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Abstract Porous ZnFe2O4 hollow microspheres with a

diameter of about 100–210 nm were successfully prepared

by simple template-free hydrothermal route in ethylene

glycol (EG) solution. The formation mechanism and

properties have been also demonstrated. The structural,

morphological, and magnetic properties of ZnFe2O4 hollow

microspheres were investigated by means of X-ray powder

diffraction (XRD), field emission scanning electron

microscopy, Fourier transform infrared spectroscopy, and

physical properties measurements system. The surface area

was determined using the BET method. XRD and IR

analyses confirm the cubic spinel phase of ZnFe2O4 hollow

microspheres. Every magnetic microsphere is made up of

many ultrafine ZnFe2O4 nanoparticles with porous struc-

ture. The as-prepared porous magnetic hollow spheres have

higher surface area and excellent magnetic properties at

room temperature.
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Background

The ecofriendly functional nanostructures, such as transi-

tion metal oxides with spinel structure MFe2O4 (M = Mn,

Fe, Co, Ni, Zn, etc.) have attracted considerable attention

in the recent decade because of the fundamental scientific

interest in relation to size/shape effects and their potential

technological applications in many important fields [1].

Among the family of ferrite materials, zinc ferrite

(ZnFe2O4) has a normal spinel structure with the tetrahe-

dral A sites preferentially occupied by Zn2? and octahedral

B sites occupied by Fe3?, which results in anti-ferromag-

netic properties at TN = 10 K [2].

In recent years, hollow micro-nano-materials have

attracted broad attention due to their superior properties, such

as low density, large specific area, distinct magnetic property,

well-defined pore topology, and more appropriate pore size

([50 nm) compared with nanocrystalline materials, and have

been proven to be promising in widespread applications in

microelectronics, drug delivery, catalysis, energy storage,

and gas sensing [3–6]. It has been found that nano-scaled

materials exhibit promising properties that are quite different

from their corresponding bulk materials [7]. Worldwide

research efforts are underway to find new applications for

ferrites in addition to improving their existing functional

properties. In the past, various methodologies have been

adopted for the preparation of hollow spheres [8–12]. How-

ever, the main process for the preparation of hollow spheres

generally requires removable templates such as monodi-

spersed silica, polystyrene latex spheres, metal nanoparticles,

gas bubbles, and polymer spheres followed by sequential

adsorption of magnetic nanoparticles on the templates [13–

18]. The typical procedure is that the template is coated by

either direct surface reaction utilizing special functional

groups on the core or controlled precipitation of inorganic

precursors on the surface of template to induce coating, fol-

lowed by the removal of template core through calcination or

solvent dissolution [19–21]. Definitely, the template or sur-

factant direct synthesis suffers from the disadvantages of low

yield and high cost; template-free methods have drawn

increasing attention.
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As the magnetic properties of these spinel ferrite

nanocrystallines are affected by their morphology, shape-

controlled synthesis of spinel ferrites has attracted much

attention. The past two decades have seen a wealth of

methods to synthesize different ZnFe2O4 nanostructures

with uniform size and shape, including nanoflowers [22],

nanotubes [23], nanorods [24], and nanocubes [17].

However, there are still no reports for the preparation of

porous zinc ferrite hollow microspheres. It appears that it

remains a challenge to explore an economic, template-free,

and effective strategy to synthesize magnetic ZnFe2O4 with

sphere morphology. The purpose of our study is to syn-

thesize monodispersed purified hollow ferrite spheres in

low temperature from EG solution with simple template-

free hydroothermal method. Zinc chloride and ferric

chloride were used as cation sources in the reaction system.

EG and polyethylene glycol (PEG) were used as solvent

and surfactant, respectively, and sodium acetate as a weak

base. The phase structure, morphology, elemental, and

magnetic behavior of the hollow microspheres were

investigated in detail.

Methods

Magnetic ZnFe2O4 hollow spheres were synthesized by

simple template-free hydrothermal method. All of the

reactants were analytical grade and were used without any

further purification. The starting materials for the present

study included FeCl3�6H2O, ZnCl2�4H2O, sodium acetate

(CH3COONa 3H2O,), ethylene glycol (EG), and PEG. A

typical synthesis was performed as follows: 1.35 g FeCl3-

6H2O and 0.55 g ZnCl2�4H2O were dissolved into 40 mL

EG. About 3.6 g NaAc and 2 g PEG were added into the

solution and stirred under 50 �C for 30 min to form a

homogeneous brown solution. The hydrothermal synthesis

was carried out in a 100mL Teflon-lined stainless steel

autoclave cell without any agitation for 16 h at 180 �C.

After being cooled to room temperature, the black products

were collected by a magnet, washed several times with

distilled water to remove the impurities, and finally dried at

80 �C for 8 h. The yield of ZnFe2O4 microspheres is rel-

atively high (85.9 %) for hydrothermal method.

