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Abstract This paper presents a methodology for deter-

mination of the optimal material and processing parameters

(i.e., nanoclay content, melt temperature, feeding rate, and

screw speed) to maximize simultaneously tensile modulus

and tensile strength of injection-molded PA-6/clay

nanocomposites through coupling response surface method

and genetic algorithm. The tensile tests on PA-6/clay

nanocomposites are conducted to obtain tensile modulus

and tensile strength values, and then analysis of variance is

performed. The predicted models for tensile modulus and

tensile strength are created by response surface method,

and then the functions are optimized by a genetic algorithm

code implemented in MATLAB. Acceptable agreement has

been observed between the values of the process pa-

rameters predicted by the response surface method and

genetic algorithm and those of the process parameters ob-

tained through experimental measurements. This study

shows that the response surface method coupled with the

GA can be utilized effectively to find the optimum process

variables in tensile test of PA-6/NC nanocomposites.

Keywords Optimization � Tensile modulus � Tensile
strength � Response surface method � Genetic algorithm

Introduction

During the past decade, polymer nanocomposites have

emerged relatively as a new, novel, and rapidly developing

class of composite materials and attracted considerable

investment in research and development worldwide. Re-

cent and ongoing research on polymer nanocomposites [1–

5] has shown remarkable improvement of tensile modulus

and tensile strength compared with pure polymer and their

conventional microcomposites, even at very low filler

content. The properties of nanocomposites are greatly in-

fluenced by the properties of the individual components

(nanofiller and polymer), their size scale, degree of mixing,

morphology, and interfacial characteristics. Modeling the

mechanical properties of nanocomposites has become very

interesting to many researchers in both academia [6, 7] and

industry [8, 9]. Tensile modulus and tensile strength are the

most important mechanical properties which are consid-

ered in designing material, and their modeling particularly

in the presence of nanoparticle is very important.

Several parameters such as nanoclay content, screw

speed, melting temperature, and feeding rate are influential

in the extrusion process and can change the final properties

of the prepared samples. Several methods can be used for

modeling and analysis of a system that is affected by dif-

ferent parameters. One is response surface method (RSM)

[10] which refers to a set of statistical techniques and al-

gorithms of gathering information, which is employed for

improvement, extension, and optimization of processes. On

the other hand, genetic algorithm (GA) [11] is a heuristic

optimization method that searches for the optimal solution,

with high speed, when the analytical model which obtained

from response surface method (RSM) is at hand. GA goal

is to optimize response variables over a range of inde-

pendent variables. This method is easy, precise, efficient,
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and economically attractive. However, in most cases, the

relationship between response and independent variables is

unknown. In RSM, a proper estimation is considered for

the relationship between response and independent vari-

ables which is usually a polynomial.

The combination of RSM and GA has been addressed

in literature to successfully find the optimum conditions.

Most of these works have been carried out in the field of

injection molding. For example, the effectiveness of the

optimization method was demonstrated by industrial in-

jection production of a LCD TV panel [12]. In a study

[13], efficient minimization of warpage on thin shell

plastic parts by integrating finite element analysis, statis-

tical design of experiment method, RSM, and GA is in-

vestigated. In another study [14], efficient minimization of

warpage on thin shell plastic parts by integrating finite

element analysis, DOE method, RSM, and GA is inves-

tigated. In a paper [15], it is shown that the combination

of RSM and GA proposed is useful for the optimization of

injection molding process parameters and for minimizing

the molding warpage. In a recent research [16], RSM and

GA technique were used to develop the statistical models

of dimension shrinkage and find the optimal injection

molding conditions for minimum overall dimension

shrinkage variations. In a more recent study [17], a hybrid

method including back-propagation neural network

(BPNN), GA, and RSM are used to determine an optimal

parameter setting of the injection molding process of short

glass fiber and polytetrafluoroethylene reinforced poly-

carbonate composites. In another more recent study [18],

optimization of process parameters using RSM and GA

was proposed to generate the optimal process parameter

settings of multiple-quality characteristics. Their ex-

perimental results show that the proposed optimization

model is very successful and can be used in industrial

applications. In a latest study [19], a real case of a ther-

moplastic injected part is analyzed.

