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Abstract The hydrothermal synthesis and optical prop-

erties of Nb5?-doped lithium metasilicate and lithium

disilicate nanomaterials were investigated. The micro-

structures and morphologies of the synthesized Li2-2x-

Nb2xSiO31d and Li2-2xNb2xSi2O51d nanomaterials were

studied with powder X-ray diffraction and scanning elec-

tron microscopy techniques, respectively. The synthesized

niobium-doped lithium metasilicate and lithium disilicate

nanomaterials, respectively, are isostructural with the

standard bulk Li2SiO3 (space group Cmc21) and Li2Si2O5

(space group Ccc2) materials. Photoluminescence spectra

of the synthesized materials are studied. The measured

optical properties show dependence on the dopant amounts

in the structure.

Keywords Nanomaterials � Lithium silicates � Doping �
Niobium � Hydrothermal method

Introduction

Lithium ceramics are of research interest because of their

technological applications. Among these ceramics, Lithium

silicates have been investigated as breeder materials for

nuclear fusion reactors and as carbon dioxide absorbents in

addition to other more well-known applications such as in

thermal expansion glass–ceramics used in ceramic hobs

[1–6]. The tetrahedral silicate ion (SiO4
2-), in the structure

of silicates, provides good mechanical resistance and sta-

bility for the phosphor [7–11]. Lithium metasilicate and

lithium disilicate, therefore, are suitable pyroelectric

materials and used also in optical waveguide devices [12].

Synthesis of lithium silicate doped with La3?, Sm3?,

Gd3?, Ho3?, Dy3 [19–22], Nd3? [23], Na? [24], Eu3?,

Ce3? and Tb3? [25] ions has been reported previously.

Also, Cu2?-doped [26], Cr4?-doped [27], Al3?-doped [28],

Cr3?- and Tm3?-doped [29], V3?-, V4?- and V5?-doped

[30] lithium silicates have been synthesized.

Recently, we have reported the hydrothermal synthesis

and optical properties of Sb3?-doped lithium metasilicate

and lithium disilicate nanomaterials [31]. However, to the

best of our knowledge, no work has been devoted to nio-

bium-doped lithium silicates. Doping of Nb5? causes

conductivity [13] and generates metallic behavior in
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insulators [14], increases electrical resistivity and enhances

hysteresis squareness and fatigue behavior [16, 17],

decreases the dielectric constant maximum and Curie point

[18] and so on. Also, Nb can be considered as a donor

dopant for PZT materials [15].

In this research work, we report the synthesis and optical

properties of Li2-2xNb2xSiO31d and Li2-2xNb2xSi2O51d

nanomaterials under hydrothermal conditions. Also we

have studied the effect of dopant amount on the morphol-

ogy of the synthesized nanomaterials, while keeping other

conditions unchanged. The effect of the dopant concen-

tration on the morphology of the synthesized materials is

investigated. Moreover, optical properties of the synthe-

sized Li2-2xNb2xSiO3 and Li2-2xNb2xSi2O5 nanomaterials

are studied. The synthesized materials’ optical and cata-

lytical properties were improved by doping Nb5? in lithium

silicates so they are applicable in fabrication of optical

devices and also as catalysts.

Methods

All the reagents used in the experiments were of analytical

grade, and used as received without further purification.

Nb5?-doped lithium metasilicate and lithium disilicate

nanomaterials are synthesized in a one-step hydrothermal

process.

Synthesis of niobium-doped lithium metasilicate

(Li2-2xNb2xSiO3?d) (x = 0.0025, 0.005)

Appropriate molar amounts of LiNO3 (MW =

68.95 g mol-1) (10 and 11.9 mol, respectively), SiO2�H2O

(MW = 96.11 g mol-1) (20 and 23.92 mol, respectively)

and Nb2O5 (MW = 265.815 g mol-1) (0.0263 and

0.06 mol, respectively) were dissolved in 60 mL of hot

NaOH solution (0.67 and 0.80 M solution, respectively)

under magnetic stirring at 80 �C. The resultant solution

was transferred and sealed in a Teflon-lined stainless steel

autoclave of 100 mL capacity, under autogenous pressure

and heated to 180 �C for 96 h. The autoclave was then

allowed to cool naturally to room temperature and the

resulting white precipitate was recovered.

Synthesis of niobium-doped lithium disilicate

(Li2-2xNb2xSi2O5?d) (x = 0.005, 0.0075 and 0.01)

Appropriate molar amounts of LiNO3 (MW =

68.95 g mol-1) (11.9, 10 or 9.9 mol, respectively), SiO2-

H2O (MW = 96.11 g mol-1) (35.9, 30.22 or 30 mol,

respectively) and Nb2O5 (MW = 265.815 g mol-1) (0.06,

0.073 or 0.1 mol, respectively) were dissolved in 60 mL of

hot NaOH solution (1.20, 1.0 and 1.0 M solution,

respectively) under magnetic stirring at 80 �C. The resultant

solution was transferred and sealed in a Teflon-lined stain-

less steel autoclave of 100 mL capacity, under autogenous

pressure and heated to 180 �C for 96 h. The autoclave was

then allowed to cool naturally to room temperature and the

resulting white precipitate was recovered.