The crystal structure was determined using X-ray dif-

fraction (XRD, Bruker D2 Advanced Diffractometer with

Cu Ka radiation). Morphological studies were conducted

using field emission scanning electron microscope (FE-

SEM, Hitachi S-4800). The element distribution and the

content (wt%) of ZnFe2O4 within the hollow spheres were

detected by energy dispersive X-ray spectroscopy (EDX).

The specific surface area of the obtained material was

measured according to the Brunauer–Emmett–Teller

(BET) method using Micromeritics ASAP-2020 V4.0

apparatus with liquid nitrogen at 77 K. BET surface area of

ZnFe2O4 was determined to be 44.163 m2 g-1. The FTIR

spectrum was recorded on a KBr pellet (Bruker Tensor 27).

Magnetic studies at room temperature have been carried

out using physical properties measurement system (PPMS).

Results and discussion

XRD patterns of all samples show very broad peaks,

indicating poor crystallinity and ultrafine nature of the

particles. The crystalline structure of the as-synthesized

ZnFe2O4 hollow sphere was characterized by powder

XRD. As shown in Fig. 1, the diffraction peaks match well

with the standard patterns of the cubic structure of spinel-

phase Zn ferrite (JCPDS file no. 82–1042), where the dif-

fraction peaks at 2h values of 30.0�, 35.3�, 42.9�, 53.2�,
56.7�, 62.3�, and 76.6� can be attributed to the reflection of

(220), (311), (400), (422), (333), (440), and (533) planes of

the spinel ZnFe2O4, respectively. No additional peak of the

impurity phase was observed in the XRD patterns, showing

that the prepared ferrites are pure.

The general morphology of the as-prepared ZnFe2O4

hollow sphere products observed by field emission SEM

(FE-SEM) and typical images at different magnifications

are shown in Fig. 2a–c, it was observed that the major

morphological feature is a regular spherical shape with an

average particle diameter of about 100–210 nm. The high-

magnification FE-SEM image (Fig. 2c) reveals that each

micro-hollow sphere is very similar to hollow spheres and

it is actually composed of aggregates of more primary

particles.

EDX results from hollow spheres showed that it was

mainly composed of Zn, Fe, and O (Fig. 2d).
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Fig. 1 XRD patterns of the as-synthesized porous ZnFe2O4 hollow

microspheres
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Quantification of the EDX spectrum showed that the ratio

of Zn, Fe, and O was about 1:2:4, suggesting that the

porous hollow spheres had a chemical formula of ZnFe2O4.

On the basis of the above experimental results and

observations, a formation mechanism of the ZnFe2O4

hollow spheres is designed, schematically illustrated in

Fig. 3. The reaction begins with the mixture of FeCl3-

6H2O, ZnCl2�4H2O, Sodium acetate (CH3COONa 3H2O),

EG, and PEG. In our system, the Zn2? and Fe3? ions were

nucleated under hydrothermal conditions with the water

generated from metal precursors to form nanosized

crystalline ZnFe2O4. PEG serves as a structure-directing

template, as it can easily self-assemble to form spherical

grains. The Ostwald ripening process also plays an

important role in the formation of nanocrystals. According

to the Ostwald ripening mechanism, crystalline particles

will grow into crystalline nuclei, which aggregate iso-

tropically to form spherical grains in ethanol solution and

further to microspherical crystallites. During growth, the

smaller, less crystalline particles will be dissolved gradu-

ally, while the larger, more crystalline particles will grow

bigger. Eventually, the core can grow gradually to form a
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Fig. 2 SEM (a–c) and EDS images of the as-synthesized porous ZnFe2O4 hollow microspheres

Fig. 3 The proposed preparation scheme of the porous ZnFe2O4 hollow microspheres
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solid sphere. As the crystal grows, the porous ZnFe2O4

microsphere was formed at last. Finally, the massy porous

ZnFe2O4 microspheres are formed, as evidenced by XRD

(Fig. 1), SEM (Fig. 2), TGA (Fig. 4), and FTIR (Fig. 6).

As shown in Fig. 4, the TG curve shows that porous

ZnFe2O4 hollow spheres have three weight loss steps from

room temperature to 800 �C under air atmosphere. The first

weight loss of about 3.7 % in the range 25–220 �C was due

to the loss of residual water in ZnFe2O4 hollow spheres.

The combustion of carbon was complete at a relatively low

temperature (\400 �C). From the weight change between

150 and 400 �C, the organic matter content (carbon and

oxygen containing surface groups) was determined to be

40 wt%.

The nitrogen sorption isotherm of resultant ZnFe2O4

hollow spheres and their corresponding pore-size distri-

bution curve are exhibited in Fig. 5. The nitrogen adsorp-

tion desorption isotherm belongs to type IV category

according to international union of pure and applied

chemistry classification, suggesting the presence of mes-

opores. The specific surface area was thus estimated, by

BET equation [25], to be 44 m2 g-1. In addition, the

sorption exhibits type IV isotherm, and the pore analysis

has revealed that the pore sizes in the porous microspheres

mainly fall into 3–9 nm, as seen in the inset of Fig. 5.