On the other hand, there have been some works in which

the combination of GA and RSM is extended to other

techniques such as ANN or finite element analysis. For

example, a paper [20] presented the comparative studies

between ANN–GA and RSM in fermentation media opti-

mization. A study [21] used RSM to establish the mathe-

matical models of relations between the welding process

parameters and the weld strength. Then the desirability

function coupled with genetic algorithm is used to carry out

the multi-objective optimization. Their results demonstrate

that the predicted results of the optimization are in good

agreement with the experimental results.

With reference to the published literature, it is clear that

currently the usage of the GA technique for the polymer

processing is given less consideration by researchers. Much

of the optimization study has been done on injection

molding, but none has been done on mechanical properties

of PA-6/clay nanocomposites. The increasing acceptance

of PA-6/clay nanocomposites by industry has necessitated

a polymer processing producing the maximum tensile

modulus and tensile strength. Therefore, it is necessary to

know the optimum conditions for processing of PA-6/clay

nanocomposites, which can produce acceptable mechanical

properties.

While the effects of chemical structures of polymer

and nanoclay (NC) on mechanical properties of polymer

nanocomposites (PNCs) have been studied extensively,

few studies [22–35] consider the optimization of material

and processing parameters. Therefore, the main objective

of this study is using a powerful method to optimize

material and processing conditions in the twin-screw

compounding of PA-6/NC nanocomposites and evaluat-

ing their effects on mechanical properties which is not

considered in detail in other reports. Moreover,

notwithstanding the vast number of papers concerning

PNCs, a few works have been devoted to investigate

modeling the effect of different parameters on PNC

mechanical properties [36, 37]. More importantly, the

studies that have dealt with mechanical properties were

barely systematic, using the inefficient one-factor-at-a-

time (OFAT) approach and missing the interaction be-

tween factors. In this study, genetic algorithm method

has been employed to propose a design method based

upon genetics [38], for the mechanical properties of the

PA-6 nanocomposites in which the target was set to find

the optimum design. To make the problem quietly in-

telligible, the optimum criterion defined as the case for

which the maximum tensile modulus and tensile strength

were also feasible simultaneously. At first, a total num-

ber of 27 samples, formulated based on a four-factor

three-level Box–Behnken design, were prepared in a

twin-screw extruder. By studying the interaction between

NC content and each of the other factors, we demon-

strate how the increase in NC content changes the me-

chanical properties. RSM is employed in modeling of

tensile modulus and strength, and the obtained functions

from RSM optimized by GA.

Materials and methods

Material preparation

PA-6 (B5, with melt volume flow rate of 8 cm3/10 min at

275 �C, load 5 kg) was purchased from BASF and used as

received. NC (Nanofil9�, organically modified by stearyl

benzyl dimethyl ammonium chloride with good adhesion

to PA-6) was purchased from Southern Clay Products, a

subsidiary of Rockwood Specialties.
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Sample preparation

PA-6 pellets and NC powder, pre-dried at 90 �C for 12 h,

were tumble-blended at dry conditions. The samples were

prepared via melt intercalation in a laboratory-scale coro-

tating twin-screw extruder (ZSK25, L/D = 40, Germany).

The extruder was equipped with a circular die. After melt

mixing, dry pelletized samples were injection-molded into

standard tensile bars (ASTM D638) using a 3-ton Engel

injection molding machine. Afterward, the injection-

molded specimens were sealed and placed in a vacuum

desiccator for a minimum of 24 h prior to mechanical

testing under dry conditions.

Sample characterization

Standard tensile properties of PA-6 and PA-6/NC samples

were determined according to ASTM D638 method using

injection-molded dumbbells in a constant loading speed of

50 mm/min. Tensile modulus and strength values were

obtained from averaging five specimen test results.

Design of experiments using RSM

The main objective in design of experiment is to study

the relationship between the response and variables. The

design of experiment is a method to minimize the

number of experiments in order to reach optimum con-

ditions. To explore the relationship between the response

and the independent variables, the required data are

obtained experimentally. To reduce the number of ex-

periments, the number of data was kept at minimum. A

response surface is an analytical function such as a

polynomial that relates the behavior of one or more re-

sponse variables to several independent variables. RSM

has many applications in design, development, and op-

timization. An important step in response surface mod-

eling is to define an appropriate approximation for the

actual relationship between the response and the set of

independent variables [10].

Conventionally, a first-order polynomial model [39],

being the simplest model, is used. In order to employ the

linear regression model for the true response surface, it can

be written as Eq. (1).

y ¼ b0 þ b1x1 þ . . .þ bkxk þ e ð1Þ

where the parameters bj, j = 0, 1… k, are called the re-

gression coefficients.