Results and discussion

Powder X-ray diffraction analysis

Phase identifications were performed on a powder X-Ray

diffractometer Siemens D5000 using Cu-Ka radiation. The

morphology of the obtained materials was examined with a

Philips XL30 Scanning Electron Microscope equipped with

energy-dispersive X-ray (EDX) spectrometer. Absorption

and photoluminescence spectra were recorded on a Jena

Analytik Specord 40 and a Perkin Elmer LF-5 spectrom-

eter, respectively.

Figure 1a, b, respectively, shows the EDX spectra of the

synthesized Nb5?-doped lithium metasilicate and lithium

disilicate nanomaterials, which verify the doping and the

compositional analysis of Nb5? in the nanoparticles of

lithium silicates.

The crystal phases of the synthesized materials were

examined by powder X-ray diffraction technique. Fig-

ures 2 and 3 show the powder XRD patterns of the Nb5?-

doped lithium metasilicate and lithium disilicate, respec-

tively. The measured powder XRD data are in good

agreement with those of corresponding undoped lithium

metasilicate or lithium disilicate nanomaterials [31] and the

obtained stable phases are, respectively, isostructural with

Li2SiO3 (space group Cmc21) [31–41] and Li2Si2O5 (space

group Ccc2) [31, 42–44]. The measured data are in

agreement with the respective Joint Committee on Powder

Diffraction Standards (JCPDS) card for Li2SiO3 (JCPDS

29-0829) (a = 9.3808 Å, b = 5.3975 Å and c = 4.6615 Å)

and for Li2Si2O5 (JCPDS 15-0637) (a = 5.825 Å,

b = 14.56 Å and c = 4.796 Å). The standard crystallo-

graphic data for lithium metasilicate (JCPDS 29-0829) and

lithium disilicate (JCPDS 15-0637) and the powder XRD

data for respective hydrothermally synthesized undoped

nanomaterials [31] are summarized in Tables 1 and 2,

respectively. Also, the powder XRD data for respective

hydrothermally synthesized Nb-doped lithium metasilicate

and Nb-doped lithium disilicate are summarized in

Tables 3 and 4 for comparisons. Moreover, the intense

sharp diffraction patterns suggest that the as-synthesized

products are well crystallized.

The doping limitations are 0–0.25 and 0–0.75 mol% of

Nb5? for lithium metasilicate and lithium disilicate,

respectively. Excess mol% concentration of the dopant
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agent in the reaction mixture, as shown in Figs. 2 and 3,

results in impurity peaks in the XRD patterns. The dif-

fraction line at 2h & 49� is assigned by its peak position to

the excess Nb2O5 [43]. Moreover, the formation of other

phases of lithium silicates and raw materials was already

detected for higher mol% concentration of the dopant agent

in the reaction mixture (Figs. 2, 3) [31, 41, 42, 48].

Compared to those of the nanomaterials of undoped

lithium silicates, the diffraction lines in the powder XRD

patterns of the Nb5?-doped lithium silicates nanomaterials

shift to lower 2h values and, therefore, to larger d values.

For the most intensive diffraction line (200) a diffraction

line shift of D2h = 18.881� (pure)-18.80� (doped) =

0.081� (Dd = 4.7206 Å (doped)-4.7005 Å (pure) = 0.0201

Å) for Nb5?-doped lithium metasilicate and for the most

intensive diffraction line (040) a diffraction line shift of

D2h = 24.78� (pure)-24.70� (doped) = 0.08� (Dd =

3.600Å (doped)-3.589 Å (pure) = 0.011 Å) for Nb5?-

Fig. 1 EDX spectra of the hydrothermally synthesized a Li1.995Nb0.001SiO3?d and b Li1.985Nb0.003Si2O5?d nanoparticles

Fig. 2 PXRD patterns of the hydrothermally synthesized Li2-2x-

Nb0.4xSiO3?d nanomaterials where a x = 0.0025, b x = 0.005 and

c x = 0.01

Fig. 3 PXRD patterns of the hydrothermally synthesized Li2-2x-

Nb0.4xSi2O5?d nanomaterials where a x = 0.005, b x = 0.0075,

c x = 0.01
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doped lithium disilicate are calculated via Bragg’s law.

Tables 5 and 6 show the crystal sizes of the Nb-doped

materials in different dopant amounts via Debye–Scherrer

equation.

