4Mg
þ C

2ðMgÞ2

" #
þ 1

Re/1

ðGn
j Þ

2;

ð50Þ

ðS2Þnj ¼ Gn
j�1

A1 � B1

4Mg
þ C

2ðMgÞ2

" #
þ Gn

j

1

dt
� C

ðMgÞ2

" #

þ Gn
jþ1

B1 � A1

4Mg
þ C

2ðMgÞ2

" #
;

ð51Þ
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P2 ¼
D� A1

4Mg
� E

2ðMgÞ2
;

Q2 ¼
1

Mt
þ E

ðMgÞ2
;

R2 ¼
A1 � D

4Mg
� E

2ðMgÞ2
;

9>>>>>>>=
>>>>>>>;

ð52Þ

ðS3Þnj ¼ Mn
j�1

A1 � D

4Mg
þ E

2ðMgÞ2

" #

þMn
j

1

dt
� 2Fn

j �
E

ðMgÞ2

" #
þMn

jþ1

D� A1

4Mg
þ E

2ðMgÞ2

" #
;

ð53Þ

ðS4Þnj ¼ Nn
j�1

A1 � D

4Mg
þ E

2ðMgÞ2

" #
þ Nn

j

1

dt
� E

ðMgÞ2

" #

þ Nn
jþ1

D� A1

4Mg
þ E

2ðMgÞ2

" #
þ 1

RePr/2

knf

kf

� �
Mn

j ;

ð54Þ

A1 ¼
a1ða2 þ b2Þ HnWn

j � zj
dH
dt

� 	n
 �
ða2Hn � zjÞðb2Hn þ zjÞ

; ð55Þ

B1 ¼
1

Re/1

a1ða2 þ b2ÞHn½ðb2 � a2ÞHn þ 2zj�
ða2Hn � zjÞ2ðb2Hn þ zjÞ2

; ð56Þ
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C ¼ 1

Re/1

a1ða2 þ b2ÞHn

ða2Hn � zjÞðb2Hn þ zjÞ

� �2
; ð57Þ

D ¼ 1

RePr/2

knf

kf

� �
a1ða2 þ b2ÞHn½ðb2 � a2ÞHn þ 2zj�

ða2Hn � zjÞ2ðb2Hn þ zjÞ2
;

ð58Þ

E ¼ 1

RePr/2

knf

kf

� �
a1ða2 þ b2ÞHn

ða2Hn � zjÞðb2Hn þ zjÞ

� �2
: ð59Þ

The values of F, G, M and N are computed in each time

level from the tri-diagonal system of linear Eqs. (45)–(48).

Then W is obtained from the finite difference representa-

tion of the equation of continuity using values of F at that

time level. Once W is determined, its value at the free

surface is then substituted into the kinematic condition

(Eq. 42) to obtain the film thickness H.

The unknowns F, G, W, M, N and H are calculated until

the following convergence criterium is satisfied:P
j jQnþ1

j � Qn
j jP

j jQnþ1
j j

� �; ð60Þ

where Q ¼ ðF;G;W ;M;N;HÞ, n represents the iteration

number and � is the convergence criterium. In this study the

convergence criterion is set for � ¼ 10�6.

To explore the grid accuracy of presented results, we

have carried the simulation for film thickness with respect

to time for 41, 51, 71 grids in vertical direction with

Re ¼ 0:1, Pr ¼ 6:2, a ¼ 0:5, / ¼ 0:05 (see, Fig. 2). Here,
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Fig. 4 Variation of film

thickness H with time t for
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the Fig. 2 explored that outcomes are same in all the cases.

The rest of the computation are carried out on 51 grid

points in the vertical direction with c ¼ 104 (equivalent to a

uniform grid distribution in the physical domain), this gives

the uniform grid distribution in computational domain.

The time step has been calculated by

dt� 0:25� dg2: ð61Þ

The above condition comes from the Courant-Friedrichs-

Lewy (CFL) condition of numerical stability. The domain

of dt is chosen smaller than the stability domain for linear

equations due coupled nonlinear system. To cheek the

accuracy of this numerical scheme, we have plotted the

present numerical solution under the condition of pure

liquid (i.e. for / ¼ 0) with the analytical solution obtained

by Dandapat and Ray [11] in Fig. 3. It is clear from this

figure that both the solutions agrees well.

