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Abstract
We prove strong rate resp. weak rate O(τ ) for a structure preserving temporal dis-
cretization (with τ the step size) of the stochastic Allen–Cahn equation with additive
resp. multiplicative colored noise in d = 1, 2, 3 dimensions. Direct variational argu-
ments exploit the one-sided Lipschitz property of the cubic nonlinearity in the first
setting to settle first order strong rate. It is the same property which allows for uniform
bounds for the derivatives of the solution of the related Kolmogorov equation, and then
leads to weak rateO(τ ) in the presence ofmultiplicative noise. Hence, we obtain twice
the rate of convergence known for the strong error in the presence of multiplicative
noise.

Keywords Stochastic Allen–Cahn equation · Weak error analysis · Time
discretisation · Convergence rates

1 Introduction

We use time discretisation to approximate the stochastic Allen–Cahn equation

{
du = (

�u − (u3 − u)
)
dt + �(u)dW in QT ,

u(0) = u0 inTd ,
(1.1)
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in QT := (0, T ) × T
d , where Td = (

(−π, π)|{−π,π}
)d (supplemented with periodic

boundary conditions) with T > 0 and d = 1, 2, 3. The use of periodic boundary
conditions is for an ease of presentation only, see Remark 5.1, 4. The unknown u in
(1.1) is defined on a given filtered probability space (�,F, (Ft )t≥0,P), and u0 is a
given initial datum. Here W denotes a cylindrical Wiener process and � takes values
in the space of Hilbert–Schmidt operators; see Sect. 2.1 for details.

The deterministic version of (1.1) is the well-known Allen–Cahn equation—a
phase-field model to approximate the dynamics of an (material) interface by a dif-
fuse interface; see e.g. [20] for a recent review of (deterministic) phase-field models.
The related mathematical and physical conclusions usually base on the underlying
Helmholtz free energy functional E : W 1,2(Td) → R, where

E(φ) = 1

2

∫
Td

|∇φ|2 dx +
∫
Td

F(φ) dx, for F(x) = 1

4

(|x |2 − 1
)2

. (1.2)

Here, in particular, the latter energy part accounts for the interfacial/mixing energy,
and is related to f (x) = x3−x in (1.1) by F ′ = f . As a consequence, the Allen–Cahn
equation is the gradient flow of (1.2), i.e.,

∂t u = −DE(u) = �u − f (u) in L2(Td), (1.3)

where DE(u) denotes the Fréchet derivative of E at u: multiplication of (1.3) with
DE(u), integration in space, and the chain rule then lead to the energy identity

E
(
u(t, ·)) +

∫ t

0

∫
Td

∣∣DE
(
u(s, ·))∣∣2 dxds = E

(
u0), 0 ≤ t ≤ T . (1.4)

For E(u0) < ∞, this identity may serve in mathematical analysis to deduce (a pri-
ori) bounds for solutions in physically relevant norms—reflecting the fact that the
Helmholtz energy E is the proper functional to explain the dynamics of (1.3).

This energy-driven approach also serves as guidance to construct the numerical
scheme (1.5) below to properly address the specific nature of (1.3). But before we also
mention here ‘general-purpose’ operator-splitting methods, where the nonlinearity in
DE(u) is treated explicitly in a time marching context to avoid the use of nonlinear
numerical solvers: it is, however, the concomitant violation of the dissipative energy
law (1.4) on a discrete level, see also (1.6) below, that a related stability/convergence
analysis for splitting schemes usually only gives a priori bounds in non-physical norms,
and its derivation is based on a discrete Gronwall type estimate—rather than identity
(1.4)—, which heavily affects discrete long time stability. This drawback, in particu-
lar, may usually only be compensated in simulations by using (comparatively) much
smaller step sizes than in the context of the structure-preserving discretization below;
we also mention here that the usual application of model (1.3) in sciences (e.g., multi-
phase flow in complicated, or even moving domains, [20, Ch. 2]) or geometric PDEs
(e.g., approximation of mean curvature flows, [19]) involves a small scaling factor
ε > 0 under which realistic (diffuse) interface motion holds—which even further
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worsens inherent discrete instabilities of structure notably; see also [20, Ch.’s 4 & 5]
for a related further discussion.

For these reasons we favor as starting point for a temporal discretisation for (1.1)
one which inherits the (gradient flow) structure of the original problem—as is the
following implicit Euler discretisation for (1.3) governing iterates (um)M

m=0,

1

τ

(
um − um−1

) − �um + f
(
um

) = 0 for m ≥ 1, u0 = u0, (1.5)

on an equi-distant mesh (tm)M
m=0 ⊂ [0, T ] of size 0 < τ < 1, and satisfying the

discrete energy inequality (see [21])

E
(
um

) + τ

m∑

=1

∫
Td

∣∣DE
(
u


)∣∣2 dx ≤ E
(
u0

)
, 1 ≤ m ≤ [ T

τ

]
. (1.6)

In this work, we derive weak rates of convergence for the time iteration scheme

um − um−1 − τ�um + τ f
(
um) = �(um−1)�m W m ≥ 1, u0 = u0, (1.7)

with �m W = W (tm) − W (tm−1), to address the SPDE (1.1) of gradient type, gener-
alising (1.5). Again, its construction is motivated by the demand to inherit properties
in terms of the underlying energy E , for which the concept of a variational strong
solution for (1.1) is natural—see Definition 2.1 below—which satisfies the following
energy identity

E
[
E
(
u(t, ·))] + E

[∫ t

0

∫
Td

∣∣DE
(
u(s, ·))∣∣2 dxds

]

= E
[
E
(
u0

)] + 1

2
E

[∫ t

0

∫
Td

(
D2E(u)�(u),�(u)

)
dxds

]
, 0 ≤ t ≤ T , (1.8)

and therefore generalises property (1.4) for (1.3); see e.g. [22], where so-called strong
variational solutions to stochastic equations of gradient-type are considered.

A discretisation close to (1.7) for (1.1) has been studied in [23] in this spirit, and it
was shown that the strong error—i.e., the expectation of the discrete L∞(0, T ; L2

x ) ∩
L2(0, T ; W 1,2

x ) distance of discrete and continuous solution—is of order O(
√

τ). This
is certainly optimal in general due to the low temporal regularity of the drivingWiener
process in (1.1). Our goal in this work is to verify first order weak error estimates for
(1.7); it turns out, that its derivation crucially depends on the kind of noise, which we
assume to be spatially smooth throughout:

(a) If�(u) ≡ � in (1.1) generates additive noise, we even verify strong convergence
rate O(τ ) for scheme (1.7) in Theorem 3.1 for d = 1, 2 and 3. Its derivation
is based on focusing on the random PDE (3.2) for the transformation y(t) =
u(t) − �W (t), which is now differentiable in time (see Corollary 3.1), and a
simple use of the binomial formula to express f

(
u(t)

) = f
(
y(t) + �W (t)

)
right below (3.2). No discrete stability for iterates of (1.7) is needed here, but
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the implicit use of the one-sided Lipschitz nonlinearity f , as well as its explicit
form are exploited to verify the strong error bounds in Sect. 3. This approach is
motivated from [10].

(b) If �(u) in (1.1) exerts multiplicative noise, we use the Kolmogorov equation
(4.45) associated with (1.1), in combination with higher order discrete stability
for iterates (um)M

m=0 from scheme (1.7); cf. Lemma 4.4. For estimate (4.32) and
d = 3 concerning the second derivative of the time-discrete solutionwe are forced
to work under the assumption of an affine linear noise, see (N2) below, whereas
for d = 2 the same argument even works for a general nonlinear noise, see (N1)
below. For the weak error analysis, we conceptually borrow tools from [5, 7, 17];
see Remark 5.1, 3. in particular, where the structural restrictions are detailed. As
in [5, 17, 18], the error E[ϕ(um) − ϕ(u(tm))] for a smooth function ϕ can be
linked to the solution of the Kolmogorov equation by means of an application
of Itô’s formula. Therefore we need time-continuous interpolation of the discrete
iterates (um)M

m=0, which yields an (Ft )-adapted process. Since we work with the
fully implicit scheme (1.7) this is more complicated than in previous works [5,
17, 18]. A natural candidate for the interpolation is

uτ (t) = tm − t

τ
um−1 + Tτ

(
1

τ

∫ t

tm−1

um−1 ds +
∫ t

tm−1

�(um−1) dW

)

for , t ∈ [tm−1, tm], where the solution map Tτ for (4.1) is the discrete nonlinear
semi-group corresponding to DE , which we analyse in Sect. 4.1. We observe that
the nonlinearity does not appear explicitely in the formula for uτ . In previous
works the linear discrete semigroup Sτ = (Id − τ�)−1 is used instead and f
is explicitly evaluated. It turns out that the nonlinear map Tτ has nice properties
similar to the linear case as a consequence of the one-sided Lipschitz property of
f ; see Lemma 4.1. In particular, Tτ can be linearised around the identity with an
error of order O(τ ) in various norms; see Corollary 4.2.

The goal in this paper is a weak error analysis of (1.7) as an example for an
implementable scheme in a broad setting of applications, including multiphase flow
dynamics in complicated domains, which inherits (long time) discrete stability even
for scalings ε  1 to properly simulate diffuse phase field dynamics; see [19, 20],
and also item 5. in Remark 3.1. In fact, there exist several other works on weak error
analysis for different schemes to solve (1.1) in the literature, most of which apply
to restricted data settings, such as domains for d = 1 being intervals (a, b) ⊂ R,
or related drift operators being generators of linear semigroups, for which spectral
properties need be available for actual computations; see items 3.–4. of Remark 3.1.
In this context, admissible spatial meshes are often needed to be equi-distant, which
clearly affects the capacity of related schemes to simulate multiscale phase evolution
via (1.1) for general data settings.
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2 Mathematical framework

2.1 Probability setup

Let (�,F, (Ft )t≥0,P)be a stochastic basiswith a complete, right-continuousfiltration.
The process W is a cylindrical Wiener process, that is, W (t) = ∑

k≥1 β j (t)e j with
(βi )i≥1 being mutually independent real-valued standard Wiener processes relative to
(Ft )t≥0, and (ei )i≥1 a complete orthonormal system in a separable Hilbert spaceU. Let
us now give the precise definition of the diffusion coefficientΦ taking values in the set
of Hilbert–Schmidt operators L2(U;H), where H can take the role of various Hilbert
spaces such as L2(Td), W 1,2(Td) and W 2,2(Td) for which we use the shorthand
notations L2

x , W 1,2
x and W 2,2

x .
In the following we formulate two sets of assumptions regarding the (regularity of

the) diffusion coefficient �, which will allow us to derive high moment bounds for
higher derivatives of the solution of (1.1) in Sect. 2.2. In the first case (a) below we
consider a general nonlinear multiplicative noise. In the second case (N2) we assume
that � is an affine linear function of u. As we shall see below, assumption (N1) is
always sufficient for our analysis in the case d = 1, 2; see Remark 5.1, 3.

(N1) (a) For z ∈ L2(Td) let Φ(z) : U → L2(Td) be defined by �(z)ek = gk(·, z(·)),
where gk ∈ C1(Td × R) and,1

∑
k≥1

|gk(x, ξ)|2 ≤ c(1 + |ξ |2),
∑
k≥1

|∇ξgk(x, ξ)|2 ≤ c,

∑
k≥1

|∇xgk(x, ξ)|2 ≤ c(1 + |ξ |2), x ∈ T
d , ξ ∈ R.

(2.1)

Note that this implies

‖�(u) − �(v)‖L2(U;L2
x ) ≤ c‖u − v‖L2

x
∀u, v ∈ L2

x , (2.2)

‖�(u)‖L2(U;W 1,2
x )

≤ c
(
1 + ‖u‖W 1,2

x

) ∀u ∈ W 1,2
x , (2.3)

‖D�(u)‖L2(U;L(L2
x )) ≤ c ∀u ∈ L2

x . (2.4)

(b) We require gk ∈ C2(Td × R), together with

∑
k≥1

|∇2
xgk(x, ξ)|2 ≤ c(1 + |ξ |2),

∑
k≥1

|∇x,ξ∇ξgk(x, ξ)|2 ≤ c, (2.5)

for x ∈ T
d , ξ ∈ R and sometimes also

∑
k≥1

|∇3
xgk(x, ξ)|2 ≤ c(1 + |ξ |2),

∑
k≥1

|∇ξ∇2
x,ξgk(x, ξ)|2 ≤ c. (2.6)

1 We denote by ∇x the derivative with respect to first variable, i.e. the d-valued spatial variable and by ∇ξ

the derivative with respect to the second variable.
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(N2) We assume that �(z)ek = αk(·)z(·) + βk(·), where αk, βk ∈ C3(Td) and

∑
k≥1

‖αk‖C3(Td ) +
∑
k≥1

‖βk‖C3(Td ) ≤ c. (2.7)

Note that (2.1) and (2.5) imply

‖�(u)‖L2(U;W 2,2
x )

≤ c
(
1 + ‖u‖2

W 1,4
x

+ ‖u‖W 2,2
x

) ∀u ∈ W 2,2
x , (2.8)

‖D�(u)‖L2(U;L(W 1,2
x ))

≤ c ∀u ∈ W 1,2
x , (2.9)

‖D2�(u)‖L2(U;L(L4
x ×L4

x ;L2
x )) ≤ c ∀u ∈ L2

x , (2.10)

whereas (2.1), (2.5) and (2.6) together yield

‖�(u)‖L2(U;W 3,2
x )

≤ c
(
1 + ‖u‖3

W 1,6
x

+ ‖u‖2
W 2,2

x
+ ‖u‖W 3,2

x

) ∀u ∈ W 3,2
x , (2.11)

‖D3�(u)‖L2(U;L(L6
x ×L6

x ×L6
x ;L2

x )) ≤ c ∀u ∈ L2
x . (2.12)

Assumption (2.1) allows us to define stochastic integrals. Given an (Ft )-adapted pro-
cess u ∈ L2(�; C([0, T ]; L2(Td))), the stochastic integral

t �→
∫ t

0
Φ(u) dW

is a well-defined process taking values in L2(Td) (see [16] for a detailed construction).
Moreover, we can multiply by test functions to obtain

〈 ∫ t

0
Φ(u) dW , φ

〉
L2

x

=
∑
i≥1

∫ t

0
〈Φ(u)ei , φ〉L2

x
dβi ∀φ ∈ L2(Td).

Similarly, we can define stochastic integrals with values in W 1,2(Td) and W 2,2(Td)

respectively if u belongs to the corresponding class.

2.2 The concept of solutions

In this section we give a precise definition of a solution to (1.1) and derive some of its
basic properties.

Definition 2.1 Let (�,F, (Ft )t≥0,P) be a given stochastic basis with a complete
right-continuous filtration and an (Ft )-cylindrical Wiener process W . Suppose that
� satisfies (N1) (a) and that d = 1, 2, 3. Let u0 be an F0-measurable random variable
with values in L2(Td). Then u is called a weak pathwise solution to (1.1) with the
initial condition u0 provided

(a) the function u is (Ft )-adapted and

u ∈ C([0, T ]; L2(Td)) ∩ L2(0, T ; W 1,2(Td)) P-a.s.,
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(b) the equation

∫
Td

u(t) ϕ dx −
∫
Td

u0 ϕ dx

= −
∫ t

0

∫
Td

f (u) ϕ dx dt −
∫ t

0

∫
Td

∇u · ∇ϕ dx ds +
∫ t

0

∫
Td

�(u) ϕ dx dW

holds P-a.s. for all ϕ ∈ W 1,2(Td) and all t ∈ [0, T ].
The existence of a solution can be shown by the popular variational approach; see

e.g. [25].

Theorem 2.1 Let (�,F, (Ft )t≥0,P) be a given stochastic basis with a complete right-
continuous filtration and an (Ft )-cylindrical Wiener process W . Suppose that �

satisfies (N1) (a) and that d = 1, 2, 3. Let u0 be an F0-measurable random vari-
able such that u0 ∈ Lq(�; L2(Td)) for some q > 2. Then there exists a unique weak
pathwise solution to (1.1) in the sense of Definition 2.1 with the initial condition u0.

Lemma 2.1 Suppose that � satisfies (N1) (a) and let u be the weak pathwise solution
to (1.1).

(a) Assume that E(u0) ∈ Lq(�) for some q ≥ 1. Then we have

E

[(
sup

0≤s≤T
E(u(s)) +

∫ T

0
‖DE(u(s))‖2L2

x
ds

)q]
≤ cE

[(
E(u0) + 1

)q]
, (2.13)

where c = c(q, T , u0) > 0.
(b) Assume that E(u0) ∈ L1(�). Then we have for any τ ∈ (0, T )

E

[
sup

0≤s≤τ

‖u(s) − u0‖2L2
x
+

∫ τ

0
‖∇u(s)‖2L2

x
ds

]
≤ cτ, (2.14)

where c = c(T , u0) > 0 is independent of τ > 0.

Proof Part (a) is standard and similar results can be found in the literature, see, e.g.,
[23]). For the reader’s convenience we decided to give the details nevertheless. Apply-
ing Itô’s formula (this can be justified by truncating the function F and applying the
Itô-formula in Hilbert spaces from [16, Theorem 4.17].) to the function t �→ E

(
u(t)

)
yields

E
(
u(t)

) +
∫ t

0

∥∥DE
(
u(s)

)∥∥2
L2

x
ds

= E
(
u0

) +
∫
Td

∫ t

0
DE(u(s))�(u(s)) dW dx

+ 1

2

∑
k≥1

∫ t

0

∫
Td

D2E(u(s))
(
�(u(s))ek,�(u(s))ek

)
dx ds

=: (I) + (II).
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We have by (2.1)

(II) = 1

2

∑
k≥1

∫ t

0

∥∥∇�(u(s))ek
∥∥2

L2
x
ds + 1

2

∑
k≥1

∫ t

0

∫
Td

f ′(u(s))|�(u(s))ek |2 dx ds

≤ c
∫ t

0

∫
Td

(|u|2 + ∣∣∇u
∣∣2) dx ds + c

∫ t

0

∫
Td

(|u|2 + 1
)2 dx

≤ c
∫ t

0

∫
Td

∣∣∇u
∣∣2 dx ds + c

∫ t

0

∫
Td

(
F(u) + 1

)
dx ds

≤ c

( ∫ t

0
E(u(s)) ds + 1

)
.

Similarly, by Burkholder–Davis–Gundy inequality,

E

[(
sup

0≤t≤T
(I)

)q]
≤ cE

[(∑
k≥1

∫ t

0

( ∫
Td

DE(u(s))�(u(s))ek dx

)2

ds

) q
2
]

≤ cE

[(∫ t

0
‖DE(u(s))‖2L2

x

(‖u(s)‖2L2
x
+ 1

)
ds

) q
2
]

≤ cE

[(
sup

0≤s≤t
E(u(s)) + 1

)q]
+ cE

[( ∫ t

0
‖DE(u(s))‖2L2

x
ds

)q]
.