Since the ionic radius of the Nb5? (0.64Å [46]) is closer

to the ionic radius of Li? (0.59Å [46]) rather than the Si4?

(0.26Å [46]), in the Nb5?-doped lithium metasilicate and

lithium disilicate, it may be expected that the dopant ion

will replace with Li? ions in the structure. The larger radius

of the dopant ion, compared to the Li?, may cause an

expansion of the lattice parameter in the Nb5?-doped

lithium silicate nanomaterials. Since both ionic radii and

charges are not the same for the dopant and Li? ions, it is

also possible that the dopant ion takes an interstitial posi-

tion in lattice rather than replacing any Li? ions, where

additional patterns will be observed in XRD pattern [47].

However, here, the powder XRD data measured for the

doped samples are in accordance with those of the undoped

materials without any residual or impurity phase formation.

The powder XRD patterns of the doped samples, therefore,

suggest the fact that the dopant ions are indeed going to

lattice positions rather than interstitial positions.

Moreover, on replacing Li? ions, the dopant ions are

bound to create some oxygen-related defect centers or Li?

vacancies for charge compensation. Therefore, it is

believed that the dopant ions will be in a structurally dis-

ordered environment.

Cellref version 3 was used to refine the cell parameters

from the measured powder XRD data of the synthesized

doped nanomaterials. Compared to the standard

Table 1 Crystallographic data of the hydrothermally synthesized Li2-

SiO3 nanomaterials obtained after 96 h at 180 �C

2h Int h k l

18.881 1,064 2 0 0

26.979 1,231 1 1 1

33.05 706 3 1 0

38.419 586 3 1 1

38.608 618 0 0 2

43.23 107 2 2 1

51.467 182 5 1 0

55.448 123 4 2 1

58.955 173 6 0 0

59.183 120 3 3 0

62.998 63 1 1 3

66.219 42 4 2 2

69.732 103 3 1 3

Table 2 Crystallographic data of the hydrothermally synthesized Li2-

Si2O5 nanomaterials obtained after 120 h at 180 �C

2h Int h k l

12.097 24 0 2 0

16.371 131 1 1 0

23.706 174 1 3 0

24.78 1,106 1 1 1

30.697 98 0 4 1

37.602 273 0 0 2

38.266 78 2 2 1

39.221 24 1 5 1

44.049 34 2 4 1

45.018 26 0 4 2

46.131 47 1 7 0

49.294 39 2 0 2

49.696 28 0 8 0

50.492 31 3 3 0

60.324 39 1 1 3

68.08 28 2 2 3

Table 3 Crystallographic data of the hydrothermally synthesized

Nb5?-doped Li2SiO3 nanomaterials obtained after 96 h at 180 �C

2h Int h k l

18.80 1,183 2 0 0

26.9704 1,414 1 1 1

33.0387 903 3 1 0

38.4283 845 3 1 1

43.2158 140 2 2 1

51.7762 250 3 1 2

55.4943 173 4 2 1

59.1616 253 3 3 0

62.9741 89 1 1 3

66.1219 42 4 2 2

69.5964 94 3 1 3

Table 4 Crystallographic data of the hydrothermally synthesized

Nb5?-doped Li2Si2O5 nanomaterials obtained after 96 h at 180 �C

2h Int h k l

16.31 121 1 1 0

23.84 102 1 3 0

24.70 1,392 1 1 1

30.60 142 0 4 1

37.44 389 0 0 2

38.11 32 2 2 1

43.95 36 2 4 1

46.10 52 1 7 0

49.20 48 2 0 2

50.58 31 3 3 0

60.33 53 0 3 3

68.12 37 2 2 3
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crystallographic data for lithium metasilicate (JCPDS

29-0829) and lithium disilicate (JCPDS 15-0637), the

refined unit cell parameters of the synthesized Nb-doped

lithium metasilicate and lithium disilicate nanomaterials

are a = 9.3702 Å, b = 5.3994 Å, c = 4.6643 Å and

a = 5.826 Å, b = 14.6168 Å, c = 4.878 Å, respectively.