Results and discussion

In this article, we have obtained the numerical solution of

thin nanoliquid film development over a rotating disk under

the assumption of uniform planar interface. Thermophysi-

cal properties of the nanoliquid such as density, heat

capacity and thermal conductivity are expressed in terms of

the properties and relative fractions of its components,

namely, base liquid and the suspended nanoparticles. The

value of Prandtl number Pr � 6:8 for the base liquid water

is obtained using the definition of Prandtl number and

thermophysical properties of water (see, Table 1) along

with lf ¼ 1� 10�3 Pa s at 20�C. The results presented in

Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12 are based on the thermal

conductivity model predicted by the Maxwell [46] and in

rest of the figures we have considered the effective thermal

conductivity model given by Yu and Choi [47]. Figure 4

shows variation of the film thickness H with time t for

different values of the nanoparticle volume fraction /. It is
clear from the figure that the rate of film thinning decreases

with the increasing values of /. A close scrutiny of the

Eq. (7) shows that the increasing values of nanoparticle

volume fraction / contribute the enhancement of nano-

liquid viscosity. As a result the increasing viscosity pro-

duces the considerable drag to the motion of the liquid film

and it opposes the film thinning process. The effect of the

thermocapillary parameter a on the film thinning process is

explored in Fig. 5. It is evident from the figure that the

thickness of the nanoliquid film decreases with increase of

the tharmocapillary parameter a. Thermocapillarity is the
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Fig. 6 Variation of radial

velocity component F with time

t for different values of / at the
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Re ¼ 0:1, Pr ¼ 6:8, a ¼ 1
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thermally induced surface-tension gradient along the hori-

zontal interface between the passive gas and the liquid film.

This surface-tension gradient generates an interfacial flow

through viscous drag. Since, the disk is cooled along the

radial direction the temperature at the center of the disk is

maximum and it decreases along the radial direction. Thus,
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Fig. 8 Variation of axial

velocity W with time t for

different values of / at the free

surface z ¼ H when Re ¼ 0:1,
Pr ¼ 6:8, a ¼ 1
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the surface tension is minimum at the origin and increases

along the radial direction of the disk. So, the surface ten-

sion gradient is positive along the radial direction. As a

result, the thermocapillary flow is induced at the free sur-

face from lower to higher surface tension zone or in other

words, thermocapillary flow takes place at the free surface

toward the radial direction of the disk resulting in decrease

of the film thickness. Figure 6 depicts the variation of the

radial velocity components F with respect to time t at free

surface z ¼ H for different values of nanoparticle volume

fraction /. It is observed from this figure that the radial

velocity F decreases with increase of the nanoparticle

volume fraction. We know that the increase of the particle

volume fraction / contributes the enhancement of the

nanoliquid viscosity as a result slowdowns the motion of

the liquid film. Figure 7 represents the variation of the

azimuthal velocity components G with t for different val-

ues of nanoparticle volume fraction / at the free surface. It

is observed from this figure that the values of G decreases

with increase of the nanoparticle volume fraction /. Fig-
ure 8 shows the variation of the axial velocity with time at

free surface. It is clear from the figure that, the magnitude

of the axial velocity increases initially but it decreases

gradually with the spinning time. It is also clear from the

Fig. 8 that the magnitude of W decreases with increase of

the nanoparticle volume fraction /.
The non-dimensional temperature distribution in the

film due to the cooling of the disk is obtained from the

Eq. (20) as

T ¼ R2

2
Mðz; tÞ þ Nðz; tÞ; ð62Þ
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Fig. 11 Variation of Tz with
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where R ¼ ðr=h0Þ.
Figure 9a, b represents the variation of M and N with

respect to z for different values of the nanoparticle volume

fraction /. It is observed from the figure that the values of

M and N increase with / at a particular film height. It is

also noted from the figure that the overall values of M

decreases while N increases with the film height. Upon

differentiating Eq. (62) with respect to z one can obtain the

temperature gradient within the film as,

Tz ¼
R2

2
Mz þ Nz: ð63Þ

In the Fig. 10a, b we have plotted the variation of Mz and

Nz for different values of the nanoparticle volume fraction

/. It is evident from the figure that Mz\0 and Nz [ 0 for

all z 6¼ H but the magnitude of Mz and Nz decrease with

increase of z. Therefore, one expected from the Eq. (63)