For the second estimate we apply Itô’s formula to t �→ 1
2‖u(t) − u0‖2L2

x
and obtain

similarly to (2.20)

1
2‖u(τ ) − u0‖2L2

x
+

∫ τ

0
‖∇u(s)‖2L2

x
ds

=
∫ τ

0

∫
Td

∇u(s) : ∇u0 dx ds −
∫ τ

0

∫
Td

f (u(s)) (u(s) − u0) dx ds

+
∫
Td

∫ τ

0
(u(s) − u0) · �(u(s)) dW dx + 1

2

∫ τ

0
‖�(u(s))‖2L2(U;L2(Td ))

ds.

We clearly have

E

[∫ τ

0

∫
Td

∇u(s) : ∇u0 dx ds

]

≤
(
E

[∫ τ

0
‖∇u(s)‖2L2

x
ds

]) 1
2
(
E

[∫ τ

0
‖∇u0‖2L2

x
ds

]) 1
2 ≤ cτ
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using (2.13). Now (2.13) implies

E

[ ∫ τ

0

∫
Td

f (u(s)) (u(s) − u0) dx ds
]

≤ cτE

[
sup

0≤s≤τ

‖u(s)‖q+1
L4

x
+ ‖u0‖4L4

x

]

≤ cτE

[
sup

0≤s≤τ

E(u(s)) + E(u0) + 1

]
≤ cτ.

Finally,

E

[∫ τ

0
‖�(u(s))‖2L2(U;L2

x )
ds

]
≤ cE

[∫ τ

0

(‖u(s)‖2L2
x
+ 1

)
ds

]

≤ cτ

(
E

[
sup

0≤s≤τ

‖u(s)‖2L2
x

]
+ 1

)
≤ cτ

by (2.1) and (2.13). Arguing as above in the proof of (2.13) we have

E

[
sup

0≤t≤τ

∣∣∣∣
∫
Td

∫ t

0
(u(s) − u0) · �(u(s)) dW dx

∣∣∣∣
]

≤ cE

[
max
0≤s≤τ

‖u(s) − u0‖L2
x

(∫ τ

0
‖�(u(s))‖2L2(U,L2

x )
ds

) 1
2
]

≤ κ E

[
sup

0≤s≤τ

‖u(s) − u0‖2L2
x

]
+ c(κ)E

[ ∫ τ

0
‖�(u(s))‖2L2(U,L2

x )
ds

]

≤ κ E

[
sup

0≤s≤τ

‖u(s) − u0‖2L2
x

]
+ c(κ)E

[ ∫ τ

0

(
1 + ‖u(s)‖2L2

x

)
ds

]

≤ κ E

[
sup

0≤s≤τ

‖u(s) − u0‖2L2
x

]
+ c(κ)τE

[
sup

0≤s≤τ

‖u‖2L2
x
+ 1

]

≤ κ E

[
sup

0≤s≤τ

‖u(s) − u0‖2L2
x

]
+ c(κ)τ

using (2.13). Plugging all together shows (2.14). ��

The following lemma collects moment bounds (i.e., p ≥ 2) in higher norms and is
reminiscent of [23, Lemma 3.1].

Lemma 2.2 Suppose that � satisfies (N1) (a) and let u be the weak pathwise solution
to (1.1).

(a) Assume that u0 ∈ L p(�, L p(Td)) for some p ≥ 2. Then we have

E

[
sup

0≤s≤T
‖u(s)‖p

L p
x

+
∫ T

0
‖∇|u(s)| p

2 ‖2L2
x
ds

]
≤ cE

[‖u0‖p
L p

x
+ 1

]
. (2.15)
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(b) Assume that u0 ∈ L p(�, W 1,p(Td)) for some p > 1. Then we have

E

[
sup

0≤s≤T
‖∇u(s)‖p

L p
x

+
∫ T

0
‖∇|∇u(s)| p

2 ‖2L2
x
ds

]
≤ cE

[‖∇u0‖p
L p

x
+ 1

]
. (2.16)

(c) Assume that u0 ∈ L p(�, W 2,p(Td)) ∩ L2p(�, W 1,p(Td)) hold and that � sat-
isfies additionally (N1) (b). Then we have

E

[
sup

0≤s≤T
‖∇2u(s)‖p

L p
x

+
∫ T

0
‖∇|∇2u(s)| p

2 ‖2L2
x
ds

]

≤ cE
[‖∇2u0‖p

L p
x

+ ‖∇u0‖2p

L2p
x

+ 1
]
.

(2.17)

Here c = c(T ,�, p) > 0.

Proof Ad (a). We apply Itô’s formula (see [16, Thm. 4.17]) to the functional t �→
1
p ‖u(t)‖p

L p
x
and obtain

1
p ‖u(t)‖p

L p
x

+
∫ t

0

∫
Td

|u(s)|p−2|∇u(s)|2 dx ds +
∫ t

0

∫
Td

|u(s)|p−2 f (u(s)) u(s) dx ds

= 1
p ‖u0‖p

L p
x

+
∫
Td

∫ t

0
|u|p−2u �(u) dW dx

+ p−1
2

∑
i≥1

∫ t

0

∫
Td

|u(s)|p−2|�(u(s))ei |2 dx ds. (2.18)

We have
∫ t

0

∫
Td

|u(s)|p−2|∇u(s)|2 dx ds +
∫ t

0

∫
Td

|u(s)|p−2 f (u(s)) u(s) dx ds

≥ c

( ∫ t

0

∫
Td

|∇|u(s)| p
2 |2 dx ds −

∫ t

0
‖u(s)‖p

L p
x
ds

)
.

On account of (2.1) we obtain

∑
i≥1

∫ t

0

∫
Td

|u(s)|p−2|�(u(s))ei |2 dx ds ≤ c
∫ t

0

(‖u(s)‖p
L p

x
+ 1

)
ds.

Finally, we use Burkholder–Davis–Gundy inequality, (2.1) and Young’s inequality to
conclude

E

[
sup

0≤t≤T

∣∣∣∣
∫
Td

∫ t

0
|u|p−2u �(u) dW dx

∣∣∣∣
]

≤ cE

[( ∑
i≥1

∫ T

0

( ∫
Td

|u(s)|p−2u(s)�(u(s))ei dx

)2

ds

) 1
2
]
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≤ cE

[( ∫ T

0

(‖u(s)‖2p
L p

x
+ 1

)
ds

) 1
2
]

≤ cE

[(
sup

0≤s≤T
‖u(s)‖p

L p
x

∫ T

0
‖u(s)‖p

L p
x
ds + 1

) 1
2
]

≤ κ E

[
sup

0≤s≤T
‖u(s)‖p

L p
x

]
+ c(κ)E

[ ∫ T

0
‖u(s)‖p

L p
x
ds + 1

]
,

where Gronwall’s lemma comes again into play. Combining everything, choosing κ

small enough and using Gronwall’s lemma yields the claim.
Ad (b). Differentating (1.1) with respect to γ ∈ {1, 2, 3} yields

d∂γ u =
(
�∂γ u − f ′(u)∂γ u

)
dt + ∂γ {�(u)dW }. (2.19)

Applying Itô’s formula to t �→ 1
p ‖∂γ u(t)‖p

L p
x
we obtain

1
p ‖∂γ u(t)‖p

L p
x

+
∫ t

0

∫
Td

|∂γ u(s)|p−2|∂γ ∇u(s)|2 dx ds

+
∫ t

0

∫
Td

|∂γ u(s)|p−2 f ′(u(s))|∂γ u(s)|2 dx ds

= 1
p ‖∂γ u0‖p

L p
x

+
∫
Td

∫ t

0
|∂γ u|p−2∂γ u ∂γ {�(u) dW } dx

+ p−1
2

∑
i≥1

∫ t

0

∫
Td

|∂γ u(s)|p−2|∂γ {�(u(s))ei }|2 dx ds.

(2.20)

We have

∫ t

0

∫
Td

|∂γ u(s)|p−2|∇∂γ u(s)|2 dx ds +
∫ t

0

∫
Td

|∂γ u(s)|p−2 f ′(u(s)) |∂γ u(s)|2 dx ds

≥ c

( ∫ t

0

∥∥∇|∂γ u(s)| p
2 ‖2L2

x
ds −

∫ t

0
‖∂γ u(s)‖p

L p
x
ds

)
.

On account of (2.1) we obtain

∑
i≥1

∫ t

0

∫
Td

|∂γ u(s)|p−2|∂γ {�(u(s))ei }|2 dx ds

≤ c
∫ t

0

(‖∂γ u(s)‖p
L p

x
+ ‖u(s)‖p

L p
x

+ 1
)
ds ≤ c

∫ t

0

(‖∇u(s)‖p
L p

x
+ 1

)
ds.

Finally, we use Burkholder–Davis–Gundy inequality, (2.1) and Young’s inequality to
conclude
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E

[
sup

0≤t≤T

∣∣∣∣
∫
Td

∫ t

0
|∂γ u|p−2∂γ u ∂γ {�(u)} dW dx

∣∣∣∣
]

≤ cE

[( ∑
i≥1

∫ T

0

( ∫
Td

|∂γ u(s)|p−2∂γ u(s) ∂γ {�(u(s))}ei dx

)2

ds

) 1
2
]

≤ cE

[( ∫ T

0

(‖∇u(s)‖2p
L p

x
+ 1

)
ds

) 1
2
]

≤ cE

[(
sup

0≤s≤T
‖∇u(s)‖p

L p
x

∫ T

0
‖∇u(s)‖p

L p
x
ds + 1

) 1
2
]

≤ κ E

[
sup

0≤s≤T
‖∇u(s)‖p

L p
x

]
+ c(κ)E

[ ∫ T

0
‖∇u(s)‖p

L p
x
ds + 1

]
,

where Gronwall’s lemma comes again into play. Combining everything, choosing κ

small enough and using Gronwall’s lemma yields the claim.
Ad (c). Differentating (2.19) again yields

d∂γ1∂γ2u =
(
�∂γ1∂γ2u − f ′(u)∂γ1∂γ2u

)
dt + ∂γ1∂γ2{�(u)}dW

− f ′′(u)∂γ1u∂γ2u dt,
(2.21)

where γ1, γ2 ∈ {1, 2, 3}. The nonlinearity can be handled as in (b), but for the noise
we obtain the two terms

∂γ1∂γ2�(u)dW + ∂γ1 Dξ�(u)∂γ2udW + ∂γ2 Dξ�(u)∂γ1udW

+ D2
ξ �(u)∂γ1∂γ2udW + D2

ξ �(u)∂γ1u∂γ2udW .

The first four of them can be estimated similarly to (b) using (2.5) but the last one
requires more care (note that it disappears for affine linear noise). For the correction
term we have

∑
i≥1

∫ t

0

∫
Td

|∂γ1∂γ2u(s)|p−2|D2
ξ �(u(s))ei∂γ1u(s) ∂γ2u(s)|2 dx ds

≤ c
∫ t

0

(‖∇2u(s)‖p
L p

x
+ ‖∇u(s)‖2p

L2p
x

+ 1
)
ds

on account of (N1). Applying expectations and using part (b) (with the assumption
u0 ∈ L2p(�; W 1,p(Td)) the second term is bounded, whereas the first one can be
handled byGronwall’s lemma. The supremum of the corresponding stochastic integral

∫
Td

∫ t

0
|∂γ1∂γ2u|p−2D2

ξ �(u)∂γ1u ∂γ2u dW dx

can be estimated by similar means. ��
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2.3 The semigroup of the Laplace operator

In this subsection we recall some well-known facts concerning the Laplace operator
and (the discretisation of) its semigroup. We denote by L(X,Y) the space of bounded
linear operators between two Banach spaces X and Y and write L(X) for L(X,X).
It is classical that there is a basis of L2(Td) consisting of eigenfunctions (v j ) j≥1 of
A = −� with positive eigenvalues (ν j ) j≥1 such that ν j → ∞ as j → ∞. We can
use that to define powers of A by setting

Ar u =
∑
j≥1

νr
j 〈u, v j 〉L2

x
v j , r ≥ 0,

for functions u from

W r ,2(Td) :=
{

u =
∑
j≥1

〈u, v j 〉L2
x
v j :

∑
j≥1

νr
j 〈u, v j 〉2L2

x
< ∞

}
.

Similarly, we can define for r < 0 the space W r ,2(Td) as the closure of L2 with
respect to the norm

‖u‖2Wr ,2 :=
∑
j≥1

νr
j 〈u, v j 〉2L2

x
.

It is classical that A generates a strongly continuous semigroup and it is well-known
that its discretisation Sτ = (Id + τA)−1 satisfies

‖AβSk
τ ‖L(Wr ,2

x )
≤ cr (kτ)−β ∀β ≥ 0, k ∈ N, r ≥ 0 (2.22)

‖AβS(t)‖L(L2
x ) ≤ ct−β ∀β ≥ 0, (2.23)

‖A−β(Id − Sτ )‖L(L2
x ) ≤ cτβ ∀β ∈ [0, 1]. (2.24)

Note that (2.23) follows from supt ‖tAS(t)‖L(L2
x ) < ∞, while (2.24) is a consequence

of Id−Sτ = τASτ and (2.22) with k = 1. Let us also mention the following estimate
which controls the error between S(τ ) and Sτ

‖Aβ(S(τ ) − Sτ )‖L(L2
x ) ≤ cτ−β ∀β ∈ [−2,∞). (2.25)

Finally, (2.25) easily implies

‖Aβ(S(τ ) − Sτ )‖L(Wr ,2
x ,L2

x )
≤ cτ−β+r/2 ∀β, r : β − r/2 ∈ [−2,∞). (2.26)

2.4 Malliavin calculus

We recall some basic facts from Malliavin calculus, see [26] for a thorough intro-
duction. Given a cylindrical (Ft )-Wiener process as in Sect. 2.1, a smooth real-valued
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function F defined on Un and smooth random variables with values in ψ1, . . . , ψn ∈
L2(0, T ;U) we set

D f
t F

(∫ T

0
〈ψ1, dW 〉U, . . . ,

∫ T

0
〈ψn, dW 〉U

)

=
n∑

i=1

∂i F

(∫ T

0
〈ψ1, dW 〉U, . . . ,

∫ T

0
〈ψn, dW 〉U

)
〈ψi (t), f 〉U, f ∈ U.

This allows to define DF by DF(t) f = D f
t F . With this definition it can be shown

D defines a closable operator on L2(� × (0, T );U). A natural domain space for D is
given by D1,2 which is the closure of the random variables (taking values in the set of
smooth functions on Un) with respect to the norm

‖F‖2
D1,2 := E

[
|F |2 +

∫ T

0
|Ds F |2 ds

]
.

Note that Dt F = 0 for t ≥ t ′ provided F is (Ft ′)-adapted. We have a version of the
chain rule: For ϕ ∈ C1

b(R) and F ∈ D
1,2 we have ϕ(F) ∈ D

1,2 together with the usual
form Dϕ(F) = ϕ′(F)DF .
Most important for us is the Malliavin integration by parts formula

E

[
F

(∫ T

0
〈ψ, dW 〉U

)]
= E

[ ∫ T

0
〈Ds F, ψ(s)〉U ds

]
.

It holds for all F ∈ D
1,2 and all adapted ψ ∈ L2(� × (0, T );U) with

E
[ ∫ T

0

∫ T
0 |Dsψ(t)|2 ds dt

]
< ∞.

Similarly, we can define the Malliavin derivative of random variables tak-
ing values in L2(Td). We denote by D

1,2(L2(Td)) the set of random vari-
ables G ∈ L2(�; (L2(Td))) with G = ∑

j≥1 α jv j with (α j ) ⊂ D
1,2 and∑

j≥1

∫ T
0 |Ds G j |2 ds < ∞. Here (v j ) j≥1 denotes a basis of L2(Td) consisting of

eigenfunctions of −�. For G ∈ D
1,2(L2(Td)) with U = ∑

j≥1 α jv j and f ∈ U we
define

D f
s U :=

∑
j≥1

(D f
s α j )v j , DsU :=

∑
j≥1

(Dsα j )v j .

Again the chain rule holds: For U ∈ D
1,2(L2(Td)) with U = ∑

j≥1 α jv j and

ϕ ∈ C1
b(L2(Td)) we have ϕ(U ) ∈ D

1,2(L2(Td)) with Dϕ(U ) = 〈Dϕ(U ),DU 〉L2
x
.

Finally, for U ∈ D
1,2(L2(Td)), u ∈ C2

b (L2(Td)) and ψ ∈ L2
(
� × (0, T ); L2(U;

L2(Td)
)
adapted we have

E

[〈
Du(U ),

∫ T

0
ψ dW

〉
L2

x

]
= E

[∑
i≥1

∫ T

0
D2u(U )(Dei

s U , ψ(s)ei ) ds

]
. (2.27)
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3 Strong first order convergence rate for additive noise

In [23], strong order convergence rateO(
√

τ) is shown for a time-implicit discretisa-
tion of (1.1) with multiplicative noise. In this section, this result is improved to O(τ )

in the presence of additive noise �(u) ≡ � in (1.1). For this purpose, we use the
transform

y(t) = u(t) −
∫ t

0
� dW (s) = u(t) − �W (t) [0 ≤ t ≤ T ] (3.1)

to recast (1.1) into the form

∂t y = �y − f (y + �W ) + �[�W ]
= �y −

[
f (y) + 3y2�W + 3y

[
�W

]2] + �[�W ] − f
(
�W

)
, (3.2)

where we employ the following calculation for the last identity,

f (y + �W ) = (
y + �W

)3 − (
y + �W

)
= y3 + [

�W
]3 + 3y2�W + 3y

[
�W

]2 − (
y + �W

)
= f (y) + f

(
�W

) + 3y2�W + 3y
[
�W

]2
.

Assuming sufficient regularity of �, Lemma 2.2 implies the following corollary con-
cerning the regularity of y.

Corollary 3.1 Let u be the unique weak pathwise solution to (1.1).

(a) Assume that u0 ∈ L p(�, W 2,2(Td)) for some p ≥ 2 and � ∈ L2(U; W 2,2(Td)).
Then we have

E

[
sup

0≤s≤T
‖∂t y(s)‖p

L2
x

]
+ E

[
sup

0≤s≤T
‖y(s)‖p

W 2,2
x

]
≤ c(p, T ,�, u0). (3.3)

(b) Assume that u0 ∈ L2(�, W 3,2(Td)) and � ∈ L2(U; W 3,2(Td)). Then we have

E

[
sup

0≤s≤T
‖∇∂t y(s)‖2L2

x

]
≤ c(T ,�, u0). (3.4)

A reformulation corresponding to (3.2) was used in [10] to accomplish a corre-
sponding goal, leading to an improved (local) rate of convergence for a discretisation
of the 2D Navier-Stokes equation with additive noise (see [11] for the results in the
multiplicative case). In comparison, the nonlinearity f = F ′ in (1.1) is again non-
Lipschitz, but now is one-sided Lipschitz, which here leads to a discretisation scheme
with strong rate O(τ ).
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For its derivation, we define ym := um − �W (tm) for iterates (um)M
m=1 from (1.7),

which satisfy the following identity,

dt ym − �ym + f (ym) + 3|ym |2�W (tm) + 3ym |�W (tm)|2
= �[�W (tm)] − f (�W (tm))

(3.5)

for m ≥ 1, and y0 = u0. Here dt denotes the discrete time derivative, that is dt ym =
τ−1(ym − ym−1) for m ≥ 1. We make the following observations:

(1) An equivalent derivation of Eq. (3.5) is via an implicit Euler-based time discreti-
sation for the random PDE (3.2). Equation (3.5) may be used instead of (1.7) as
an alternative scheme to solve (1.1).