Microstructure analysis

SEM images of the pure lithium metasilicate and lithium

disilicate are present in our previous work [31]. Figure 4

shows typical SEM images of the synthesized Li1.995-

Nb0.001SiO31d nanoparticles. The synthesized sample is

composed of multi-ply sheets (thickness and length of

about 100 nm and 5 lm, respectively) join together to form

nano-flowers. Typical SEM images of the synthesized

Li1.99Nb0.002Si2O51d and Li1.985Nb0.003Si2O51d are given

in Figs. 5 and 6, respectively. The synthesized Li1.99-

Nb0.002Si2O5 nanomaterial is composed of plate-like

nanoparticles with homogenous dispersion (Fig. 5b, c). The

length of the nano-plates is approximately 0.7–0.8 lm. As

shown in Fig. 6, with increasing the dopant concentration

Table 5 Debye–Scherrer data

information for pure and Nb5?-

doped Li2SiO3 nanomaterials

Data information 2h h B1/2 (�) B1/2 (radian) coshB Crystal

size (nm)

Pure Li2SiO3 26.979 13.4895 0.313217 0.0054639 0.97241 26.12

Nb5?-doped Li2SiO3 (x = 0.25 mol) 26.970 13.485 0.27320 0.0047658 0.97243 29.95

Nb5?-doped Li2SiO3 (x = 0.5 mol) 26.900 13.45 0.27115 0.0047300 0.97257 30.12

Table 6 Debye–Scherrer data

information for pure and Nb5?-

doped Li2Si2O5 nanomaterials

Data information 2h h B1/2 (�) B1/2 (radian) coshB Crystal

size (nm)

Pure Li2Si2O5 24.298 12.149 0.361680 0.0063093 0.97760 22.50

Nb5?-doped Li2Si2O5 (x = 0.50 mol) 24.290 12.145 0.3000 0.005233 0.97762 27.13

Nb5?-doped Li2Si2O5 (x = 0.75 mol) 24.283 12.1415 0.2900 0.005059 0.97763 28.02

Fig. 4 SEM images of the hydrothermally synthesized Li2-2xNb2xSiO3?d (x = 0.0025) nano-flowers
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in the structure to xNb = 0.0075, the resultant nano-plates

assemble to each other to form nano-flower-like structures.

The length and thickness of the nano-plates are estimated

to be 500 and 80–100 nm approximately.

Optical properties

The emission spectra of pure Li2SiO3 and Li2Si2O5 are

shown in Figs. 7 and 8. In the excitation spectrum of the

synthesized Li2SiO3 and Li2Si2O5 nanomaterials, a band is

observed with maxima at 360 and 250 nm, respectively.

Accordingly, in the emission spectrum of the synthesized

Li2SiO3 nanomaterials, an intense peak appears at

410.03 nm. In comparison, an intense peak at 291.45 nm is

observed in the emission spectrum of the synthesized Li2-

Si2O5 nanomaterials. With increasing in the reaction time,

no shift is observed in the emission spectrum of the

obtained Li2SiO3 and Li2Si2O5 nanomaterials. However,

increasing band intensities in the emission spectra of both

compounds are observed with increasing reaction time. In

Fig. 5 SEM images of the hydrothermally synthesized Li2-2xNb2xSi2O5?d (x = 0.005) nanoparticles

100 Page 6 of 10 Int Nano Lett (2014) 4:100

123



the emission spectrum of Nb5?-doped lithium metasilicate

nano-flowers (Fig. 9), under excitation with light at

234 nm, the main emission band is located at 360 nm with

shoulders at 310, 340 and 425 nm. The shoulder appeared

at 310 nm is assigned to the band edge emission. Also, the

broad band with maxima at 360 nm and the shoulder at

340 nm are assigned to the trap state emission of the

nanoparticles. Considering that the energy gap of bulk

lithium silicates is above 3.3 eV, the purple-blue photolu-

minescence appeared as a shoulder at 425 nm (approxi-

mately 2.92 eV) is probably due to a triplet to ground state

transition of a neutral oxygen vacancy defect, as suggested

by ab initio molecular orbital calculations for many other

well-studied metal oxides. Also, the emission band related

to the Nb(V) centers in the structure is expected to be

superimposed on the shoulder at 425 nm [44]. In compar-

ison, the synthesized Nb5?-doped lithium disilicate nano-

particles exhibit an intense broad emission band

(kex = 229 nm) at 420 nm (*2.95 eV) (Fig. 10) assigned

to the oxygen-related defects and Nb5? centers in the

structure, which shows an increasing intensity with

increasing the dopant concentration in the structure [45].

Fig. 6 SEM images of the hydrothermally synthesized Li2-2xNb2xSi2O5?d (x = 0.0075) nano-flowers
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Conclusion

In summary, nano-plates and nano-flowers of Nb5?-doped

lithium metasilicate and lithium disilicate were synthesized

successfully by employing a simple hydrothermal method.

The molar ratio of Li:Si and the dopant concentration in the

reaction mixture affect the crystal phase and morphology

of the final product, respectively. The synthesized Nb-

doped stable phases are isostructural with the correspond-

ing undoped Li2SiO3 or Li2Si2O5 materials. The synthe-

sized nanomaterials exhibited emerging PL optical

properties in the UV–visible region which shows depen-

dence on the dopant amounts in the structure. These

materials are expected to have potential application in

light-emitting devices and as catalysts.
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