that the temperature gradient Tz may becomes zero at dif-

ferent film height depending on the values of R. Thus, it

indicates that Tz changes it sign at a value of R ¼ Rc (say)

at which Tz ¼ 0. Figure 11 represents the variation of Tz
with respect to R for different values of nanoparticle vol-

ume fraction /. It is observed from the figure that Tz [ 0

for R\Rc and Tz\0 for R[Rc i.e., the heat flows from

the disk to the film or from the film to the disk according as

R\Rc or R[Rc. It is also clear from the figure that the

region for Tz [ 0 increases with the increasing values of /.
This is due to the fact that, the addition of nanoparticles in

water has increased the liquid thermal conductivity greatly

resulting in enhancement of heat transfer rate. Figure 12

depicts the variation of Rc with z for different values of

nanoparticle volume fraction / and time t. It is clear from
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Fig. 12 that Rc increases with the increasing values of /
and t, i.e., the region for Tz [ 0 enhances with increase of

/ and t. In the present investigation the axisymmetric

cooling of the Cu-water nanoliquid on a rotating disk is

considered, the profile for Rc with respect to z is similar to

the result presented by Dandapat and Ray [12] in case of

pure liquid film.

The effects of the nanolayer thickness and particle

diameter on the effective thermal conductivity of the

nanoliquid are shown in the Fig. 13. It is evident from

the figure that, the effective thermal conductivity

improved remarkably when the nanolayer impact is

considered. It is also observed from the Fig. 13 that the

effective thermal conductivity enhances with increase of

nanolayer thickness but decreases with increase of par-

ticle diameter and this agrees with the results presented

by Yu and Choi [47]. The influence of the nanolayer

thickness and particle diameter on the film thinning are

presented in Fig. 14 for a fixed value of / ¼ 0:1. It is

evident from the Fig. 14 that the rate of film thinning

increases with the increase of the nanolayer thickness

and decreases with the increase of the nanoparticle

diameter. One can witness with the fact that the rate of

film thinning is more for the thermal conductivity model

by Yu and Choi [47] compared to the model of Maxwell

[46]. Figure 15 shows the variation of the temperature

gradient Tz with R for different values of the nanolayer

thickness and particle radius for a fixed values of / and

t. It is evident from the figure that the region for Tz [ 0

enhances with the increase of the nanolayer thickness

but decreases with the increase of the nano-particle

diameter. In other words, the region for Tz [ 0 increases

with the increase of the nanoliquid thermal conductivity.

Figure 16 represents the variation of Rc with z for
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different values of nanolayer thickness hn and particle

radius ra for the fixed values of / and t.

Conclusions

We have investigated the flow and heat transfer within a thin

nanoliquid film containing the Cu nanoparticles on an

rotating disk and the disk is assumed to be cooled axisym-

metrically frombelow. The effective thermal conductivity of

nanoliquid is estimated using the models of Maxwell [46]

and Yu and Choi [47]. The coupled nonlinear system of

equations are solved numerically by Crank-Nicholson

scheme and the numerical result is verified with the analyt-

ical solution obtained by Dandapat et al. [11] for pure liquid

film. The following observations have been made from the

present investigation in presence of Cu nanoparticles.

(i) The film thickness enhances with the increase of

the nanoparticle volume fraction.

(ii) The thermocapillary parameter has strong influ-

ence on thinning of the nanoliquid film.

(iii) The rate of film thinning increases with increase

of nanolayer thickness but it decreases with

increase of the nano-particle diameters.

(iv) There exists a curve within the film that demar-

cating the region of heat transfer. One side of this

curve, heat is transported from the film to the disk

while in other side, heat is transported from the

disk to the film.

(v) The region of the heat flows from film to the disk

enhances with the increase of the nanoparticle

volume fraction and nanolayer thickness, whereas

decreases with the nano-particle diameter.
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