(2) In the strong error analysis for (ym)M
m=1 below, we prove order O(τ ); the proof

rests on bounds for the time-derivative of the (weak variational) solution y from
(3.2) in different norms, which are now available. Since ym −y(tm) = um −u(tm),
this result transfers to (1.7); see also Remark 3.1, item 4.

The following perturbation analysis evidences the role that the involved nonlinearity
f = F ′ will play in the strong error analysis in Sect. 3.2.

3.1 A perturbation analysis for (3.5)

We start with a perturbation analysis, where we refer to (ym
i )M

m=1 as the solution
of (3.5), with y0i = y0,i , for i ∈ {1, 2}. Subtracting both identities then leads to
(em := ym

2 − ym
1 )

dt e
m − �em +

[
f (ym

2 ) − f (ym
1 )

]
+ 3

[
|ym

2 |2 − |ym
1 |2

]
�W (tm) + 3em |�W (tm)|2 = 0 ,

where dt em := 1
τ
(em − em−1). We write

dt em − �em + Im + IIm + IIIm = 0 (3.6)

with an obvious meaning of the terms Im , IIm and IIIm . When written in weak
form, we test with em , and treat resulting terms for Im and IIm independently. For
the first term Im we use the following identity which is based on binomial formula
(a, b ∈ R),

b3 − a3 = 1

2

(
b3 − b2a + b2a − a3) + 1

2

(
b3 − ba2 + ba2 − a3)

= 1

2

(
b2(b − a) + a(b2 − a2)

) + 1

2

(
a2(b − a) + b(b2 − a2)

)

= 1

2

(
a2 + b2

)
(b − a) + 1

2

(
a + b

)2
(b − a) .
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With its help, we obtain that

〈
Im, em 〉

L2
x
+ ‖em‖2L2

x
=

〈
(ym

1 )3 − (ym
2 )3, em

〉
L2

x

=
〈1
2

∣∣ym
1 + ym

2 |2 + 1

2

[
(ym

1 )2 + (ym
2 )2

]
em, em

〉
L2

x

. (3.7)

And, by binomial formula, and (3.7),

∣∣〈IIm , em〉L2
x

∣∣ = 3
∣∣∣〈em[

ym
1 + ym

2 ], em�W (tm)
〉
L2

x

∣∣∣
≤ 3‖em�W (tm)‖2L2

x
+ 3

4
‖em [ym

1 + ym
2 ]‖2L2

x

≤ 3‖em�W (tm)‖2L2
x

+ 1

2
‖em [ym

1 + ym
2 ]‖2L2

x
+ 1

2

(
‖em ym

1 ‖2L2
x

+ ‖em ym
2 ‖2L2

x

)

= 〈
IIIm , em 〉

L2
x

+ 〈
Im , em 〉

L2
x

+ ‖em‖2L2
x
,

where we used that

1

4
‖em[ym

1 + ym
2 ]‖2L2

x
≤ 1

2

(
‖em ym

1 ‖2L2
x
+ ‖em ym

2 ‖2L2
x

)

by Young’s inequality. By now using these calculations for the error identity, as well
as the index m, and taking into account that

1

2
dt‖em‖2L2

x
+ τ

2
‖dt e

m‖2L2
x

= 1

τ

〈
em − em−1, em 〉

L2
x

we find

1

2
dt‖em‖2L2

x
+ τ

2
‖dt e

m‖2L2
x
+ ‖∇em‖2L2

x
≤ ‖em‖2L2

x
, (3.8)

and the implicit version of Gronwall’s lemma settles the estimate

1

2
max

1≤m≤M
E

[‖em‖2L2
x

] + E

[ M∑
m=1

τ‖∇em‖2L2
x

]
≤ CE

[‖y0,1 − y0,2‖2L2
x

]
. (3.9)

3.2 Error analysis for (3.5)

We integrate in (3.2) over [tm−1, tm] to get

y(tm) − y(tm−1) +
∫ tm

tm−1

( − �y + f
(
y
) + 3y2�W + 3y[�W ]2) ds

=
∫ tm

tm−1

(
�[�W ] − f (�W )

)
ds (3.10)

123



Stochastics and Partial Differential Equations: Analysis and Computations

and define

IVm(s) := −�y(s) + f
(
y(s)

) + 3y2(s)�W (s) + 3y[�W (s)]2, s ∈ [tm−1, tm],
Vm :=

∫ tm

tm−1

(
�[�W ] − f (�W )

)
ds.

In order to apply the parts from Sect. 3.1, we write

IVm(s) = −�y(tm) + f
(
y(tm)

) + 3
(
y(tm)

)2
�W (tm)

+3y(tm)[�W (tm)]2 + restIVm (s)

for s ∈ [tm−1, tm], where

restIVm (s) =
∫ tm

s
∂t

(
�y(ξ) − f

(
y(ξ)

))
dξ + 3

((
y(s)

)2
�W (s) − (

y(tm)
)2

�W (tm)
)

+ 3
(

y(s)[�W (s)]2 − y(tm)[�W (tm)]2
)

=:
3∑

i=1

rest(i)
IVm (s) . (3.11)

For the error Em := y(tm) − ym , on using IVm(tm−1), we may now easily deduce
an equation of the form (3.6), with terms similar to Im,IIm , and IIIm , and a non-
vanishing right-hand side

∫ tm
tm−1

restIVm (s) ds instead. When tested with Em , the
arguments to estimate the first three terms may then be estimated as in Sect. 3.1,
leading to inequality (3.8), such that we finally arrive at P-a.s.:

1

2
dt‖Em‖2L2

x
+ τ

2
‖dt Em‖2L2

x
+ ‖∇Em‖2L2

x

≤ 2‖Em‖2L2
x
+

∣∣∣
∫ tm

tm−1

〈
restIVm (s), Em 〉

L2
x
ds

∣∣∣ + 1

2
‖Vm‖2L2

x
. (3.12)

Note that E[‖Vm‖2
L2

x
] ≤ τ 2t3m ; for the remaining term on the right-hand side, we treat

the three terms {rest(i)
IVm }3i=1 separately:

E

[〈∫ tm

s
∇∂t y(ξ) dξ,∇Em

〉
L2

x

]

≤ 1

2
E

[∥∥∥
∫ tm

s
∇∂t y(ξ) dξ

∥∥∥2
L2

x

]
+ 1

2
E

[‖∇Em‖2L2
x

]

≤ τ

2
E

[∫ tm

tm−1

‖∇∂t y(ξ)‖2L2
x
dξ

]
+ 1

2
E

[‖∇Em‖2L2
x

]
,

(3.13)

where the first term is bounded byCτ 2, thanks to (3.4), andCorollary 3.1. BySobolev’s
embedding, we estimate for κ > 0 arbitrary
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3E
[〈∫ tm

s
y2(ξ)∂t y(ξ) dξ, Em

〉
L2

x

]

≤ Cτ E

[∫ tm

s
‖y2(ξ)‖2L6

x
‖∂t y(ξ)‖2L2

x
dξ

]
+ E

[‖Em‖2L3
x

]

≤ Cτ E

[∫ tm

s
‖y(ξ)‖4

W 2,2
x

‖∂t y(ξ)‖2L2
x
dξ

]
+ E

[‖Em‖L2
x
‖∇Em‖L2

x

]

≤ Cτ 2 E
[

sup
tm−1≤ξ≤tm

‖y(ξ)‖6
W 2,2

x
+ sup

tm−1≤ξ≤tm
‖∂t y(ξ)‖6L2

x

]

+ C(κ)E
[‖Em‖2L2

x

] + κE
[‖∇Em‖2L2

x

]
, (3.14)

where we also used interpolation of L3
x between L2

x and W 1,2
x . Now we can absorb the

last term into the left-hand side choosing κ sufficiently small. By (3.10) and Corollary
3.1 we can estimate the first term by Cτ 2. The missing termE

[〈∫ tm
s ∂t y(ξ) dξ, Em

〉
L2

x

]
in rest(1)

IVm (s) can be estimated via an analogous (even easier) chain of inequalities.
We resume with

rest(3)
IVm (s) = (

y(s)
)2

�
[
W (s) − W (tm)

] + [
(y(s))2 − (y(tm))2

]
�W (tm)

= (
y(s)

)2
�

[
W (s) − W (tm)

] + [y(s) − y(tm)][y(s) + y(tm)]�W (tm)

=: rest(3,a)
IVm (s) + rest(3,b)

IVm (s) ,

and use E[‖�(W (s)− W (tm))‖2L∞
x

∣∣Fs] ≤ Cτ , which is a consequence of assumption
(2.1), to further estimate

E

[〈
rest(3,a)

IVm (s), Em 〉
L2

x

]
= E

[〈
rest(3,a)

IVm (s), τdt Em 〉
L2

x

]

≤ τ

4
E

[‖dt Em‖2L2
x

] + τE
[‖rest(3,a)

IVm (s)‖2L2
x

]

≤ τ

4
E

[‖dt Em‖2L2
x

] + Cτ 2E[‖y(s)‖4L4
x
] .

Also, since
(
E[‖y(s) − y(tm)‖2

L2
x
]3)1/3 ≤ Cτ 2 which easily follows from (3.10) and

Corollary 3.1,

E

[〈
rest(3,b)

IVm (s), Em 〉
L2

x

]

≤ E
[‖Em‖2L2

x

] + Cτ 2
(
E

[
sup

0≤t≤T
‖y‖6L∞

x

]) 1
3
(
E

[
sup

0≤t≤T
‖�W‖6L∞

x

]) 1
3

≤ E
[‖Em‖2L2

x

] + Cτ 2
(
E

[
sup

0≤t≤T
‖y‖6

W 2,2
x

]) 1
3

≤ E
[‖Em‖2L2

x

] + Cτ 2.
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The estimate for rest(2)
IVm (s) is analogous to that for rest(3)

IVm (s) such that we con-
clude

E
[
dt‖Em‖2L2

x
+ τ‖dt Em‖2L2

x
+ ‖∇Em‖2L2

x

]
≤ CE

[‖Em‖2L2
x

] + Cτ 2 + CE
[‖Vm‖2L2

x

]
.

Estimating the final term byCτ 2 and applying the discrete Gronwall lemma, the above
considerations lead to the following theorem.

Theorem 3.1 Let (�,F, (Ft )t≥0,P) be a given stochastic basis with a complete right-
continuous filtration and an (Ft )-cylindrical Wiener process W . Let T > 0 be fixed.
Assume that u0 ∈ L p(�, W 2,2(Td)) ∩ L2(�, W 3,2(Td)) for some p ≥ 8 and � ∈
L2(U; W 3,2(Td)). Let u be the solution to (1.1), and (um)M

m=1 be the solution to (1.7).
Then we have the error estimate

max
1≤m≤M

E

[
‖u(tm) − um‖2L2

x
+

m∑
n=1

τ‖∇u(tn) − ∇un‖2L2
x

]
≤ C τ 2. (3.15)

By its proof, this result also applies to (ym)M
m=1 from (3.5), and y from (3.2).

Remark 3.1 1. Problem (1.1) usually involves a small-scale parameter ε > 0 to
address the width of diffuse interfaces of adjacent material phases, whose resolu-
tion in terms of numerical scalings is crucial for accurate simulation; see [1]. In
this work, we choose ε = 1 to address non-Lipschitzness of f only, but expect
a corresponding analysis as in [1] to go through for ε  1—avoiding a factor
exp( T

ε
) that otherwisewould occur in a straight-forward application ofGronwall’s

lemma.
2. The proof of a strong rate O(

√
τ) for an implicit time discretisation—which

slightly differs from (1.5)—in the case of (1.1) with multiplicative noise in [23]
exploits its character as a structure preserving discretisation, and therefore inherits
the gradient structure of the problem, and related energy estimates. The crucial
step in the error analysis then uses the weak monotonicity property of the cubic
nonlinearity (see [23, (4.11)]) to avoid a truncation argument for the nonlinearity
in the sense of [27] for the stochastic Navier–Stokes equation; see also [10].

3. The construction and analysis of numerical schemes in [1, 23] is based on the
strong variational solution concept for (1.1)—which is in contrast to other numer-
ical works in the literature where the linear semi-group S := {S (t); t ≥ 0},
for S (t) = et� is used as building block to set up the mild solution concept for
(1.1) with additive noise for d = 1 and ε = 1,

u(t) = S (t)u0 +
∫ t

0
S (t − s) f

(
u(s)

)
ds

+
∫ t

0
S (t − s) dW (s) ∀ t ≥ 0. (3.16)
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In this setting, the authors of [6, 8] prove strong rates of convergence for a split-
ting scheme, even addressing space-time white noise. Splitting schemes have
a long tradition in evolutionary problems to avoid solving nonlinear PDEs for
iterates, but cause structure violation of (1.1); in fact, the underlying stabil-
ity bounds in [8, Prop. 3] and [6, Lemma 3.1] are not in the natural energy
norm of the underlying problem (1.1) with gradient structure, and also require
a Gronwall-type estimation—which reflects usually needed smaller mesh sizes
in ‘splitting-scheme based’ simulations at intermediate or large times T � 1 to
keep accuracy. In comparison, the (energy) structure-preserving schemes (1.5)
and (3.5) are nonlinear, but the larger computational effort caused by Newton-
type fast nonlinear solvers here usually goes along with admissible larger mesh
sizes to attain the same accuracy.

4. In [6], the strong rate O(τ ) is shown for the scheme [6, (1.2)] in [6, Thm. 4.6].
A crucial step in their proof is also to employ a transformation, see [6, (2.4) and
(2.7)], which is similar conceptionally to (3.1)—however in [6] on the level of
mild solutions, using (3.16); in fact, the (corresponding) identity

u(t) = Y (t) + W̃ �(t) (3.17)

is used instead of SPDE (3.16). Eventually, only the random PDE

Y (t) = S (t)u0 +
∫ t

0
S (t − s) f

(
Y (t) + W̃ �(t)

)
ds ∀ t ≥ 0 (3.18)

is studied in themain part of the analysis in [6]. Here the last term is the ‘stochastic
convolution process W̃ � := {W̃ �(t); t ≥ 0}’. From a practical point of view,
however, the authors in [6] clearly mention the restricted applicability of their
scheme, which requires the explicit knowledge ofS , and (an approximation) of
W̃ �: as such, its efficient use requires to know its spectrum—which restricts its
practical application to prototypic domainsO ⊂ R

d where eigenvalues of � are
explicitly known. On the other hand, the approach in [6] allows less regular noise
compared to here.
Corresponding restrictions hold for schemes that are studied in [2, 3, 14, 24],
where again the construction rests on (3.18) and (3.17), and involves (the approx-
imation of) W̃ �.

5. To our knowledge, optimal strong convergence O(τ ) for a time discretization
to solve (1.1) with additive trace-class noise was first established in [28]2: here,
again, the authors start with a mild solution for (1.1), and base their error analysis
of (1.5) on its reformulation [28, (4.2)], and the known (smoothing) properties of
the semigroupSt = et�. The error analysis provided in this section rather exploits
variational arguments: it bases on reformulation (3.5), as well as simple, explicit
calculations for the specific f in Sect. 3.1, andmay easily be generalized toweakly
elliptic (e.g. non-selfadjoint) operators which do not generate a semi-group; see
e.g. [20, Section 2.5] for the convected or degenerate Allen–Cahn equation as

2 The focus in [28] is, however, on a finite-element based space-time discretisation.
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prominent examples in multiphase fluid flow models, or the anisotropic Allen–
Cahn equation in [19, Section 8].

4 Preparations for the weak error analysis

4.1 The nonlinear semigroup

In this section we study properties of the discrete nonlinear semigroup Tτ on L2(Td),
which is the solution operator to the equation

v + τAv + τ f (v) = g, (4.1)

where g ∈ L2(Td) is given. We start with some stability estimates. We can write (4.1)
equivalently as

v + τ DE(v) = g. (4.2)

Due to the choice of the continuous interpolation uτ in (4.26) below, the weak error
analysis in Sect. 5 heavily depends on stability estimates for Tτ , which we derive
in the following lemma. Eventually, we estimate the distance of Tτ to the identity
and consider its Fréchet-derivatives. They are used for the same purpose due to the
representation for uτ in (4.27).

Lemma 4.1 Suppose that τ < 1
2 and p ≥ 2. Then we have

‖Tτg‖p
L p

x
+ τ‖∇|Tτg|p/2‖2L2

x
≤ c‖g‖p

L p
x
, (4.3)

‖∇Tτg‖p
L p

x
+ τ‖∇|∇Tτg|p/2‖2L2

x
≤ c‖g‖p

W 1,p
x

, (4.4)

‖∇2Tτg‖p
L p

x
+ τ‖∇|∇2Tτg|p/2‖2L2

x
≤ c

(‖g‖p

W 2,p
x

+ ‖g‖3p

W 1,3p
x

)
, (4.5)

for all functions g for which the quantities on the right-hand side are finite. Here
c = c(p) > 0 is independent of τ and g.

Proof Ad (4.3). Testing (4.1) by |v|p−2v shows

‖v‖p
L p

x
+ τ c(p)‖∇|v|p/2‖2L2

x
+ τ

∫
Td

|v|p−2 f (v) v dx =
∫
Td

g · |v|p−2v dx

with c(p) = 4(p−1)
p2

, where we used

|∇|v|p/2|2 =
∣∣∣ p

2
|v|(p−2)/2 v

|v|∇v

∣∣∣2 =
∣∣∣ p

2
|v|(p−2)/2∇v

∣∣∣2

= p2

4(p − 1)
∇(|v|p−2v

) · ∇v.

(4.6)

The term on the right-hand side can be handled by Young’s inequality, while we have

‖v‖p
L p

x
+ τ

∫
Td

|v|p−2 f (v)v dx ≥ (1 − τ)‖v‖p
L p

x
.
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This proves (4.3) for τ < 1
2 .

Ad (4.4). Similarly, by applying ∂i to (4.1), multiplying with |∂iv|p−2∂iv (and
arguing as in (4.6)) integrating in space3 and summing with respect to i ∈ {1, 2, 3}
yields

‖∇v‖p
L p

x
+ τ c(p)‖∇|∇v|p/2‖2L2

x
+ τ

3∑
i=1

∫
Td

|∂iv|p f ′(v) dx =
∫
Td

∂ig |∂iv|p−2∂iv dx .

The two last terms can be handled analogously to the proof of (4.3), such that (4.4)
follows.

Ad (4.5). Now we apply ∂i∂ j to the equation and multiply with |∂i∂ jv|p−2∂i∂ jv.
It remains to control the nonlinear term as the rest can be handled analogously to the
estimates above. We obtain on the right-hand side

− τ f ′(v)|∇2v|p − τ f ′′(v)∇v ⊗ ∇v : ∇2v|∇2v|p−2

≤ τ(1 + |v|)|∇v|2|∇2v|p−1 + τ |∇2v|p

≤ τ |∇2v|p + τ |v|3p + τ |∇v|3p.