Hysteresis loops can be observed in the curve, attest to the

existence of a mesoporous structure. The high surface area

and pore volume further confirm that the hollow micro-

spheres have porous structure which will broaden the

application of the product.

Theoretically, all MFe2O4 either normal or inverse spi-

nel oxides of transition metals have four infrared active

modes. These vibrations occur at frequencies of m1

(650–550 cm-1), m2 (525–390 cm-1), m3 (380–335 cm-1),

and m4 (300–200 cm-1) [26].

The m1 and m2 bands are generated due to intrinsic

vibrations of tetrahedral and octahedral coordination

compounds. Absorption of m1 happens due to the bond

stretching of tetrahedral metal ions and oxygen, while m2

vibration is observed due to the vibration of oxygen in the

direction perpendicular to the axis joining the tetrahedral

ions and oxygen. The m3 mode is obtained from the Fe3?–O

complexes at octahedral sites [27]. The frequency of m4

vibration depends on the mass of tetrahedral metal ion

complexes, which gives information about the vibration of

ions occupying at tetrahedral site.

In order to make sure of its chemical compositions, the

Fourier transform infrared spectrometry (FTIR) spectrum

of the ZnFe2O4 hollow sphere product was verified. As

shown in Fig. 6, the two bands at 582 and 435 cm-1 rep-

resented the characteristic peaks of tetrahedral and octa-

hedral Fe–O stretching for ZnFe2O4. The appearance of

bands at 1,081 and 2,925 cm-1 is assigned to the stretching

of ether groups and the characteristic absorptions of alkyl

(R-CH2) stretching modes. In addition, the bands at 3,432

and 1,650 cm-1 are attributed to the surface hydroxyl and

the adsorbed water molecules, respectively [28]. Hydroxyl

group contribution was observed at 3,432 cm-1. The

appearance of these peaks in the spectrum confirmed the

presence of PEG and adsorbed EG on the surface of par-

ticles. The above FTIR analysis matches well with the

XRD result, which confirms that the as-obtained products

are pure-phase spinel Zn ferrite.

Such porous oriented ZnFe2O4 hollow spheres exhibited

good magnetic property [29]. Magnetic measurements of

the samples were carried out at room temperature using a

PPMS with a peak field of 20 kOe. The hysteresis loops for

porous zinc ferrite hollow microspheres are shown in

Fig. 7. As clearly shown, the variation of magnetization as
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Fig. 4 TG curve of the as-synthesized porous ZnFe2O4 hollow

microspheres
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a function of the applied field presents a narrow cycle, and

the observed hysteresis loops are a characteristic behavior

of soft magnetic materials. The saturation magnetization

(Ms) of the zinc ferrite hollow spheres is about

32 emu g-1, which is close to the value of bulk ZnFe2O4

(36 emu g-1) [30]. The low saturation magnetization of the

ferrite NPs is generally believed to be due to the decreased

particle size and the presence of an anti-ferromagnetic

layer on the surface. In the close-up view (not shown in

Figure), the curve presents a very small hysteresis loop

with a remnant magnetization (Mr) of 1.3 emu g-1 and a

coercivity (Hc) of 16 Oe, denoting the ferromagnetic

behavior of the sample. Table 1 shows the previously

reported saturation magnetization values for zinc ferrite

nanocrystallines synthesized by various methods [31–37],

from which we could conclude that our present Ms value at

ambient temperature is obviously higher than that of most

of the reported uniform ZnFe2O4 nanocrystallines through

the facial hydrothermal synthesis.

Conclusions

ZnFe2O4 hollow microspheres with diameters of about

210 nm were successfully synthesized under low temper-

ature through template-free hydrothermal method. These

ZnFe2O4 porous hollow spheres have excellent magnetic

properties and higher surface area. The proposed method is

easy, nontoxic, and reproducible. EG plays a key role in the

synthesis of hollow spheres. Further work to investigate

and fabrication of Co, Mn, and NiFe2O4 hollow micro-

spheres is in progress. This method may provide a simple

and scalable synthesis approach for preparing advanced

materials based on various multicomponent hollow struc-

tures for multipurpose application.
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Table 1 Comparison of the saturation magnetization (Ms) values for

ZnFe2O4 hollow spheres with literature values

Number Method of synthesis Temp

(K)

Size

(nm)

Ms

(emu/

g)

Ref

1 Hydrothermal method 300 210 32 This

study

2 Hydrothermal in

ammonia solution

300 80 61.87 [31]

3 Hydrothermal in

supercritical

methanol

5–20 4.2 38 [32]

4 Oil-in-water micelles 3.7 3 70 [33]

5 Co-precipitation at

373 K

55 4.2 46.9 [34]

6 Sol–gel method 30 300 7.8 [35]

7 Ultrasound-assisted

emulsion

12 5 25 [36]

8 Hydrothermal method 8 250 17.5 [37]
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