A quadratic linear regression model [39] is used to

predict the responses which are dependent on NC content

(NC), melt temperature (MT), feeding rate (FR), and screw

speed (SS):

y ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

biix
2
i þ

XXk

i¼1

bijxixj; i\k: ð2Þ

Optimization of process conditions

Most researchers have used traditional optimization tech-

niques to solve problems. The traditional methods of op-

timization and search do not fare well over a broad

spectrum of problem domains. Traditional techniques are

not efficient when the practical search space is too large.

These algorithms are not robust. Numerous parameters can

make the optimization problems more complicated. Tra-

ditional techniques such as geometric programming, dy-

namic programming, branch-and-bound techniques, and

quadratic programming found it hard to solve these prob-

lems. They are, furthermore, inclined to obtain a local

optimal solution. GA comes under the class of the non-

traditional search and optimization techniques.

GA methods are a class of stochastic search methods

that mimic the metaphor of natural biological evolution.

These methods operate on a population of potential solu-

tions, applying the principle of survival of the fittest to

produce better and better approximations to a solution, just

as in natural adaptation. A great advantage of GA methods

over other algorithms is that they need a type of primary

guess in relation to the solution, which is significantly ef-

fective on the final result. GA needs a search range which

is presented according to the initial information of the

physical properties. GA searches the total solution space

superficially without computing the performance function

for all the points. This type of search does not fall in the

local optimum valley. GA consists of the following steps:

production of the initial population; selection of the parent

chromosomes from the population according to their fit-

ness; crossing over the parents to create new offspring;

mutating the new offspring at each locus (new offspring

replace weak offspring); repeating the algorithm until the

final condition is satisfied; and returning the best solution

in the current population [38].

Objective function and decision variables

The main goal of the present paper is to determine the

optimal input parameters (NC content, melt temperature,

feeding rate, and screw speed), leading to maximum

tensile modulus and tensile strength. In this regard, the

obtained response functions from RS are defined in the

standard multi-objective optimization problem framework

which can be solved by a numerical optimization GA

algorithm. GA algorithm requires objectives and vari-

ables. In view of the multi-objective optimization, two
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new fitness functions, tensile modulus and tensile strength

(the minus sign indicates finding the maximum of tensile

modulus and tensile strength in optimization process), are

to be optimized.

GA implementation and optimization parameters

The multi-objective optimization problem was solved

taking advantage of effective genetic algorithm codes

produced in MATLAB. The parameters of the proposed

genetic algorithm have remarkable effects on the quality

and effectiveness of the algorithm. Based on the previous

investigations and the experience of the authors, a double-

vector and uniform function was set as the population type

and mutation. Therefore, in order to adjust the parameters,

DOE was employed. The results of DOE, which are not

presented in this paper, indicate that if the population size

is set to 100, the mutation rate is assigned to 0.05, the

crossover function and rate are set to intermediate and 0.8,

and the number of generation is assigned to 400, better

results are attained.

Results and discussion

As mentioned earlier, there are two response variables in-

cluding tensile modulus (M) and tensile strength (S), and

four independent variables, namely NC, MT, FR, and SS,

each at three levels chosen based on the primary ex-

periments. As a first variable, NC content has been taken at

three levels of 2, 4, and 6 phr. As a second variable, the

levels of screw speed are 450, 600, and 750 rpm. Melt

temperature has been changed from 235 to 245 and 255 �C.
As a last one, feeding rate has been varied from 7 to 9 and

11 rpm. In this work, 27 samples based on Box–Behnken

design of the experiments were produced using a twin-

screw extruder and processing conditions reported in

Table 1. Then, RSM can fit the surfaces of response

Table 1 Processing conditions and obtained data from experiments for modeling of the tensile properties

Sample Processing conditions Obtained data

NC content (phr) Melt temperature (�C) Feeding rate (RPM) Screw speed (RPM) M (MPa) S (MPa)