After integration over Td the first term can be absorbed, while the other two can be
controlled using (4.3) and (4.4). ��

On using Tτ : L2(Td) → W 2,2(Td), cf. Eq. (4.1), we can write

Tτg = Sτg − τSτ

(
f (Tτg)

)
. (4.7)

Using Eq. (4.7) and estimates (2.22)–(2.24) one can derive the following from
Lemma 4.1.

Corollary 4.1 Under the assumptions of Lemma 4.1 we have

‖(Sτ − Tτ

)
g‖L2

x
≤ cτ

(‖g‖L2
x
+ ‖g‖3L6

x

)
, (4.8)

‖(Sτ − Tτ

)
g‖W 1,2

x
≤ cτ

(
1 + ‖g‖3

W 2,2
x

)
, (4.9)

‖(Sτ − Tτ

)
g‖W 2,2

x
≤ cτ(1 + ‖g‖3

W 2,2
x

)
(4.10)

where c > 0 is independent of τ .

Writing now Id−Tτ = Id−Sτ +Sτ −Tτ , and combining (4.8)–(4.10) with (2.24)
we obtain the following result.

Corollary 4.2 Under the assumptions of Lemma 4.1 we have

‖(Tτ − Id
)
g‖L2

x
≤ cτ

(
1 + ‖g‖W 2,2

x
+ ‖g‖3L6

x

)
, (4.11)

3 This step can be made rigorous be working with difference quotients.
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‖(Tτ − Id
)
g‖W 1,2

x
≤ cτ

(
1 + ‖g‖W 3,2

x
+ ‖g‖3

W 2,2
x

)
, (4.12)

‖(Tτ − Id
)
g‖W 2,2

x
≤ cτ(1 + ‖g‖W 4,2

x
+ ‖g‖3

W 2,2
x

)
, (4.13)

where c > 0 is independent of τ .

Now we turn to the Fréchet derivative of Tτ and prove estimates on L p(Td),
W 1,2(Td) and W 2,2(Td), respectively.

Lemma 4.2 Let τ < 1
2 and p ≥ 2.

(a) For all g ∈ L p(Td) we have

‖DTτ (g)‖L(L p
x ) ≤ 1 (4.14)

(b) For all g ∈ L6(Td) we have

‖DTτ (g)‖L(W 1,2
x )

≤ c
(
1 + cτ‖g‖4L6

x

)
. (4.15)

(c) For all g ∈ W 2,2(Td).We have

‖DTτ (g)‖L(W 2,2
x )

≤ c
(
1 + τ‖g‖8

W 2,2
x

)
. (4.16)

Proof Ad (a) By inverse function theorem4 for Fréchet derivatives we have

DTτ (g) = (
DT −1

τ (Tτ (g))
)−1

= (
Id+τA + τ f ′(Tτ (g))

)−1
.

(4.17)

The operator DT −1
τ (g) is coercive on L2

x as

‖DT −1
τ (g)‖L(L2

x ) = sup
‖h‖

L2x
=1

‖(Id+τA + τ f ′(g))h‖L2
x

≥ sup
‖h‖

L2x
=1

〈
(Id+τA + τ f ′(g)h, h

〉
L2

x
≥ 1

independently of g. A similar argument applies in L p(Td) for p > 2 since

‖DT −1
τ (g)‖L(L p

x ) = sup
‖h‖

L
p
x
=1

‖(Id+τA + τ f ′(g)h‖L p
x

≥ sup
‖h‖

L
p
x
=1

〈
(Id+τA + τ f ′(g)h, |h|p−2h

〉
L2

x
≥ 1.

Hence the claim follows.

4 Note that DT −1
τ = id + τA + τ f ′(·) is clearly invertible.
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Ad (b) We obtain

‖DT −1
τ (g)h‖W 1,2

x
= sup

h̃∈W 1,2
x

〈(Id+τA + τ f ′(g))h, h̃〉W 1,2
x

‖h̃‖W 1,2
x

≥
〈
(Id+τA + τ f ′(g)h, h

〉
W 1,2

x

‖h‖W 1,2
x

= ‖h‖W 1,2
x

+ τ

‖h‖2
W 2,2

x

‖h‖W 1,2
x

+ τ

〈∇( f ′(g)h),∇h
〉
L2

x

‖h‖W 1,2
x

.

The last term does not have an obvious sign and needs to be estimated. We have

τ

〈∇( f ′(g)h),∇h
〉
L2

x

‖h‖W 1,2
x

= −τ

〈
f ′(g)h,�h

〉
L2

x

‖h‖W 1,2
x

≥ −τ

2

‖h‖2
W 2,2

x

‖h‖W 1,2
x

− τ

2

‖ f ′(g)h‖2
L2

x

‖h‖W 1,2
x

≥ −τ

2

‖h‖2
W 2,2

x

‖h‖W 1,2
x

− τ

2

‖ f ′(g)‖2
L3

x
‖h‖2

L6
x

‖h‖W 1,2
x

≥ −τ

2

‖h‖2
W 2,2

x

‖h‖W 1,2
x

− cτ

2
(‖g‖4L6

x
+ 1)‖h‖L6

x

such that we conclude

‖DT −1
τ (g)h‖W 1,2

x
+ cτ

(
‖g‖4L6

x
+ 1

)
‖h‖L6

x
≥ ‖h‖W 1,2

x
+ τ

2

‖h‖2
W 2,2

x

‖h‖W 1,2
x

≥ ‖h‖W 1,2
x

+ τ

2
‖h‖W 2,2

x

Replacing h by DTτ (g)h (recall that Tτ : L2(Td) → W 2,2(Td), cf. Eq. 4.1) and using
(4.14) shows

‖DTτ (g)h‖W 1,2
x

+ τ‖DTτ (g)h‖W 2,2
x

≤ c‖h‖W 1,2
x

+ cτ
(
‖g‖4L6

x
+ 1

)
‖DTτ (g)h‖L6

x

≤ c‖h‖W 1,2
x

+ cτ
(
‖g‖4L3

x
+ 1

)
‖h‖L6

x

≤ c‖h‖W 1,2
x

(
1 + cτ‖g‖4L6

x

)

and the claim follows.
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Ad (c) We have

τ

〈∇2( f ′(g)h),∇2h
〉
L2

x

‖h‖W 2,2
x

= −τ

〈∇( f ′(g)h),�∇h
〉
L2

x

‖h‖W 2,2
x

= −τ

〈
f ′(g)∇h,�∇h

〉
L2

x

‖h‖W 2,2
x

− τ

〈
f ′′(g)∇gh,�∇h

〉
L2

x

‖h‖W 2,2
x

, (4.18)

where the first term can be estimated by

≥ −τ

4

‖h‖2
W 3,2

x

‖h‖W 2,2
x

− τ

2

‖ f ′(g)∇h‖2
L2

x

‖h‖W 2,2
x

≥ −τ

4

‖h‖2
W 3,2

x

‖h‖W 2,2
x

− τ

2

‖ f ′(g)‖2
L4

x
‖∇h‖2

L4
x

‖h‖W 2,2
x

≥ −τ

4

‖h‖2
W 3,2

x

‖h‖W 2,2
x

− cτ

(
‖g‖4

L8
x
+ 1

)
‖∇h‖1/2

L2
x
‖∇h‖3/2

L6
x

‖h‖W 2,2
x

,

by interpolation and Sobolev’s embedding. We further conclude

≥ −τ

4

‖h‖2
W 3,2

x

‖h‖W 2,2
x

− cτ
(
‖g‖4L8

x
+ 1

)
‖∇h‖1/2

L2
x
‖∇h‖1/2

L6
x

≥ −τ

2

‖h‖2
W 3,2

x

‖h‖W 2,2
x

− cτ
(
‖g‖4L8

x
+ 1

)
‖h‖W 2,2

x
,

and the second term in (4.18) has the lower bound

≥ −τ

4

‖h‖2
W 3,2

x

‖h‖W 2,2
x

− cτ
‖ f ′′(g)∇gh‖2

L2
x

‖h‖W 2,2
x

≥ −τ

4

‖h‖2
W 3,2

x

‖h‖W 2,2
x

− cτ
‖ f ′′(g)∇g‖2

L3
x
‖h‖2

L6
x

‖h‖W 2,2
x

≥ −τ

4

‖h‖2
W 3,2

x

‖h‖W 2,2
x

− cτ‖ f ′′(g)∇g‖2L3
x
‖h‖W 1,2

x
.

We conclude as in the proof of (4.15)

c
(
τ‖g‖4L8

x
+ 1

)‖DT −1
τ (g)h‖W 2,2

x
+ ‖ f ′′(g)∇g‖2L3

x
‖h‖W 1,2

x
≥ ‖h‖W 2,2

x
+ τ

2

‖h‖2
W 3,2

x

‖h‖W 2,2
x

≥ ‖h‖W 2,2
x

+ τ

2
‖h‖W 3,2

x
.
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Replacing h by DTτ (g)h and using (4.15) shows

‖DTτ (g)h‖W 2,2
x

+τ‖DTτ (g)h‖W 3,2
x

≤ c
(
τ‖g‖4L8

x
+ 1

)‖h‖W 2,2
x

+ c‖ f ′′(g)∇g‖2L3
x
‖DTτ (g)h‖W 1,2

x

≤ c
(
τ‖g‖4L8

x
+ 1

)
‖h‖W 2,2

x
+ cτ‖ f ′′(g)‖2L6

x
‖∇g‖2L6

x
(1 + ‖g‖4L6

x
)‖h‖W 1,2

x

≤ c‖h‖W 2,2
x

(
1 + τ‖g‖8

W 2,2
x

)
,

which yields the claim. ��
Finally, we estimate the distance between DTτ and the identity.

Lemma 4.3 Let τ < 1
2 .

(a) For all h ∈ W 2,2(Td) and g ∈ L6(Td) we have

‖(DTτ (g) − Id)h‖L2
x

≤ cτ‖h‖W 2,2
x

(
1 + ‖g‖2L6

x

)
. (4.19)

(b) For all h ∈ W 4,2(Td) and g ∈ W 2,2(Td) we have

‖(DTτ (g) − Id)h‖W 2,2
x

≤ cτ
(
1 + ‖g‖8

W 2,2
x

)
‖h‖W 4,2

x
. (4.20)

(c) For all g ∈ L6(Td) we have

‖D2Tτ (g)‖L(W 1,2
x ×W 1,2

x ;L2
x )

≤ cτ
(
1 + ‖g‖L6

x

)
. (4.21)

Proof We rewrite formula (4.17) as

DTτ (g) = Id+(
DT −1

τ (Tτ (g))
)−1 − Id

= Id+τ
(
Id+τA + τ f ′(Tτ (g))

)−1
(A + f ′(Tτ (g))

= Id+τ DTτ (g)(A + f ′(Tτ (g))).

Now we estimate the term on the right-hand side by means of Lemma 4.2.
Ad (a). By (4.14) it follows that

‖(DTτ (g) − Id)h‖L2
x

≤ cτ
(‖h‖W 2,2

x
+ ‖ f ′(Tτ (g))‖L3

x
‖h‖L6

x

)
≤ cτ

(‖h‖W 2,2
x

+
(
1 + ‖Tτ (g)‖2L6

x

)
‖h‖W 1,2

x

)

≤ cτ‖h‖W 2,2
x

(
1 + ‖g‖2L6

x

)
.

Ad (b). Similarly to (a), (4.15) yields

‖(DTτ (g) − Id)h‖W 1,2
x
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≤ cτ(1 + ‖g‖4W 1,2)
(‖h‖W 3,2

x
+ ‖ f ′′(Tτ (g))∇(Tτ (g))h‖L2

x
+ ‖ f ′(Tτ (g))∇h‖L2

x

)
≤ cτ(1 + ‖g‖4

W 1,2
x

)
(‖h‖W 3,2

x
+ ‖ f ′′(Tτ (g))‖L6

x
‖∇(Tτ (g))‖L6

x
‖h‖L6

x

)
+ cτ(1 + ‖g‖4

W 1,2
x

)‖ f ′(Tτ (g))‖L3
x
‖∇h‖L6

x

)

≤ cτ(1 + ‖g‖4
W 1,2

x
)
(
‖h‖W 3,2

x
+

(
1 + ‖g‖L6

x

)
‖g‖W 2,2

x
‖h‖W 1,2

x

)

≤ cτ(1 + ‖g‖4
W 1,2

x
)
(
1 + ‖g‖2L6

x

)
‖h‖W 2,2

x

)

≤ cτ(1 + ‖g‖4
W 1,2

x
)‖h‖W 3,2

x
+ cτ

(
1 + ‖g‖2

W 2,2
x

)
‖h‖W 2,2

x
(4.22)

using also (4.3) and (4.4). Employing also (4.15) and (4.4) an analogous chain gives

‖(DTτ (g) − Id)h‖W 2,2
x

≤ cτ
(
1 + τ‖g‖8

W 2,2
x

)(
‖h‖W 4,2

x
+ ‖ f ′′(Tτ (g))∇Tτ (g)∇h‖L2

x

)

+ cτ
(
1 + τ‖g‖8

W 2,2
x

)
‖ f ′(Tτ (g))∇2h‖L2

x
+ ‖ f ′′(Tτ (g))∇2Tτ (g)h‖L2

x

)

+ cτ
(
1 + τ‖g‖8

W 2,2
x

)
‖ f ′′′(Tτ (g))∇Tτ (g)∇Tτ (g)h‖L2

x

≤ cτ
(
1 + ‖g‖8

W 2,2
x

)(‖h‖W 4,2
x

+ ‖ f ′(Tτ (g))‖L∞
x

‖h‖W 2,2
x

)

+ cτ
(
1 + ‖g‖8

W 2,2
x

)(‖ f ′′(Tτ (g))‖L6
x
‖∇Tτ (g)‖L6

x
‖∇h‖L6

x

)

+ cτ
(
1 + ‖g‖8

W 2,2
x

)
‖ f ′′(Tτ (g))‖L∞

x
‖∇2Tτ (g)‖L2

x
‖h‖L∞

x

+ cτ
(
1 + ‖g‖8

W 2,2
x

)
‖ f ′′′(Tτ (g))‖L∞

x
‖∇Tτ (g)‖2L6

x
‖h‖L6

x

≤ cτ
(
1 + ‖g‖8

W 2,2
x

)(
‖h‖W 4,2

x
+

(
1 + ‖Tτ (g)‖2L∞

x

)
‖h‖W 2,2

x

)

+ cτ
(
1 + ‖g‖8

W 2,2
x

)(
1 + ‖Tτ (g)‖L6

x
‖∇Tτ (g)‖L6

x
‖∇h‖L6

x

)

+ cτ
(
1 + ‖g‖8

W 2,2
x

)(
1 + ‖Tτ (g))‖L∞

x

)
‖∇2Tτ (g)‖L2

x
‖h‖L∞

x

+ cτ
(
1 + ‖g‖8

W 2,2
x

)
‖∇Tτ (g)‖2L6

x
‖h‖L6

x

≤ cτ
(
1 + ‖g‖8

W 2,2
x

)(
‖h‖W 4,2

x
+

(
1 + ‖Tτ (g)‖2W 2,2

x

)
‖h‖W 2,2

x

)
.

Using (4.5) we can finish the proof.
Ad (c). Now we turn to the second derivative which can be written as

D2Tτ (g) = −τ
(
DT −1

τ (Tτ (g))
)−2

D2T −1
τ (Tτ (g))

(
DT −1

τ (Tτ (g))
)−1

= −τ(DTτ (g))
2 f ′′(Tτ (g))DTτ (g).
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Using (4.14) and (4.3) with p = 6 yields

‖D2Tτ (g)(h1, h2)‖L2
x

≤ cτ‖ f ′′(Tτ (g))‖L6
x
‖h1‖L6

x
‖h2‖L6

x

≤ cτ
(
1 + ‖Tτ (g)‖L6

x

)
‖h1‖L6

x
‖h2‖L6

x

≤ cτ
(
1 + ‖g‖L6

x

)
‖h1‖W 1,2

x
‖h2‖W 1,2

x

for all h1, h2 ∈ W 1,2
x . Hence the claim follows. ��

4.2 Semi-discretisation in time

We consider an equidistant partition of [0, T ] with mesh size τ = T /M and set
tm = m�t . Let u0 be an F0-measurable random variable with values in W 1,2(Td).
We aim at constructing iteratively a sequence of Ftm -measurable random variables um

with values in W 1,2(Td) such that for every ϕ ∈ W 1,2(Td) it holds true P-a.s.

∫
Td

um · ϕ dx + τ

∫
Td

f (um) · ϕ dx + τ

∫
Td

∇um : ∇ϕ dx

=
∫
Td

um−1 · ϕ dx +
∫
Td

�(um−1)�m W · ϕ dx,

(4.23)

where �m W = W (tm) − W (tm−1). The existence of a unique um (given um−1 and
�m W ) solving (4.23) follows from its re-interpretation as a convex minimisation
problem. Moreover, the discrete energy estimate

E

[
max

1≤m≤M
E(um) + τ

M∑
m=1

‖E(um)‖2L2
x

]
≤ cT (4.24)

holds under the assumptions made in Lemma 4.4. In fact, we will study the stability
of um in detail in Sect. 4.3 and derive more general (and higher order) estimates in
Lemma 4.4.

For the weak error analysis in Sect. 5 it will turn out to be useful to write (4.23) as

um = Tτ

(
um−1 + �(um−1)�m W

)
, (4.25)

where Tτ is the discrete nonlinear semigroup corresponding to DE , whichwe analysed
in Sect. 4.1 above. Note that different to previous works on weak error analysis, cf. [5,
7, 17], we treat the nonlinearity implicitly. Hence it is more complicated to define a
time-continuous interpolant which coincides with um in tm and is still progressively
measurable. Note, however, that Tτ features nice properties similar to those that we
have seen in the previous subsection.
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Setting

Uτ (t) = 1

τ

∫ t

tm−1

um−1 ds +
∫ t

tm−1

�(um−1) dW

we introduce the (Ft )-adapted process

uτ (t) = tm − t

τ
um−1 + Tτ

(
1

τ

∫ t

tm−1

um−1 ds +
∫ t

tm−1

�(um−1) dW

)

= tm − t

τ
um−1 + Tτ (Uτ (t))

(4.26)

for t ∈ [tm−1, tm], which coincides with um−1 in tm−1 and with um in tm . In the
following we linearise this formula around Uτ , which gives a part which is (given Uτ )
linear in um−1 (similar to the method from [5, 7, 17]) plus an error term. The latter will
turn our to be globally of order τ as required. Applying Itô’s formula to the second
term in (4.26) yields

uτ (t) = tm − t

τ
um−1 + 1

τ

∫ t

tm−1

DTτ

(
Uτ (s)

)
um−1 ds +

∫ t

tm−1

DTτ

(
Uτ

)
�(um−1) dW

+ 1

2

∑
k≥1

∫ t

tm−1

D2Tτ

(
Uτ (s)

)(
�(um−1)ek,�(um−1)ek

)
ds

= um−1 + 1

τ

∫ t

tm−1

(
DTτ

(
Uτ (s)

) − Id
)

um−1 ds

+
∫ t

tm−1

DTτ

(
Uτ (s)

)
�(um−1) dW

+ 1

2

∑
k≥1

∫ t

tm−1

D2Tτ

(
Uτ (s)

)(
�(um−1)ek,�(um−1)ek

)
ds (4.27)

for t ∈ [tm−1, tm].
Finally, we derive some uniform estimates for Uτ in terms of um . By the definition

ofUτ , the Burkholder–Davis–Gundy inequality, and estimates (4.3) and (2.1), we have
for all q ≥ 2

E
[‖Uτ (t)‖q

L2
x

] ≤ cE[‖um−1‖q
L2

x
] + cE

[
sup

s∈[tm−1,t]

∥∥∥∥
∫ s

tm−1

�(um−1) dW

∥∥∥∥
q

L2
x

]

≤ cE[‖um−1‖q
L2

x
] + cE

[∫ tm

tm−1

‖�(um−1)‖q
L2(U;L2

x )
ds

]

≤ cE[1 + ‖um−1‖q
L2

x
]

for t ∈ [tm−1, tm). A similar argument applies when we replace L2(Td) by W 1,2(Td)

or W 2,2(Td) using this time (2.22) combined with (2.1) and (4.4) or (2.22), (2.5) and
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(4.5) respectively. We conclude

E
[‖Uτ (t)‖q

W k,2
x

] ≤ c(q)E
[
1 + ‖um−1‖q

W k,2
x

]
(4.28)

uniformly in τ for q ≥ 2, t ∈ [tm−1, tm] and k = 0, 1, 2. By the estimates (4.3) and
(4.4) in Lemma 4.2, formula (4.26) thus yields

E
[‖uτ (t)‖q

W k,2
x

] ≤ c(q)E
[
1 + ‖um‖q

W k,2
x

]
(4.29)

uniformly in τ for q ≥ 2, t ∈ [tm−1, tm] and k = 0, 1. Similarly, (4.5) in Lemma 4.2
implies

E
[‖uτ (t)‖q

W 2,2
x

] ≤ c(q)E
[
1 + ‖um‖3q

W 2,2
x

]
. (4.30)

Note that controlling the right-hand sides of (4.28)–(4.30) is not straightforward and
will be done in the next subsection.

4.3 Estimates for the time-discrete solution

We now derive some uniform estimates for the solution of the time-discrete problem
(4.23). These estimates involve the energy E(·) from (1.2) as relevant Liapunov func-
tional, reflecting that the discrete problem (4.27) inherits the relevant gradient flow
property of the original problem (1.1).

Lemma 4.4 Let (�,F, (Ft )t≥0,P) be a given stochastic basis with a complete right-
continuous filtration and an (Ft )-cylindrical Wiener process W . Let T ≡ tM > 0,
assume that E(u0) ∈ L2q

(�) for some q ∈ N0. Choose τ ≤ 1
4 . The iterates (um)M

m=1
from (4.23) satisfy the following estimates.

(a) Suppose that either (N1) (a) holds and that � is bounded and summable in the
sense that supx,ξ |�(x, ξ)ek | ≤ μk with

∑
k≥1 μk < ∞ or that assumption (N2)

is in place. For all q ∈ N0 there exists c = c(q, T , u0), such that

E

[
max

0≤m≤M

[
E(um)

]2q + τ

M∑
m=1

[
E(um)

]2q−1‖DE(um)‖2L2
x

]
≤ c . (4.31)

(b) Assume that u0 ∈ L2q
(�, W 2,2(Td)), E(u0) ∈ L2q+2

(�) for some q ∈ N0 and
that � satisfies (N1) if d = 1, 2, and (N2) if d = 3. Then we have

E

[
max

1≤m≤M
‖um‖2q

W 2,2
x

+ τ

M∑
m=1

‖um‖2q−2
W 2,2

x
‖∇3um‖2L2

x

]
≤ c . (4.32)
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(c) Assume that u0 ∈ L2q
(�, W 3,2(Td)) ∩ L2q+2

(�, W 2,2(Td)), E(u0) ∈ L2q+4
(�)

for some q ∈ N and that � satisfies (N1) if d = 1, 2, and (N2) if d = 3. Then we
have

E

[
max

1≤m≤M
‖um‖2q

W 3,2
x

+ τ

M∑
m=1

‖um‖2q−2
W 3,2

x
‖∇4um‖2L2

x

]
≤ c . (4.33)

Here c = c(q, T , u0) > 0 is independent of τ .

Remark 4.1 Part (a) is an energy estimate for the solution (um)M
m=1 from (4.23); in the

context of phase-fieldmodels where themeshwidth ε > 0 enters, it avoids exponential
growth with respect to ε−1 in time—as its continuous counterpart. Its derivation below
is close to [1, Lemma 3.2], but here generalizes to noise of type (N2). The remaining
parts (b) and (c) give higher norm estimates.

Proof of Lemma 4.4 Ad (a). Choose q = 0 first. We proceed in several steps: I. derives
a first energy estimate, which creates a new term, which is then bounded independently
in II. To extend the estimate (a) toq ≥ 1 then follows fromageneral inductive argument
as in [1, Lemma 3.2].

I. (Formally) choose ϕ = DE(um) in (4.23) and integrate to get

(
DE(um), um − um−1

)
L2

x
+ τ‖DE(um)‖2L2

x

= (
�(um−1)�m W , DE(um)

)
L2

x
, (4.34)

which we write as

Im + τ‖DE(um)‖2L2
x

= IIm,

where Im = Im
A + Im

B with

Im
A := (∇um,∇(um − um−1)

)
L2

x

= 1

2

(
‖∇um‖2L2

x
− ‖∇um−1‖2L2

x
+ ‖∇(um − um−1)‖2L2

x

)
L2

x

,

Im
B := (

f (um), um − um−1
)

L2
x
.

The following estimate holds (see e.g. [21, estimate (35)])

Im
B ≥

(
F(um) − F(um−1)

)
+ 1

4

∥∥∥|um |2

− |um−1|2
∥∥∥2

L2
x

− 1

2

∥∥um − um−1
∥∥2

L2
x
, (4.35)
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whose short proof is recalled here for the reader’s convenience, and which is based on
repeated use of binomial formulae: since

f (um) = (|um |2 − 1
)
um = 1

2

(|um |2 − 1
)([um + um−1] + [um − um−1]

)
,

we have that

(
f (um), um − um−1

)
L2

x

= 1

2

(|um |2 − 1,
[|um |2 − 1

] − [|um−1|2 − 1
])

L2
x

+ 1

2

(|um |2 − 1, |um − um−1|2
)

L2
x

= 1

4

(∥∥|um |2 − 1
∥∥2

L2
x
− ∥∥|um−1|2 − 1

∥∥2
L2

x
+ ∥∥|um |2 − |um−1|2

∥∥2
L2

x

)

+ 1

2
‖um(um − um−1)‖2L2

x
− 1

2
‖um − um−1‖2L2

x

≥ F(um) − F(um−1) + 1

4

∥∥|um |2 − |um−1|2
∥∥2

L2
x
− 1

2
‖um − um−1‖2L2

x
.

By coming back to (4.34), we then obtain after summation

E(um) + 1
m∑

n=1

(
‖∇(un − un−1)‖2L2

x
+ 1

2

∥∥∥|un|2 − |un−1|2
∥∥∥2

L2
x

)
+

m∑
n=1

τ‖DE(un)‖2L2
x

≤ E(u0) + 1

2

m∑
n=1

∥∥un − un−1
∥∥2

L2
x
+

m∑
n=1

IIn . (4.36)

To proceed we must control the stochastic term Nm := ∑m
n=1 II

n , where

IIn := (
�(un−1)�nW , DE(un)

)
L2

x
.

It follows from the definition of E(un) that

IIn = −(
D�(un−1)∇un−1�nW ,∇(un − un−1)

)
L2

x

+ (
�(un−1)�nW , f (un) − f (un−1)

)
L2

x
+ (

�(un−1)�nW , DE(un−1)
)

L2
x

=: IIn
A + IIn

B + IIn
C.

Corresponding terms are N A
m , N B

m , and N C
m , which we now bound independently.

I1) We have by Young’s inequality and Itô-isometry for κ > 0 arbitrary

E

[
max

1≤m≤M
N A

m

]
≤ κ E

[ M∑
n=1

‖∇(un − un−1)‖2L2
x

]
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+ c(κ)E

[ M∑
n=1

∥∥∥∥
∫ tn

tn−1

D�(un−1)∇un−1 dW

∥∥∥∥
2

L2
x

]

= κ E

[ M∑
n=1

‖∇(un − un−1)‖2L2
x

]

+ c(κ)E

[ M∑
n=1

τ
∥∥D�(un−1)∇un−1

∥∥2
L2(U;L2

x )

]

≤ κ E

[ M∑
n=1

‖∇(un − un−1)‖2L2
x

]
+ c(κ)E

[ M∑
n=1

τ
(
1 + ∥∥∇un−1

∥∥2
L2

x

)]

using also (2.1) in the last step. The first term can be absorbed for κ  1 on the
left-hand side of (4.36) and, since

∥∥∇un−1
∥∥2

L2
x

≤ 2E(un−1), the final term can be
handled by (discrete) Gronwall’s lemma there.

I2) We split the next term as N B
m := N B,1

m + N B,2
m , which is motivated by the

algebraic identity

f (b) − f (a) ≡ (b3 − b) − (a3 − a) = (b2 − a2)b + (a2 − 1)(b − a) ∀ a, b ∈ R .

By generalized Young’s inequality we estimate (κ > 0)

E

[
max

1≤m≤M
N B,1

m

]
≤ κ E

[ M∑
n=1

‖|un|2 − |un−1|2‖2L2
x

]
+ c(κ)E

[ M∑
n=1

τ
∥∥un

∥∥4
L4

x

]

+ c(κ)E

[ M∑
n=1

τ−1
∥∥∥∥

∫ tn

tn−1

�(un−1) dW

∥∥∥∥
4

L4
x

]
(4.37)

For κ  1 sufficiently small, the first term may be absorbed on the left-hand side of
(4.36); for the second term, we note that

‖un‖4L4
x

≤ c
(
1 + ∥∥|un|2 − 1

∥∥2
L2

x

)
.

The latter part in the last inequality is part of E(un), which is why this term may now
be bounded via discrete Gronwall inequality. For the final term we use estimates for
the stochastic integral in UMD-Banach spaces, see [29]. For an UMD Banach space
(X; ‖ · ‖) and a separable Hilbert space H with orthonormal basis (hk)k≥1 we denote
by γ (H, X) the space of γ -radonifying operators from H → X with norm

‖�‖2γ (H,X) := E
′
[∥∥∥∥

∑
k≥1

γk�hk

∥∥∥∥
2

X

]
∀� ∈ L(H, X) ,

where (γk)k≥1 is a sequence of standard Gaussian random variables given on proba-
bility space (�′,F′,P′) with expectation E

′. Note that this differs from the original
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probability space (�,F,P). However, in the case of Hilbert spaces the norm above
coincides with the Hilbert–Schmidt operator norm. In particular, the additional ran-
domness disappears. In our case, it will be removed by the following estimate and is
only introduced to quote the estimate from [29].We obtain using the assumption made
on �

‖�(u)‖2
γ (U;L4

x )
≤ c(1 + ‖u‖L4

x
), u ∈ L4

x .

Using now the estimate from [29] for X = L4
x as well as (2.1) we obtain

E

[ M∑
n=1

τ−1
∥∥∥∥

∫ tn

tn−1

�(un−1) dW

∥∥∥∥
4

L4
x

]

≤ cE

[ M∑
n=1

τ−1
∥∥∥∥

∫ ·

tn−1

�(un−1)

∥∥∥∥
4

γ (L2(0,T ;U),L4(Td ))

]

= cE

[ M∑
n=1

τ
∥∥�(un−1)

∥∥4
γ (U;L4

x )

]

≤ cE

[ M∑
n=1

τ
(
1 + ∥∥un−1

∥∥4
L4

x

)]

≤ cE

[ M∑
n=1

τ
(
1 + ∥∥|un−1|2 − 1

∥∥2
L2

x

)]
.

To bound the term N B,2
m , we distinguish the type of admissible noise:

I21 ) Let� satisfy (N1) (a) and be bounded. Then there exists c ≥ 0 such that (κ > 0
arbitrary):

E

[
max

1≤m≤M
N B,2

m

]

≤ E

[( M∑
n=1

τ
∑
k≥1

( ∫
Td

�(un−1)ek (|un−1|2 − 1)(un − un−1) dx

)2)1/2]

≤ E

[( M∑
n=1

‖un−1|2 − 1‖2L2
x
‖un − un−1‖2L2

x

)1/2]

≤ κ E

[
max

1≤n≤M

∥∥|un−1|2 − 1
∥∥2

L2
x

]
+ c(κ)E

[ M∑
n=1

‖un − un−1‖2L2
x

]
(4.38)

The first term will again be be bounded via discrete Gronwall inequality, while the
second term will be bounded below.

I22 ) Let � satisfy (N2). We use a compatibility property of data � and f from DE .
For the derivation of the bound, it suffices to consider the case that all βk ≡ 0 in (N2)

123



Stochastics and Partial Differential Equations: Analysis and Computations

only. Now fix one k ∈ N. Then

IIn
B =

∑
k≥1

(
αkun−1�nWk,

[|un−1|2 − 1
] · [un − un−1]

)
L2

x

=
∑
k≥1

(
αk

[
f (un−1) − �un−1

]
�nWk, un − un−1

)
L2

x

−
∑
k≥1

(
αk∇un−1�nWk,∇[un − un−1]

)
L2

x

=: B1n + B2n .

After summation, and taking expectations, we first use Young’s inequality, and then
use Itô-isometry as well as (2.7) (κ > 0)

E

[
max

1≤m≤M

m∑
n=1

B1n

]

≤ E

[
max

1≤m≤M

m∑
n=1

∥∥∥∥
∑
k≥1

αk DE(un−1)�nWk

∥∥∥∥
L2

x

‖un − un−1‖L2
x

]

= E

[ M∑
n=1

∥∥∥∥
∑
k≥1

αk DE(un−1)�nWk

∥∥∥∥
L2

x

‖un − un−1‖L2
x

]

≤ E

[ M∑
n=1

κ

∥∥∥∥
∑
k≥1

αk DE(un−1)�nWk

∥∥∥∥
2

L2
x

+ c(κ) ‖un − un−1‖2L2
x

]

= κ E

[ M∑
m=1

τ
∥∥DE(um−1)

∥∥2
L2

x

]
+ c(κ)E

[ M∑
n=1

‖un − un−1‖2L2
x

]
. (4.39)

The leading term may now be absorbed on the left-hand side of (4.36), while the
last term is the same as in (4.38), and will be bounded below. The estimation of
E

[
max1≤m≤M

∑m
n=1 B

2
n

]
is immediate.

I3) Since N C
m is a martingale we finally obtain by Burkholder–Davis–Gundy

inequality, the expression DE(un−1) = −�un−1 + f (un−1) and (2.1),

E

[
max

1≤m≤M
N C

m

]
≤ cE

[( M∑
n=1

∑
i≥1

τ

( ∫
Td

�(un−1)ei (−�un−1 + u3
n−1 − un−1) dx

)2) 1
2
]

≤ cE

[( M∑
n=1

τ
(
1 + E(un−1)

2)) 1
2
]

≤ κ E

[
max

1≤n≤M
E(un−1)

]
+ c(κ)

M∑
n=1

τE
[
1 + E(un−1)

]
,

which can be handled by absorption (for κ small enough) and Gronwall’s lemma.

123



Stochastics and Partial Differential Equations: Analysis and Computations

By inserting the estimates I1)–I3) into (4.36) and choosing κ  1 small enough to
allow absorption of terms, there exists c ≡ c(tM ) > 0 such

E

[
max

1≤n≤M
E(un)

]
+ 1

2
E

[ m∑
n=1

(
‖∇(un − un−1)‖2L2

x
+ 1

2

∥∥∥|un|2 − |un−1|2
∥∥∥2

L2
x

)]

+ E

[ M∑
n=1

τ‖DE(un)‖2L2
x

]
≤ c

(
E

[
E(u0)

] + E

[ m∑
n=1

∥∥un − un−1
∥∥2

L2
x

])
. (4.40)

II. To bound the last term in (4.40) we choose ϕ = um − um−1 in (4.23) to get

∥∥um − um−1‖2L2
x
+ τ

(
Im

a + Im
b

) = (
�(um−1)�m W , um − um−1

)
L2

x

≤ ‖�(um−1)�m W‖2L2
x
+ 1

4
‖um − um−1‖2L2

x
,

(4.41)

where the terms Im
A and Im

B are from (4.35). Hence, we resume that

(
1 − 1

4
− τ

2

)‖um − um−1‖2L2
x
+ τ

(
E(um) − E(um−1)

) ≤ ‖�(um−1)�m W‖2L2
x

For τ ≤ 1
4 , and after summation over 1 ≤ m ≤ M ,

1

2
E

[ M∑
m=1

‖um − um−1‖2L2
x

]
+ τ E

[
E(uM )

] ≤ τ E
[
E(u0)

]

+E

[ M∑
m=1

∥∥�(um−1)�m W
∥∥2

L2
x

]
.

By Itô-isometry, the last term is bounded by

E
[ M∑

m=1

τ‖�(um−1)‖2L2(U;L2
x )

] ≤ cE
[ M∑

m=1

τ
(
1 + ‖um−1‖2L2

x

)];

upon inserting this estimate into (4.40) settles the estimate (a) for q = 0.
III. We may now proceed inductively to settle (a) for q ≥ 1, by multiplying (4.34)

with
[
E(um)

]2q−1 before summation; it is the implicit numerical treatment of drift
terms in scheme (4.23) that generates newnumerical diffusion termswhich then control
newly arising terms; see [1, Lemma 3.2] for details.

Ad (b). Before we come to the proof of (4.32) we need some preliminary estimates
for lower order deriavtives. We choose um as a test function to get

(
um − um−1, um

)
L2

x
+ τ‖∇um‖2L2

x

= −τ( f (um), um)L2
x
+ (

�(um−1)�m−1W , um
)

L2
x
,

(4.42)
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where, clearly,

−τ( f (um), um)L2
x

≤ τ
(‖um‖2L2

x
− ‖um‖4L4

x

)
.

By binomial formula, and iterating this estimate and applying Gronwall’s lemma
proves

E

[
max

1≤m≤M

1
2‖um‖2L2

x

]
+ E

[
1
2

M∑
m=1

‖um − um−1‖2L2
x
+ τ

M∑
m=1

(‖∇um‖2L2
x
+ ‖um‖4L4

x

)]

≤ cE
[ 1
2‖u0‖2L2

x

] + cE

[
max

1≤m≤M
M 1

m

]
+ cE

[
max

1≤m≤M
M 2

m

]
,

where

M 1
m =

m∑
n=1

(
�(un−1)�nW , un−1

)
L2

x
,

M 2
m =

m∑
n=1

(
�(un−1)�nW , un − un−1

)
L2

x
.