S1 4 245 7 450 3351 85.2

S2 4 235 11 600 3120 82.6

S3 6 255 9 600 3498 86.7

S4 4 245 7 750 3370 89.4

S5 4 245 11 750 3477 91.2

S6 4 245 9 600 3361 83.7

S7 6 245 11 600 3985 93.5

S8 2 245 9 750 3012 87.0

S9 6 245 9 450 3843 87.3

S10 2 245 7 600 3201 86.6

S11 4 235 9 750 3625 89.2

S12 4 235 9 450 3488 88.7

S13 2 245 11 600 3200 90.3

S14 4 235 7 600 3850 90.3

S15 4 245 9 600 3659 92.5

S16 4 245 9 600 3474 88.7

S17 2 235 9 600 3293 86.2

S18 6 235 9 600 3984 89.8

S19 2 255 9 600 3350 88.7

S20 4 255 11 600 3640 89.6

S21 4 255 9 450 3492 87.4

S22 4 255 9 750 3400 92.6

S23 6 245 9 750 3458 89.9

S24 4 245 11 450 3464 87.1

S25 2 245 9 450 3210 83.5

S26 4 255 7 600 3678 89.2

S27 6 245 7 600 3938 90.4
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variables to find the effects of variables on response vari-

ables and can make the relation between response variables

and variables. Therefore, M and S will be obtained as a

function of four variables (NC, MT, FR, and SS). The

obtained functions can be optimized through GA, and the

optimum variables can be attained as presented in the

following sections.

Fitted models from RSM

The mechanical properties of PA-6/NC nanocomposites

were evaluated as tensile modulus (M) and tensile strength

(S). The fitted linear models obtained from RSM are de-

scribed in Eqs. (3) and (4):

M ¼ b0 þ 43427:49� NC� 1871:68�MT� 306:14� FR

þ 2321:47þ 14:92� NC2 � 0:13� NC:MT

þ 6:78� NC:FR� 0:15� NC:SSþ 0:56�MT2

þ 8:65�MT:FR� 0:03�MT:SSþ 9:57� FR2

� 0:005� FR� 0:004� SS2 ð3Þ

S ¼ c0 þ 361:22� NC� 18:76�MT� 1:24� FR

� 27:13� SS� 0:16:NC2 � 0:02:NC:MT

� 0:07:NC:FR� 0:03� NC:SSþ 0:0007�MT2

þ 0:0004�MT:FRþ 0:10�MT:SSþ 0:0007� FR2

� 0:14� FR:SS� 0:00008� SS2 ð4Þ

The obtained data from the experiments are compared

with RSM prediction, which are presented in Table 2. The

RSM model is comparatively in acceptable agreement with

the experimental data.

Effect of NC content

To study the effect of NC content, three factors (i.e., melt

temperature, screw speed, and feeding rate) through which

residence time, shear intensity, and polymeric chains dif-

fusion could be changed were chosen as follows:

Melt temperature

Figure 1 shows the effect of melt temperature on the tensile

modulus and tensile strength at low and high NC content.

At high NC content, the increase in melt temperature

reduces the tensile modulus and tensile strength. Although

the increase in melt temperature increases the mobility and

diffusion of polymeric chains, it is not enough to com-

pensate for the decrease in melt viscosity that in turn causes

a loss in shear intensity imposed on NC stacks, which is

highly essential for breaking them down.

However, in low NC content by increasing the melt

temperature, the tensile modulus and tensile strength re-

mained almost unchanged. From this can be concluded the

effects of mobility of polymeric chains and melt viscosity

are equal approximately.

Table 2 Comparison of RSM

predictions with the

experimental data

No. M (MPa) exp. M (MPa). RSM Error (%) S (MPa) exp. S (MPa) RSM Error (%)

5 3477 3353 -3.56 91.2 90.53 -0.73

12 3488 3718 6.59 88.7 89.3 0.67

16 3474 3578 2.99 88.7 88.62 -0.00

23 3458 3668 6.07 89.9 91.15 1.39

Fig. 1 Tensile properties as a function of melt temperature at low and

high NC content: a tensile modulus, b tensile strength
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Screw speed

Figure 2 shows the effect of screw speed on the tensile

modulus and tensile strength of different samples at low

and high NC content. As can be seen, at low NC content,

an increase in screw speed improves the tensile modulus

and tensile strength. In fact, by increasing screw speed, the

shear stress increases and causes to break NC stacks and

consequently polymeric chains can diffuse between NC

layers. In addition, the higher screw speed makes better

dispersion compared with lower screw speed.

On the other side, at high NC content by increasing

screw speed, the tensile modulus and tensile strength re-

mained almost unchanged. From these results, it can be

concluded that at high NC content, the changes of shear

stress caused by the screw speed are not enough to improve

diffusion of polymeric chains in NC layers. As can be seen

in Fig. 2, an increase in NC content led to increase in the

tensile modulus and tensile strength.