Since um−1 is Ftm−1 -measurable M 1
m is a (discrete) martingale such that, by

Burkholder–Davis–Gundy inequality, (2.1) and Young’s inequality,

E

[
max

1≤m≤M

∣∣M 1
m

∣∣] ≤ cE

[( M∑
n=1

∫ tn

tn−1

‖�(un−1)‖2L2(U,L2
x )

‖un−1‖2L2
x
ds

) 1
2
]

≤ cE

[
max

0≤n≤M
‖un‖L2

x

(
τ

M∑
n=1

‖�(un−1)‖2L2(U,L2
x )
ds

) 1
2
]

≤ κ E

[
max

0≤n≤M
‖un‖2L2

x

]
+ c(κ)

(
E

[
τ

M∑
n=1

‖un−1‖2L2
x

]
+ tM

)

for any κ > 0. Furthermore, we have for arbitrary κ > 0

E

[
max

1≤m≤M
|M 2

m |
]

≤ κ E

[ M∑
n=1

∥∥un − un−1
∥∥2

L2
x

]

+ c(κ)E

[ M∑
n=1

∥∥∥∥
∫ tn

tn−1

�(un−1) dW

∥∥∥∥
2

L2
x

]

≤ κ E

[ M∑
n=1

‖un − un−1‖2L2
x

]
+ c(κ)E

[
τ

M∑
n=1

‖�(un−1)‖2L2(U;L2
x )

]

≤ κ E

[ M∑
n=1

‖un − un−1‖2L2
x

]
+ c(κ)E

[
τ

M∑
n=1

‖un−1‖2L2
x
+ tM

]
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due to Young’s inequality, Itô-isometry and (2.1). Absorbing the κ-terms and applying
Gronwall’s lemma we conclude

E

[
max

1≤n≤M
‖un‖2L2

x
+ τ

M∑
n=1

(‖∇un‖2L2
x
+ ‖un‖4L4

x

)] ≤ cE
[
‖u0‖2L2

x
+ 1

]
.

Let now q ∈ N: we argue by induction as in (a) (first multiply (4.42) by ‖un‖2q−2
L2

x
,

then take expections to get bounds for involved; afterwards, use these bounds when
max is applied first before taking expectations; see [1, Lemma 3.2] for details) to get

E

[
max

1≤n≤M
‖un‖2q

L2
x
+ τ

M∑
n=1

‖un‖2q−2
L2

x

(‖∇un‖2L2
x
+ ‖un‖4L4

x

)]

≤ cE
[
‖u0‖2q

L2
x
+ 1

]
.

(4.43)

By formally testing with −�um , using that

−τ( f (um),�um)L2
x

≥ τ
(
3‖um∇um‖2L2

x
− ‖∇um‖2L2

x

)

and controlling the stochastic integral with the help of (2.3) we obtain similarly

E

[
max

1≤n≤M
‖un‖2

W 1,2
x

+ τ

M∑
n=1

‖�un‖2L2
x

]
≤ cE

[
‖u0‖2W 1,2

x
+ 1

]
.

and again for q ∈ N, by multiplication with ‖um‖2q−2
W 1,2

x
before taking expectations,

E

[
max

1≤n≤M
‖un‖2q

W 1,2
x

+ τ

M∑
n=1

‖un‖2q−2
W 1,2

x
‖�un‖2L2

x

]
≤ cE

[
‖u0‖2q

W 1,2
x

+ 1
]
, (4.44)

Now we come to the proof of (4.32). We formally test the equation with�2um . For
the nonlinear term we obtain (κ > 0)

−τ( f (um),�2um)L2
x

= τ( f ′(um)∇um,�∇um)L2
x

≤ τ‖ f ′(um)‖L6
x
‖∇um‖L3

x
‖∇�um‖L2

x

≤ cτ(1 + ‖um‖L6
x
)‖um‖L∞

x
‖∇um‖

1
2
L2

x
‖∇2um‖

1
2
L2

x
‖∇�um‖L2

x

≤ cτ(1 + ‖∇um‖2L2
x
)‖∇2um‖L2

x
‖∇�um‖L2

x

≤ τ c(κ)(1 + ‖∇um‖4L2
x
)‖∇2um‖2L2

x
+ κ‖∇�um‖2L2

x
.

Here the second term can be absorbed for κ  1, whereas the first one (in expectation
and summed form) can be controlled by (4.44) (with q = 3). If d = 3 we use that �
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is assumed to be affine linear in u, cf. assumption (N2). In this situation the stochastic
terms can be estimated exactly as in the proof of (4.43). If d = 1, 2 this problem can
be overcome by Ladyshenskaya’s inequality and (N1). In particular, we have by (2.8)

E

[
τ

M∑
n=1

‖�(un−1)‖2L2(U;W 2,2
x )

]

≤ cE

[
τ

M∑
n=1

(
1 + ‖un−1‖4W 1,4

x
+ ‖un−1‖2W 2,2

x

)]

≤ cE

[
τ

M∑
n=1

(
1 + ‖un−1‖2W 1,2

x
‖un−1‖2W 2,2

x
+ ‖un−1‖2W 2,2

x

)]
,

which is uniformly bounded by (4.32) with q = 2. This settles the proof of (4.32) for
q = 1. An inductive argument may now be employed to complete the proof for (4.32)
for q ∈ N.

Ad (c). The proof works along the same lines testing with �3um and estimating
the stochastic terms by means of (2.7). For the nonlinear term we obtain

− τ( f (um),�3um)L2
x

= −τ(div( f ′(um)∇um),�2um)L2
x

= −τ( f ′′(um)|∇um |2,�2um)L2
x
− τ( f ′(um)�um,�2um)L2

x

≤ τ

∫
Td

|um ||∇um |2|�2um | dx + τ

∫
Td

(|um |2 + 1)|�um ||�2um | dx

≤ c(κ)τ‖um‖6
W 2,2

x
+ κτ‖�2um‖2L2

x
.

The second term on the right-hand side can be absorbed provided we choose κ > 0
small enough. The first one (summed with respect to m) ins bounded by (4.32). ��

4.4 The Kolmogorov equation

We set

U (t, h) := E
[
ϕ(u(t, h))

]
,

where u(t, h) is the solution to (1.1) with u0 = h and ϕ ∈ C1
b(L2

x ). It is well-known
that U solves

∂tU (t, h) = 1

2
tr

(
�(h)�∗(h)D2U (t)

) + (
Ah + f (h), DU (t, h)

)
,

U (0, h) = ϕ(h).

(4.45)

In the following we derive some estimates for U . The proofs are only formal and
can be made rigorous by considering a finite-dimensional Galerkin approximation5

5 Though some care is required for Lemma 4.5.
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of (1.1) (leading to a finite-dimensional Kolmogorov equation approximating (4.45))
and establishing estimates which are uniform with respect to the Galerkin parameter.
Such a procedure is technical and tedious but standard in literature. We refer to [12]
and [16, Chapter 9] for a detailed analysis of Kolmogorov equations.

A crucial ingredient in our proof is the monotonicity of the leading term in
f (u) = u3 − u. It is currently an open problem to obtain similar results for semi-
linear equations without this property such as the 2D Navier–Stokes equations. Since
we allow more regularity for the solution to (1.1) through more regular data when
compared to previous papers, we only require estimates in L2

x for the weak error anal-
ysis. For example, the estimates in [5, 7, 17] are given in fractional Sobolev spaces
(with differentiability strictly smaller than 1/2) for the derivatives of U are proved
instead; morover, the situation here is more complicated than that in [5, 17] due to the
non-Lipschitz nonlinearity in (1.1). In [7] the Kolmogorov equation for (1.1) in 1D is
considered (with additive space-time white noise), while we study (1.1) with smooth
multiplicative noise in cases d = 1, 2, 3 in the following.

Lemma 4.5 Let ϕ ∈ C1
b(L p(Td)) for some p ∈ (1,∞) and suppose that (N1) (a)

holds. Then we have for t ∈ (0, T ) and h ∈ L p(Td)

‖DU (t, h)‖L p
x

≤ c(p, ϕ, T ).

Proof We proceed formally. A rigorous proof can be obtained as follows:

• We first proof the result for p = 2 by means of a Galerkin approximation and pass
to the limit obtaining well-defined infinite-dimensional objects.

• In particular, we obtain a variational solution to (4.47) below to which we can
apply Itô’s formula. This can be justified by truncating the function z �→ z p and
applying the Itô-formula in Hilbert spaces from [16, Theorem 4.17].

Differentiating U with respect to h in direction g ∈ L p′
(Td) with p′ := p/(p − 1)

yields

DU (t, h) · g = E
[
Dϕ(u(t)) ηh,g(t)

]
, (4.46)

where ηh,g solves

dηh,g = (
�ηh,g − f ′(u) ηh,g

)
dt + D�(u)ηh,g dW , ηh,g(0) = g. (4.47)

Since Dϕ is bounded we have

|DU (t, h) · g| ≤
(
E

[‖ηh,g(t)‖p′

L p′
x

])1/p′
. (4.48)
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Applying Itô’s formula to (4.47) yields

1
p′ ‖ηh,g(t)‖p′

L p′
x

+
∫ t

0
‖∇|ηh,g(s)|p′/2‖2L2

x
ds

= 1
p′ ‖g‖p′

L p′
x

−
∫ t

0

∫
Td

f ′(u(s))|ηh,g(s)|p′
dx ds

+
∫
Td

∫ t

0
|ηh,g|p′−2ηh,gD�(u)ηh,g dW dx

+ p′−1
2

∑
i≥1

∫ t

0

∫
Td

|ηh,g(s)|p′−2|D�(u(s))ηh,g(s)ei |2 dx ds.

Since f ′ ≥ −1, the second term on the right-hand side is clearly bounded by∫ t
0 ‖ηh,g(t)‖p′

L p′
x

ds, while the third one vanishes under the expectation. Using (N1),

the same bound follows for the last term. We conclude

E

[
‖ηh,g(t)‖p′

L p′
x

]
+ E

[ ∫ t

0
‖∇|ηh,g(s)|p′/2‖2L2

x
ds

]
≤ ‖g‖p′

L p′
x

+ c
∫ t

0
E

[
‖ηh,g(s)‖p′

L p′
x

]
ds

such that, by Gronwall’s lemma,

E

[
‖ηh,g(t)‖p′

L p′
x

]
+ E

[ ∫ t

0
‖∇|ηh,g(s)|p′/2‖2L2

x
ds

]
≤ c‖g‖p′

L p′
x

. (4.49)

Plugging this into (4.48) and taking the supremum with respect to g proves the claim.
��

Note that it is easy to generalise the argument above to obtain

E

[
‖ηh,g(t)‖q

L p′
x

]
+ E

[( ∫ t

0
‖∇|ηh,g(s)|p′/2‖2L2

x
ds

) q
p′ ]

≤ cq‖g‖q

L p′
x

(4.50)

for all q ≥ p′. For that purpose it is sufficient to argue as before and estimate the
stochastic integral by means of the Burkholder-Davis-Gundy inequality and (2.1). By
a parabolic interpolation (4.50) (with p′ = 2) yields

E

[
‖ηh,g(t)‖q

L10/3(0,T ;L10/3
x )

]
≤ cq‖g‖q

L p′
x

(4.51)

for all q ≥ 2.

Lemma 4.6 Let ϕ ∈ C2
b (L2(Td)) and suppose that (N1) holds. Then we have for

t ∈ (0, T ), h, g ∈ L2(Td) and k ∈ L6(Td)

|D2U (t, h)(g, k)| ≤ c(ϕ, T )‖g‖L2
x
‖k‖L6

x
.
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Proof Differentiating (4.46) again with respect to h (in direction k ∈ L2(Td)) gives

D2U (t, h)(g, k) = E[Dϕ(u(t, h)) ζh,g,k(t)]
+ E[D2ϕ(u(t, h))(ηh,g(t), ηh,k(t))], (4.52)

where ζh,g,k solves

dζh,g,k = (
�ζh,g,k − 6uηh,gηh,k − f ′(u) ζh,g,k

)
dt

+ D2�(u)(ηh,g, ηh,k) dW + D�(u)ζh,g,k dW ,
(4.53)

with ζh,g,k(0) = 0, which can be seen from differentiating (4.47). Note that the second
term in (4.52) can be estimated by means of (4.51). In order to estimate the first one,
we apply Itô’s formula to (4.53) yielding

1

2
‖ζh,g,k(t)‖2L2

x
+

∫ t

0
‖∇ζh,g,k(s)‖2L2

x
ds

= −
∫ t

0

∫
Td

6u ηh,g ηh,k(s) ζh,g,k(s) dx ds −
∫ t

0

∫
Td

f ′(u(s)) |ζh,g,k(s)|2 dx ds

+
∫
Td

∫ t

0
ζh,g,kD2�(u)(ηg,k, ηh,k) dW dx +

∫
Td

∫ t

0
ζh,g,kD�(u)ζh,g,k dW dx

+ 1

2

∫ t

0

(
‖D�(u)ζh,g,k(s)‖2L2(U;L2

x )
ds

+ ‖D2�(u(s))(ηh,g(s), ηh,k(s))‖2L2(U;L2
x )

)
ds

+
∑
i≥1

∫ t

0

∫
Td

D2�(u)(ηh,g(s), ηh,k)(s)ei D�(u(s))ζh,g,k(s)ei dx ds. (4.54)

By Hölder’s inequality we can bound the last line by the second last one, whereas the
stochastic integrals have zero expectation and thus can be ignored. By (2.1) we have

1

2

∫ t

0
‖D�(u)ζh,g,k(s)‖2L2(U;L2

x )
ds ≤ c

∫ t

0
‖ζh,g,k(s)‖2L2

x
ds.

Clearly, it also holds that

−
∫ t

0

∫
Td

f ′(u(s)) |ζh,g,k(s)|2 dx ds ≤
∫ t

0
‖ζh,g,k(s)‖2L2

x
ds.

The remaining two terms are more complicated. First of all, (2.5) yields

1

2

∫ t

0
‖D2�(u(s))(ηh,g(s), ηh,k(s))‖2L2(U;L2

x )
ds
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≤ c
∫ t

0
‖ηh,g(s)ηh,k(s)‖2L2

x
ds

≤ c
∫ t

0

(
‖ηh,g(s)‖10/3

L10/3
x

+ ‖ηh,k(s)‖5L5
x

)
ds

≤ c
∫ t

0

(
‖ηh,g(s)‖10/3

L10/3
x

+ ‖ηh,k(s)‖6L6
x
+ 1

)
ds,

the expectation of which can be controlled by ‖g‖L2
x
and ‖k‖L6

x
using (4.50). The most

critical term is

∫ t

0

∫
Td

u(s) ηh,g(s) ηh,k ζh,g,k(s) dx ds

=
∫ t

0

∫
Td

A−1/2(u(s) ηh,g(s) ηh,k(s)
)
A1/2ζh,g,k(s) dx ds

≤ κ

∫ t

0
‖∇ζh,g,k(s)‖2L2

x
ds + c(κ)

∫ t

0
‖u(s) ηh,g(s) ηh,k(s)‖2W−1,2 ds.

We can absorb the first term, whereas using the embedding L6/5
x ↪→ W −1,2

x the second
one is bounded by

∫ t

0
‖u(s) ηh,g(s) ηh,k(s)‖2

L6/5
x

ds

≤
∫ t

0
‖ηh,k‖2L2

x
‖ηh,g(s)‖2L6

x
‖u(s)‖2L6

x
ds

≤
∫ t

0
‖ηh,k(s)‖6L2

x
ds +

∫ t

0
‖ηh,g(s)‖6L6

x
ds +

∫ t

0

(
1 + ‖u(s)‖6L6

x

)
. ds

Hence we obtain from (2.13) (with p = 6) and (4.51)

E

[ ∫ t

0
‖u(s) ηh,g(s) ηh,k(s)‖2

L6/5
x

ds

]
≤ c

(
‖k‖6L2

x
+ ‖g‖6L6

x
+ 1

)
.

We conclude for (4.54) that

E
[‖ζh,g,k(t)‖2L2

x

] + E

[ ∫ t

0
‖∇ζh,g,k(s)‖2L2

x
ds

]
≤ c

(
‖g‖L2

x
, ‖k‖L6

x

)
, (4.55)

which finishes the proof by bilinearity of D2U (t, h). ��
Estimate (4.55) above can be strengthened to

E
[‖ζh,g,k(t)‖q

L2
x

] + E

[ ∫ t

0
‖∇ζh,g,k(s)‖2L2

x
ds

] q
2 ≤ c

(
q, ‖g‖L2

x
, ‖k‖L6

x

)
(4.56)
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for any q ≥ 2: By taking the power q/2 in (4.54), the only difference is that the
stochastic integrals do not vanish and must be estimated. Using Burkholder-Davis-
Gundy inequality and (4.51) we obtain the upper bounds (assuming that q ≥ 4)

E

[( ∫ T

0

∑
i≥1

( ∫
Td

ζh,g,k(s)D2�(u(s))ei (η
g,k(s), ηg,k(s)) dx

)2

ds

) q
4
]

≤ cE

[(∫ T

0
‖ζh,g,k(s)‖2

L10/3
x

‖ηh,g(s)‖2L2
x
‖ηh,k(s)‖2L5

x
ds

) q
4
]

≤ c(κ)E

[(∫ T

0

(‖ηh,g(s)‖10L2
x
+ ‖ηh,k(s)‖10L6

x

)
ds

) q
4
]

+ κ E

[(∫ T

0
‖ζh,g,k(s)‖10/3

L10/3
x

ds

) q
4
]

≤ cκ E
[‖ζh,g,k(s)‖q

L10/3(0,T ;L10/3
x )

] + c
(
κ, ‖g‖L2

x
, ‖k‖L6

x

)
,

as well as

E

[( ∫ T

0

∑
i≥1

( ∫
Td

ζh,g,k(s)D�(u(s))eiζ
h,g,k(s) dx

)2

ds

) q
4
]

≤ cE

[( ∫ T

0
‖ζh,g,k(s)‖4L2

x
ds

) q
4
]

≤ cE

[ ∫ T

0
‖ζh,g,k(s)‖q

L2
x
ds

]
,

which can be handled by Gronwall’s lemma. By a parabolic interpolation we obtain
(4.56) as well as

E

[
‖ζh,g,k‖q

L10/3(0,T ;L10/3
x )

]
≤ c

(
q, ‖g‖L2

x
, ‖k‖L6

x

)
(4.57)

for any q ≥ 2.

Lemma 4.7 Let ϕ ∈ C3
b(L2(Td)) and suppose that (N1) holds. Then we have for

t ∈ (0, T ) and h ∈ L2(Td) and k, g, l ∈ L6(Td)

|D3U (t, h)(g, k, l)| ≤ c(ϕ, T )‖k‖L6
x
‖g‖L6

x
‖l‖L6

x
.

Proof Differentiating (4.52) again with respect to h (in direction l ∈ L2(Td)) gives

D3U (t, h)(g, k, l) = E[Dϕ(u(t, h)) ξh,g,k,l(t)] + E[D2ϕ(u(t, h))(ζh,g,l(t), ηh,k(t))]
+ E[D2ϕ(u(t, h))(ηh,g(t), ζh,k,l(t))]
+ E[D3ϕ(u(t, h))(ηh,g(t), ηh,k(t), ηh,l(t))], (4.58)
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where (by differentiating (4.53))

dξh,g,k,l = (
�ξh,g,k,l − 6ηh,lηh,gηh,k − 6uζh,g,lηh,k − 6uηh,gζh,k,l

)
dt

− (
f ′(u) ξh,g,k,l + 6uηh,lζh,g,k

)
dt

+ D3�(u)(ηh,l, ηh,g, ηh,k) dW + D2�(u)(ηh,l, ζh,g,k )dW

+ D�(u)ξh,g,k,l dW

+ D2�(u)(ζh,g,l, ηh,k) dW + D2�(u)(ηh,g, ζh,k,l) dW , (4.59)

with ξh,g,k,l(0) = 0. The last three terms in (4.58) can be estimated bymeans of (4.51)
and (4.56). So, our focus is on the first one. We apply now Itô’s formula and argue
similarly to the proof of Lemmas 4.5 and 4.6. The correction terms can be handled as
there using (2.1)–(2.6). For instance, we have

E

[ ∫ t

0
‖D2�(u(s))(ζh,g,l(s), ηh,k(s))‖2L2(U;L2

x )
ds

]

≤ E

[ ∫ t

0
‖ζh,g,l(s)ηh,k(s)‖2L2

x
ds

]

≤ E

[ ∫ t

0

(
‖ζh,g,l(s)‖10/3

L10/3
x

+ ‖ηh,k(s)‖5L5
x

)
ds

]

≤ E

[ ∫ t

0

(
‖ζh,g,l(s)‖10/3

L10/3
x

+ ‖ηh,k(s)‖6L6
x
+ 1

)
ds

]

≤ c
(
q, ‖g‖L2

x
, ‖k‖L6

x
, ‖l‖L6

x

)

using (4.51) and (4.57). We clearly have

−
∫ t

0

∫
Td

f ′(u)|ξh,g,k,l(s)|2 dx ds ≤
∫ t

0
‖ξh,g,k,l(s)‖2L2

x
ds.

Let us now focus on the remaining terms arising from the nonlinearity being more
critical. It holds

−
∫ t

0

∫
Td

6ηh,l(s)ηh,g(s)ηh,k(s)ξh,g,k,l(s) dx ds

≤ c(κ)

∫ t

0
‖ηh,l(s)ηh,g(s)ηh,k(s)‖2

W−1,2
x

ds + κ

∫ t

0
‖ξh,g,k,l(s)‖2

W 1,2
x

ds,

−
∫ t

0

∫
Td

6u(s)ζh,g,l(s)ηh,k(s)ξh,g,k,l(s) dx ds

≤ c(κ)

∫ t

0
‖6u(s)ζh,g,l(s)ηh,k(s)‖2

W−1,2
x

ds + κ

∫ t

0
‖ξh,g,k,l(s)‖2

W 1,2
x

ds,

−
∫ t

0

∫
Td

6u(s)ηh,gζh,k,l(s)ξh,g,k,l(s) dx ds
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≤ c(κ)

∫ t

0
‖6u(s)ηh,g(s)ζh,k,l(s)‖2

W−1,2
x

ds + κ

∫ t

0
‖ξh,g,k,l(s)‖2

W 1,2
x

ds,

∫ t

0

∫
Td

6u(s)ηh,l(s)ζh,g,k(s)ξh,g,k,l(s) dx ds

≤ c(κ)

∫ t

0
‖u(s)ηh,l(s)ζh,g,l(s)‖2

W−1,2
x

ds + κ

∫ t

0
‖ξh,g,k,l(s)‖2

W 1,2
x

ds.

Estimating the W −1,2
x -norm by the L2

x -norm and applying Hölder’s inequality, the
c(κ) terms are controlled (line by line) by the terms

∫ t

0
‖ηh,l(s)‖6L6

x
ds +

∫ t

0
‖ηh,g(s)‖6L6

x
ds +

∫ t

0
‖ηh,k(s)‖6L6

x
ds,

∫ t

0
‖u(s)‖6L6

x
ds +

∫ t

0
‖ηh,l(s)‖6L6

x
ds +

∫ t

0
‖ζh,g,l(s)‖6L2

x
ds,

∫ t

0
‖u(s)‖6L6

x
ds +

∫ t

0
‖ηh,g(s)‖6L6

x
ds +

∫ t

0
‖ζh,k,l(s)‖6L2

x
ds,

∫ t

0
‖u(s)‖6L6

x
ds +

∫ t

0
‖ηh,l(s)‖6L6

x
ds +

∫ t

0
‖ζh,g,l(s)‖6L2

x
ds.

Using (4.51) and (4.56) their expectations are bounded by the L6
x -norms of g, k and l.

��

5 Weak first order convergence rate

This section is the heart of the paper and is dedicated to the proof of the following
theorem,which establishes an optimalweak error rate for the time discretisation (4.23).

Theorem 5.1 Let (�,F, (Ft )t≥0,P) be a given stochastic basis with a complete right-
continuous filtration and an (Ft )-cylindrical Wiener process W . Suppose that u0 ∈
W 3,2(Td) and that � satisfies (N1) if d = 1, 2, and (N2) if d = 3. Let u be the
unique pathwise solution to (1.1) in the sense of Definition (2.1) and let (um)M

m=1 be
the solution to (4.23). For any ϕ ∈ C2

b (L2(Td)) we have

∣∣E[
ϕ(u(T )) − ϕ(uM )

]∣∣ ≤ cτ, (5.1)

where c > 0 depends on ϕ, u0, T and �.

Remark 5.1

1. For d = 1 and additivewhite noise in (1.1), a related result has been obtained in [7,
Theorem 3.3] for the implementable splitting scheme [7, (1.1)2], using bounds for
related iterates from [8, Proposition 3] in supremum norm, whose derivation used
a Gronwall argument. The result is obtained under a compatibility condition for
white noise and drift operator [7, Section 2.1.2] whose physical interpretation is
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not immediate, and crucially exploits the additive character of noise to accomplish
the estimate right before [7, Section 2.1.2]. The key part of the weak error analysis
then is based on the Kolmogorov equation [7, (2.11)], where the appearingL (�t)

is generator of the semigroup generated by the regularized problem [7, (2.7)] with
solution X (�t)—rather than for (1.1) as we do here; note that this modification
also gives rise to a modified energy E (�t) for the scalar order parameter u, if
compared to the Helmholtz free energy functional E in (1.2).—In this work, we
heavily profited from the tools given in the error analysis in [7], as well as [5, 17,
18].

2. The estimates for the solution of the Kolmogorov equation from Sect. 4.4 are
somewhat weaker than those used for the weak error analysis in [5, 7, 17, 18]
(see also [4, 13, 15] for related results). We compensate this by assuming more
regularity for the data (initial datum and noise) which results in the higher order
estimates for the time-discrete solution from Sect. 4.3. Our analysis in the additive
case in Sect. 3 is also based on higher spatial regularity of the diffusion coefficient.

3. The reason for the restriction to affine linear noise in Theorem 5.1 for d = 3 is
only due to estimate (4.32) in Lemma 4.4 which is heavily used. Apart from that
the proof of Theorem 5.1 does not require this restriction. In particular, in the 2D
case the result also hold for nonlinear noise.

4. A large part of the analysis in this paper directly extends to the Dirichlet case—
at least if the underlying domain is sufficiently smooth. Only the results from
Sect. 4.1 require some additional technical effort: as we are working with non-
linear test functions it is not possible to justify the estimates from Lemma 4.1 by
means of aGalerkin approximation (using eigenfunctions of the Laplace operator)
anymore. Instead one has to prove localised estimates then by means of cut-off
functions. In order to obtain global estimates one has to parametrise the bound-
ary with local charts, change the coordinates and reflect the transformed solution
at the hence obtained flat boundary. The local estimates can then be applied to
the reflected transformed solution. Such a procedure is tedious and technical but
standard in literature. A detailed presentation can be found in detail, e.g., in [9,
Section 4].

5. Large parts of the analysis of this section extend to the case of more general
functions f in Eq. (1.1) with q-growth for some q ≥ 2. However, controlling
the terms in (5.8) below requires that the leading part of f is exactly of the form
f (z) = azq with a > 0 and q ∈ N.

The remainder of this section is dedicated to the proof of Theorem 5.1, which is split
into several subsections corresponding to the estimates of individual error terms.

We start by decomposing the error in several parts which will be analysed in the
subsequent subsections. Let u be the solution of (1.1) and (um)M

m=1 be the solution to
its time-discretisation (4.23), both with respect to the initial datum u0 = h ∈ L2(Td).
The error is

E[ϕ(u(T ))] − E[ϕ(uM )] = U (T , h) − E[ϕ(uM )],

where U is the solution to the Kolmogorov Eq. (4.45) with initial condition ϕ ∈
C2

b (L2(Td)). We decompose
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U (T , h) − E[ϕ(uM )] = U (T , h) − E[U (0, uM )]

=
M∑

m=1

[
U (T − tm−1, um−1) − U (T − tm, um)

]
.

Recalling the definition

Uτ (t) = 1

τ

∫ t

tm−1

um−1 ds +
∫ t

tm−1

�(um−1) dW , t ∈ [tm−1, tm], (5.2)

we rewrite Eq. (4.27) as

uτ (t) = um−1 +
∫ t

tm−1

SτAum−1 ds −
∫ t

tm−1

Sτ f (um−1) ds

+
∫ t

tm−1

Sτ f (um−1) ds + 1

τ

∫ t

tm−1

(
DTτ (Uτ ) − Sτ

)
um−1 ds

+
∫ t

tm−1

DTτ

(
Uτ

)
�(um−1) dW

+ 1

2

∑
i≥1

∫ t

tm−1

D2Tτ (Uτ )
(
�(um−1)ei ,�(um−1)ei

)
ds

We apply Itô’s formula (see [16, Thm. 4.17]) to �(t, uτ ) to get for t ∈ [tm−1, tm)

�(t, uτ (t)) = �(tm−1, uτ (tm−1)) +
∫ t

tm−1

∂t�(s, uτ ) ds

+
∫ t

tm−1

(
SτAum−1, D�(s, uτ )

)
L2

x
ds −

∫ t

tm−1

(
Sτ f (um−1), D�(s, uτ )

)
L2 ds

+
∫ t

tm−1

(
D�(s, uτ ), DTτ

(
Uτ

)
�(um−1) dW

)
L2

x

+ 1

2

∑
i≥1

∫ t

tm−1

(
D�(s, uτ ), D2Tτ

(
Uτ

)(
�(um−1)ei , �(um−1)ei

))
L2

x

ds

+
∫ tm

tm−1

(
Sτ f (um−1) + 1

τ

(
DTτ (Uτ ) − Sτ

)
um−1, D�(s, uτ )

)
L2

x

ds

+ 1
2

∑
i≥1

∫ t

tm−1

D2�(s, uτ )
(

DTτ

(
Uτ

)
�(um−1)ei , DTτ

(
Uτ

)
�(um−1)ei

)
ds

such that

E[�(tm , um)] = E[�(tm−1, um−1)] + E

[ ∫ t

tm−1

∂t�(s, uτ ) ds

]

+ E

[ ∫ tm

tm−1

(
SτAum−1, D�(s, uτ )

)
L2

x
ds − E

∫ tm

tm−1

(
Sτ f (um−1), D�(s, uτ )

)
L2

x
ds

]
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+ 1

2

∑
i≥1

E

[ ∫ tm

tm−1

(
D�(s, uτ ), D2Tτ

(
Uτ

)(
�(um−1)ei , �(um−1)ei

))
L2

x

ds

]

+ E

[ ∫ tm

tm−1

(
Sτ f (um−1) + 1

τ

(
DTτ (Uτ ) − Sτ

)
um−1, D�(σ, uτ )

)
L2

x

ds

]

+ 1
2

∑
i≥1

E

[ ∫ tm

tm−1

D2�(s, uτ )
(

DTτ

(
Uτ

)
�(um−1)ei , DTτ

(
Uτ

)
�(um−1)ei

)
ds

]
.

Setting �(t, h) = U (T − t, h) we obtain by (4.45)
M∑

m=1

E

[
U (T − tm−1, um−1) − U (T − tm , um)

]

= U (T , h) − E[U (T − τ, u1)]

+
M∑

m=2

E

[ ∫ tm

tm−1

(
Auτ − SτAum−1, DU (T − s, uτ )

)
L2

x
ds

]

+
M∑

m=2

E

[ ∫ tm

tm−1

(
Sτ f (um−1) − f (uτ ), DU (T − s, uτ )

)
L2 ds

]

+ 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

(
DU (T − s, uτ ), D2Tτ

(
Uτ

)(
�(um−1)ei , �(um−1)ei

))
L2

x

ds

]

+
M∑

m=2

E

[ ∫ tm

tm−1

(
Sτ f (um−1) + 1

τ

(
DTτ (Uτ ) − Sτ

)
um−1, DU (T − s, uτ )

)
L2

x

ds

]

+ 1
2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

[
D2U (T − s, uτ )

(
�(uτ )ei , �(uτ )ei

)

− D2U (T − s, uτ )
(

DTτ

(
Uτ

)
�(um−1)ei , DTτ

(
Uτ

)
�(um−1)ei

)]
ds

]

=: (I) + (II) + (III) + (IV) + (V) + (VI).

We will estimate the terms (I)–(V) in the following five subsections.

5.1 The initial error (I)

Using U (T , h) = E[ϕ(u(T ))] = E[U (T − τ, u(τ ))] and Lemma 4.5 we have

|U (T , h) − E[U (T − τ, u1)]| ≤ c(ϕ)E
[
‖u(τ ) − u1‖L2

x

]
,

123



Stochastics and Partial Differential Equations: Analysis and Computations

where, by (4.27),

u(τ ) − u1 = (S(τ ) − Sτ )h +
∫ τ

0
S(τ − σ) f (u) ds − 1

τ

∫ τ

0
(DTτ (Uτ ) − Sτ )h ds

+
∫ τ

0

(
S(τ − σ)�(u) − DTτ (Uτ )�(h)

)
dW

− 1

2

∑
i≥1

∫ τ

0
D2Tτ

(
Uτ

)(
�(h)ei ,�(h)ei

)
ds

(5.3)
We estimate now the right-hand side term by term. Using (2.26) (with β = 0 and

r = 1) we obtain

‖(S(τ ) − Sτ )h‖L2
x

≤ cτ‖h‖W 1,2
x

≤ cτ

using the regularity of h. We further obtain

E

[∥∥∥∥
∫ τ

0
S(τ − σ) f (u) ds

∥∥∥∥
L2

x

]
≤ cE

[ ∫ τ

0
‖S(τ − σ)‖L(L2

x )

(
1 + ‖u‖3L6

x

)
ds

]

≤ cE

[ ∫ τ

0

(
1 + ‖u‖3L6

x

)
ds

]
≤ cτ

by (2.23) and (2.15). Furthermore, it holds by (4.19) and (2.24)

‖(DTτ (Uτ ) − Sτ )h‖L2
x

≤ cτ(1 + ‖h‖W 2,2
x

)(1 + ‖Uτ‖W 1,2
x

).

Hence we obtain by (4.28)

E

[∥∥∥∥1τ
∫ τ

0
(DTτ (Uτ ) − Sτ )h ds

∥∥∥∥
L2

x

]
≤ cτ.

We write the stochastic term from (5.3) as

∫ τ

0

(
S(τ − σ)�(u) − DTτ (Uτ )�(h)

)
dW

=
∫ τ

0

(
S(τ − σ) − Sτ−σ

)
�(u) dW +

∫ τ

0

(
Sτ−σ − Sτ

)
�(u) dW

+
∫ τ

0
Sτ

(
�(u) − �(h)

)
dW +

∫ τ

0

(
Sτ − DTτ (Uτ )

)
�(h) dW

=: M1(τ ) + M2(τ ) + M3(τ ) + M4(τ ).

Itô-isometry yields

E
[∥∥M1(τ )

∥∥
L2

x

] ≤ c

(
E

[ ∫ τ

0
‖(S(τ − σ) − Sτ−σ

)
�(u)‖2L2(U;L2

x )
ds

]) 1
2
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≤ cτ

(
E

[ ∫ τ

0
‖�(u)‖2

L2(U;W 1,2
x )

ds

]) 1
2

≤ cτ

(
E

[ ∫ τ

0

(‖u‖2
W 1,2

x
+ 1

)
ds

]) 1
2 ≤ cτ 3/2

as a consequence of (2.1), (2.26) and (2.14). Similarly, we have

E

[∥∥M2(τ )
∥∥

L2
x

]
≤ c

(
E

[ ∫ τ

0
‖(Sτ−σ − Sτ

)
�(u)‖2L2(U;L2

x )
ds

]) 1
2

≤ cτ

(
E

[ ∫ τ

0
‖�(u)‖2

L2(U;W 1,2
x )

ds

]) 1
2 ≤ c τ

by (2.24). Furthermore,

E

[∥∥M3(τ )
∥∥

L2
x

]
≤ c

(
E

[ ∫ τ

0
‖Sτ

(
�(u) − �(h)

)‖2L2(U;L2
x )
ds

]) 1
2

≤ c

(
E

[ ∫ τ

0
‖�(u) − �(h)‖2L2(U;L2

x )
ds

]) 1
2

≤ c

(
E

[ ∫ τ

0
‖u − h‖2L2

x
ds

]) 1
2

≤ c
√

τ

(
E

[
sup

0≤s≤T
‖u − h‖2L2

x

]) 1
2 ≤ cτ

due to (2.1), (2.22) and (2.14). Finally, by (4.19), (2.24), Itô-isometry, (4.28) and (2.1)

E

[∥∥M4(τ )
∥∥

L2
x

]
≤ c

(
E

[ ∫ τ

0
‖(Sτ − DTτ (Uτ )

)
�(h)‖2L2(U;L2

x )
ds

]) 1
2

≤ cτ

(
E

[ ∫ τ

0
(1 + ‖h‖2W 2,2)

(
1 + ‖Uτ‖2W 1,2

x

)
ds

]) 1
2

≤ cτ

(
E

[ ∫ τ

0
(1 + ‖h‖4W 2,2 + ‖Uτ‖4W 1,2

x

)
ds

]) 1
2

≤ cτ

(
E

[ ∫ τ

0

(
1 + ‖h‖4

W 1,2
x

)
ds

]) 1
2 ≤ cτ 3/2.