Feeding rate

Figure 3 shows the effect of feeding rate on the tensile

modulus and tensile strength at low and high NC content.

At both levels of NC content, an increase in feeding rate

reduces the tensile modulus (Fig. 3a) and tensile strength

(Fig. 3b) because increasing feeding rate deteriorates NC

dispersion. On the other hand, at high NC content, the

tensile modulus and tensile strength are greater compared

with low NC content.

Analysis of variance

Analysis of variance (ANOVA) is an appropriate statistical

method to recognize which parameters affect the response

of the inquired process through the series of experimental

results. The analysis of variance is employed to investigate

the influence of input variables on the tensile modulus and

tensile strength. ANOVA is carried out for a level of sig-

nificance of 5 %, i.e., for a level of confidence of 95 %.

Fig. 2 Tensile properties as a function of screw speed at low and

high NC content: a tensile modulus, b tensile strength

Fig. 3 Tensile properties as a function of feeding rate at low and high

NC content: a tensile modulus, b tensile strength
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Table 3 shows ANOVA results for tensile modulus. The

last column in Table 3 indicates the percentage of contri-

bution of each factor to the total variation, indicating the

degree of influence on the results. It can be revealed from

Table 3 that NC content (51.73 %) and screw speed

(1.79 %) are significant factors. Analysis of normal prob-

ability plot of residuals for tensile properties reveals that

the residuals lie reasonably close to a straight line, and no

departure points exist as data follow normal distribution.

Table 3 displays the ANOVA results for tensile strength

(S). According to Table 3, screw speed (8.12 %) and melt

temperature are significant factors. Like tensile modulus,

from analysis of normal probability plot of residuals, it can

be concluded that the residuals lie reasonably close to a

straight line, and no departure points exist. It can be clearly

observed that the data follow normal distribution.

Validation

The performance of the GA method descried earlier was

tested alongwith comparison of the values of theGAwith the

experimental results in the optimal condition. The obtained

error was in the acceptable range. The optimum conditions

are at 235 �C as the melting point, 577 rpm as the screw

speed, and 7 rpm as the feeding rate, which result in tensile

modulus of 4259 MPa and tensile strength of 92.75 MPa.

This means that an acceptable agreement is observed be-

tween the predicted values and theM and S obtained from the

experimental measurements. This fact indicates that RSM

coupled by constrained GA can be an effective optimization

tool that obviates the need for either development of an

analytical model or estimation of an empirical expression.

Conclusion

The main goal of this study has been multi-objective opti-

mization of tensile modulus and tensile strength in the tensile

tests of PA-6/NC nanocomposite samples. Based on the pre-

sented experimental results, the main findings are as follows:

• The minimum tensile modulus (M = 3012 MPa) was

achieved at NC content of 2 phr, melt temperature of

245 �C, feeding rate of 7 rpm, and screw speed of

750 rpm, and the maximum tensile modulus

(M = 3985 MPa) was achieved at NC content of 6

phr, melt temperature of 245 �C, feeding rate of

11 rpm, and screw speed of 600 rpm.

• The minimum tensile strength (S = 82.6 MPa) was

achieved at NC content of 4 phr, melt temperature of

235 �C, feeding rate of 11 rpm, and screw speed of

600 rpm, and the maximum tensile strength

(S = 93.5 MPa) was achieved at NC content of 6 phr,

melt temperature of 245 �C, feeding rate of 11 rpm,

and screw speed of 600 rpm.

• Analysis of variance (ANOVA) for tensile modulus and

tensile strength has showed that NC content and screw

speed are the most significant factors for tensile

modulus and tensile strength, respectively.

In conclusion, RSM can be employed reliably, suc-

cessfully, and accurately in modeling of tensile modulus

and tensile strength, and prediction of their values in tensile

tests of PA-6/NC nanocomposites. The proposed model has

been the result of coupling two RSM models with genetic

algorithm. This model has been applied to select the opti-

mal process variables in tensile tests from the experimental

data. Good agreement has been observed between the

values of the process parameters predicted by the RSM and

GA and those of the process parameters obtained through

experimental measurements. This study indicates that the

response surface method coupled with the GA can be uti-

lized effectively to find the optimum process variables in

tensile test of PA-6/NC nanocomposites.
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