Finally, we have due to (4.21) and (4.28)

E

[∥∥∥∥
∑
i≥1

∫ τ

0
D2Tτ

(
Uτ

)(
�(h)ei ,�(h)ei

)
ds

∥∥∥∥
L2

x

]
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≤
∑
i≥1

E

[ ∫ τ

0
‖�(h)ei‖2W 1,2

x
‖Uτ‖W 1,2

x
ds

]

≤ E

[ ∫ τ

0

(‖�(h)‖4
L2(U;W 1,2

x )
+ ‖Uτ‖2W 1,2

x

)
ds

]

≤ cE

[ ∫ τ

0

(
1 + ‖h‖4

W 1,2
x

)
ds

]
≤ cτ.

Hence we conclude

|(I)| ≤ cτ. (5.4)

5.2 The error in the linear part (II)

We use ASτ = SτA and A − SτA = −τSτA2 to get

(II) =
M∑

m=2

E

[ ∫ tm

tm−1

(
(A − SτA)um−1, DU (T − s, uτ )

)
L2

x
ds

]

+
M∑

m=2

E

[ ∫ tm

tm−1

(
A(uτ − um−1), DU (T − s, uτ )

)
L2

x
ds

]

= −τ

M∑
m=2

E

[ ∫ tm

tm−1

(
SτA2um−1, DU (T − s, uτ )

)
L2

x
ds

]

+
M∑

m=2

E

[ ∫ tm

tm−1

(
A(uτ − um−1), DU (T − s, uτ )

)
L2

x
ds

]

=: (II)1 + (II)2.

We clearly have

(II)1 ≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

‖Sτ‖L(L2
x )‖A2um−1‖L2

x
‖DU (T − s, uτ )‖L2

x
ds

]

≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

‖A2um−1‖L2
x
ds

]
≤ cτ

using (2.23), Lemmas 4.5 and 4.4. Using Malliavin claculus, cf. Sect. 2.4, the term
(II)2 can be decomposed into the sum of

(II)12 =
M∑

m=2

E

[ ∫ tm

tm−1

(t − tm−1)

τ

(
A(DTτ (Uτ ) − id)um−1, DU (T − s, uτ )

)
L2

x
ds

]
,
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(II)22 = 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

(
DU (T − s, uτ ),

D2Tτ

(
Uτ

)(
�(um−1)ei ,�(um−1)ei

))
L2

x

dσ ds

]
,

(II)32 = τ

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ tm−1

0
D2U (T − s, uτ )

(
DTτ (Uτ )�(um−1)ei ,ADTτ (Uτ )�(um−1)ei

)
dσ ds

]
,

taking into account (4.27), (2.27) and Dsuλ
τ = DTτ (Uτ )�(um−1) for t ∈ (tm−1, tm)

and s ∈ [tm−1, t]. We obtain from (4.20), Lemmas 4.5, (4.28) and 4.4

|(II)12| ≤ c
M∑

m=2

E

[ ∫ tm

tm−1

‖(DTτ (Uτ ) − id)um−1‖W 2,2
x

ds

]

≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

‖um−1‖W 4,2
x

(1 + ‖Uτ‖8W 2,2
x

) ds

]

≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

(
1 + ‖um−1‖2W 4,2

x
+ ‖Uτ‖16W 2,2

x

)
ds

]
≤ cτ.

Moreover, it holds by (4.21) and Lemma 4.4

|(II)22| ≤ 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

∥∥D2Tτ

(
Uτ

)(
�(um−1)ei ,�(um−1)ei

)∥∥
L2

x
dσ ds

]

≤
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

‖�(um−1)‖2L2(U;W 1,2
x )

(
1 + ∥∥Uτ

∥∥
L6

x

)
dσ ds

]

≤
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(
1 + ‖um−1‖3W 1,2

x
+ ∥∥Uτ

∥∥3
W 1,2

x

)
dσ ds

]

≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

(
1 + ‖um−1‖3W 1,2

x

)
dσ ds

]
≤ cτ

with the help of (2.1) and (4.30). Finally, we obtain by (4.14), (4.15), (4.16) and
Lemma 4.6

|(II)32| ≤ τ

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ tm−1

0
‖DTτ (Uτ )�(um−1)ei‖W 2,2

x
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× ‖DTτ (Uτ )�(um−1)ei‖W 1,2
x
dσ ds

]

≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

∫ tm−1

0
‖�(um−1)‖2L2(U;W 2,2

x )

(
1 + ∥∥Uτ

∥∥8
W 2,2

x

)
dσ ds

]

such that, by (2.5) and (4.28),

≤ τ

M∑
m=2

E

[ ∫ tm

tm−1

∫ tm−1

0

(
1 + ‖um−1‖28W 2,2

x

)
dσ ds

]
≤ cτ

using Lemma 4.4 in the last step. Plugging all together we have shown

|(II)| ≤ cτ. (5.5)

5.3 The error in the non-linear part (III)

The non-linear part can be written as

(III) = −
M∑

m=2

E

[ ∫ tm

tm−1

((
id − Sτ

)
f (um−1), DU (T − s, uτ ))L2

x
ds

]

−
M∑

m=2

E

[ ∫ tm

tm−1

(
f (uτ ) − f (um−1), DU (T − s, uτ )

)
L2

x
ds

]

=: (III)1 + (III)2,

where

|(III)1| ≤
M∑

m=2

E

[ ∫ tm

tm−1

‖A−1(id − Sτ

)‖L(L2
x )‖ f (um−1)‖W 2,2

x
‖DU (T − s, uτ )‖L2

x
ds

]

≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

(‖um−1‖q

W 2,2
x

+ 1) ds

]

due to (2.24) and Lemma 4.5. The expectation is bounded by cτ on account of
Lemma 4.4. Estimating (III)2 requires more effort. Introducing the notation f j (v) =
( f (v), v j )L2

x
with the orthonormal basis (v j ) ⊂ L2(Td) allows us to write

(III)2 = −
M∑

m=2

∑
j≥1

E

[ ∫ tm

tm−1

(
f j (uτ (s)) − f j (um−1), ∂ jU (T − s, uτ )

)
L2

x

ds

]
.

In order to proceed we apply Itô’s formula to f j (uτ ) and recall the definition of uτ

in (4.27). Using the orthonormal basis (ei )i≥1 of the Hilbert space U introduced in
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Sect. 2.1 we obtain

f j (uτ (t)) − f j (um−1)

= 1

2

∑
i≥1

∫ t

tm−1

D2 f j (uτ

)(
DTτ (Uτ )�(um−1)ei , DTτ (Uτ )�(um−1)ei

)
ds

+
∫ t

tm−1

( DTτ (Uτ ) − Id

τ
um−1, D f j (uτ )

)
L2

x

ds

+ 1

2

∑
i≥1

∫ t

tm−1

(
D f j (uτ ), D2Tτ

(
Uτ

)(
�(um−1)ei ,�(um−1)ei

))
L2

x

ds

+
∫ t

tm−1

(
D f j (uτ ), DTτ (Uτ )�(um−1)

)
L2

x
dW

such that

(III)2

=
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

(
f ′′(uτ )|DTτ (Uτ )�(um−1)ei |2, DU

)
L2

x

dσ ds

]

+
M∑

m=2

∑
j≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

( DTτ (Uτ ) − Id

τ
um−1, D f j (uτ )

)
L2

x

∂ jU dσ ds

]

+ 1

2

M∑
m=2

∑
i, j≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

(
D f j (uτ ),

D2Tτ

(
Uτ

)(
�(um−1)ei ,�(um−1)ei

))
L2

x

∂ jU dσ ds

]

+
M∑

m=2

∑
j≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

(
D f j (uτ ), DTτ (Uτ )�(um−1)

)
L2

x
∂ jU dW ds

]

=: (III)12 + (III)22 + (III)32 + (III)42,

where ∂ j u and Du are evaluated at (T − s, uτ ). We have by Lemma 4.5, (4.21) and
(4.14)

|(III)12| ≤
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

∥∥∥ f ′′(uτ )|DTτ (Uτ )�(um−1)ei |2
∥∥∥

L2
x

× ‖DU (T − s, uτ )‖L2
x
dσ ds

]

≤ c
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

‖uτ‖L6
x
‖DTτ (Uτ )�(um−1)ei‖2L6

x
dσ ds

]
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≤ c
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

(1 + ‖uτ‖W 1,2
x

)‖�(um−1)ei‖2L6
x
dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(1 + ‖uτ‖W 1,2
x

)‖�(um−1)‖2L2(U;W 1,2
x )

dσ ds

]

using also (4.3)–(4.5) in the last step. Finally, by (2.1),

(III)12 ≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(1 + ‖uτ‖3W 1,2
x

+ ‖um−1‖3W 1,2
x

) dσ ds

]
≤ cτ

on account of Lemma 4.4 and (4.29). In order to estimate (III)22 we rewrite

(III)22 =
M∑

m=2

∑
j≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

(
D f (uτ )

( DTτ (Uτ ) − Id

τ
um−1

)
, u j

)
L2

x

∂ jU dσ ds

]

We obtain further with the help (4.19)

|(III)22| ≤
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

∥∥∥D f (uτ )
( DTτ (Uτ ) − Id

τ
um−1

)∥∥∥
L2

x

‖DU ‖L2
x
dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(
1 + ‖uτ‖2W 2,2

x

)∥∥∥ DTτ (Uτ ) − Id

τ
um−1

∥∥∥
L2

x

dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(
1 + ‖uτ‖2W 2,2

x

)(
1 + ‖Uτ‖2W 1,2

x

)‖um−1‖W 2,2
x

dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(
1 + ‖um−1‖9W 2,2

x
+ ‖Uτ‖9W 1,2

x
+ ‖uτ‖3W 2,2

x

)
dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(
1 + ‖um−1‖9W 2,2

x

)
dσ ds

]
≤ cτ

using also Lemma 4.4, as well as (4.28) and (4.30). With the aid of the integra-
tion by parts rule for Malliavin derivatives, cf. Eq. (2.27), and using again Dσ uτ =
DTτ (Uτ )�(um−1) for s ∈ (tm−1, tm) and σ ∈ [tm−1, t] we rewrite

(III)42 =
M∑

m=2

E

[ ∫ tm

tm−1

(
DU ,

∫ s

tm−1

D f (uτ )DT (Uτ )�(um−1) dW
)

L2
x

ds

]

=
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

D2U
(

DTτ (Uτ )�(um−1)ei ,
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D f (uτ )DTτ (Uτ )�(um−1)ei

)
dσ ds

]

≤
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

‖DTτ (Uτ )�(um−1)ei‖2L6
x
(‖uτ‖2L∞

x +1) dσ ds

]

≤
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

‖�(um−1)ei‖2W 1,2
x

(‖uτ‖2L∞
x

+ 1) dσ ds

]

using also (4.14). We estimate further with the help of (2.1), Lemma 4.6 and (4.30)

|(III)32| + |(III)42| ≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

‖�(um−1)‖2L2(U;W 1,2
x )

(‖uτ‖2W 2,2
x

+ 1) dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(1 + ‖um−1‖2W 1,2
x

)(‖uτ‖2W 2,2
x

+ 1) dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ t

tm−1

(
1 + ‖um−1‖4W 1,2

x
+ ‖uτ‖4W 2,2

x

)
ds dt

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(
1 + ‖um−1‖4W 2,2

x

)
dσ ds

]
≤ cτ

using Lemma 4.4. By collecting the previous estimates we conclude that

|(III)| ≤ cτ. (5.6)

5.4 The corrector error (IV)

Nowwe are concerned with (IV), which is the error which arises from the linearisation
and does not occur in related papers dealing with linear semigroups. We call it the
corrector error. We have by (4.21) and (4.28)

1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

(
DU (t, uτ ), D2Tτ

(
Uτ

)(
�(um−1)ei ,�(um−1)ei

))
L2

x

ds

]

≤ cτ
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∥∥Uτ

∥∥
W 1,2

x

∥∥�(um−1)ei
∥∥2

W 1,2
x

ds

]

= cτ
M∑

m=2

E

[ ∫ tm

tm−1

∥∥Uτ

∥∥
W 1,2

x

∥∥�(um−1)
∥∥2

L2(U;W 1,2
x )

ds

]

≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

(
1 + ∥∥Uτ

∥∥2
W 1,2

x
+ ∥∥um−1

∥∥4
W 1,2

x

)
ds

]
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≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

(
1 + ∥∥um−1

∥∥4
W 1,2

x

)
ds

]
≤ cτ

using Lemma 4.4 in the last step. This proves

|(IV)| ≤ cτ. (5.7)

5.5 The interpolation error (V)

In order to estimate (V) we differentiate (4.7) and obtain for f (z) = z3 − z

Sτ f (um−1) + 1

τ

(
DTτ (Uτ ) − Sτ

)
um−1

= Sτ

(
f (um−1) − f ′(Tτ (Uτ ))DTτ (Uτ )um−1

)

where

f (um−1) − f ′(Tτ (Uτ ))DTτ (Uτ )um−1 = f (um−1) − f ′( t − tm−1

τ
um−1

)
um−1

+
(

f ′( t − tm−1

τ
um−1

)
− f ′(Uτ )

)
um−1

+ (
f ′(Uτ ) − f ′(Tτ (Uτ ))

)
um−1

+ f ′(Tτ (Uτ ))
(
Id−DTτ (Uτ )

)
um−1.

One easily checks that the first term disappears when integrating over [tm−1, tm] using
that f (0) = 0. As far as the second term is concerned we write

(
f ′( t − tm−1

τ
um−1

)
− f ′(Uτ )

)
um−1 = 6

t − tm
τ

|um−1|2�(um−1)(Wt − Wtm−1)

+ um−1|�(um−1)(Wt − Wtm−1)|2. (5.8)

The first term vanishes under the expectation and hence can be ignored, while the
expectation of the (L2

x -norm of the) second one can be controlled by τE
[‖um−1‖L2

x
‖

�(um−1)‖2
L2(U;W 2,2

x )

]
. as a consequence of Itô-isometry. By (4.3) and (4.12)

∥∥(
f ′(Uτ ) − f ′(Tτ (Uτ ))

)
um−1‖L2

x

≤ c
(‖Uτ‖L6

x
+ ‖Tτ (Uτ )‖L6

x

)‖Uτ − Tτ (Uτ )‖L6
x
‖um−1‖L6

x

≤ cτ‖Uτ‖W 1,2
x

(
1 + ‖Uτ‖W 3,2

x
+ ‖Uτ‖3W 2,2

x

)‖um−1‖W 1,2
x

≤ cτ
(
1 + ‖Uτ‖5W 3,2

x
+ ‖um−1‖5W 1,2

x

)
.

Finally,

‖ f ′(Tτ (Uτ ))
(
Id−DTτ (Uτ )

)
um−1

∥∥
L2

123



Stochastics and Partial Differential Equations: Analysis and Computations

≤ c‖ f ′(Tτ (Uτ ))‖L∞
x

‖ Id−DTτ (Uτ )‖L(L2
x )‖um−1

∥∥
L2

x

≤ cτ‖Tτ (Uτ )‖2W 2,2
x

(
1 + ‖Uτ‖2W 1,2

x

)‖um−1
∥∥

L2
x

≤ cτ
(
1 + ‖Uτ‖6W 2,2

x

)(
1 + ‖Uτ‖2W 1,2

x

)‖um−1
∥∥

L2
x

≤ cτ
(
1 + ‖Uτ‖10W 2,2

x
+ ‖um−1

∥∥10
L2

x

)

using (4.19) and (4.5). On account of Lemma 4.5, (4.28) and Lemma 4.4 we conclude

|(V)| ≤ cτ 2
M∑

m=2

E

(
1 + ‖um−1‖5W 3,2

x
+ ‖um−1‖10W 2,2

x

)
≤ cτ. (5.9)

5.6 The error in the correction term (VI)

First of all we decompose

(VI) = 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

D2U (T − s, uτ )
(
�(uτ )ei ,

(
�(uτ ) − �(um−1)

)
ei

)
ds

]

+ 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

D2U (T − s, uτ )
((

�(uτ ) − �(um−1)
)
ei , �(um−1)ei

)
ds

]

+ 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

D2U (T − s, uτ )
(
(Id−DTτ

(
Uτ

)
)�(um−1)ei ,

DTτ

(
Uτ

)
�(um−1)ei

)
ds

]

+ 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

D2U (T − s, uτ )
(

DTτ

(
Uτ

)
�(um−1)ei ,

(Id−DTτ

(
Uτ

)
)�(um−1)ei

)
ds

]

=: (VI)1 + · · · + (VI)4.

By Lemma 4.6, (2.1), (4.14) and (4.19) we obtain

|(VI)4| ≤ c
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

‖DTτ

(
Uτ

)
�(um−1)ei‖L6

x

× ‖(Id−DTτ

(
Uτ

)
)�(um−1)ei‖L2

x
ds

]

≤ cτ
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

‖�(um−1)ei‖L6
x
‖�(um−1)ei‖W 2,2

x

(
1 + ‖Uτ‖2W 1,2

x

)
ds

]

123



Stochastics and Partial Differential Equations: Analysis and Computations

≤ cτ
M∑

m=2

E

[ ∫ tm

tm−1

‖�(um−1)‖2L2(U;W 2,2
x )

(
1 + ‖Uτ‖W 1,2

x

)
ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

(1 + ‖um−1‖3W 2,2
x

+ ‖Uτ‖3W 1,2
x

)
ds

]
.

Hence we obtain

|(VI)4| ≤ c
M∑

m=2

E

[ ∫ tm

tm−1

(1 + ‖um−1‖3W 2,2
x

) ds

]
≤ cτ

using (4.28) and Lemma 4.4. The same idea can be used to estimate (VI)3. In order
to estimate (VI)1 and (VI)2 we apply Itô’s formula to the functional

t �→ (
�(uτ ) − �(um−1)

)
ei

taking P-a.s. values in L2(Td). We obtain from (4.27) for t ∈ [tm−1, tm]
(
�(uτ (t)) − �(um−1)

)
ei

= 1

2

∫ t

tm−1

D2�(uτ )
(
DTτ (Uτ )�(um−1)

)∗
DTτ (Uτ )�(um−1)ei ds

+
∫ t

tm−1

DTτ (Uτ ) − id

τ
um−1D�(uτ )ei ds

+ 1

2

∑
j≥1

∫ t

tm−1

D�(uτ )ei D2Tτ

(
Uτ

)(
�(um−1)e j ,�(um−1)e j

)
ds

+
∫ t

tm−1

DTτ (Uτ )�(um−1)D�(uτ )ei dβ
i .

(5.10)

The last term leads us to

1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

D2U (T − s, uτ )

(
�(uτ )ei ,

∫ s

tm−1

DTτ (Uτ )�(um−1)D�(uτ )ei dβ
i
)
ds

]

= 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

D3U (T − s, uτ )

(
Di

σ uτ ,�(uτ )ei , DTτ (Uτ )�(um−1)D�(uτ )ei

)
dσ ds

]
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+ 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

D2U (T − t, uτ )

(
D�(uτ )eiDi

σ uτ , DTτ (Uτ )�(um−1)D�(uτ )ei

)
dσ ds

]

= 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ t

tm−1

D3U (T − s, uτ )

(
DTτ (Uτ )�(um−1)ei ,�(uτ )ei , DTτ (Uτ )�(um−1)D�(uτ )ei

)
dσ ds

]

+ 1

2

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

D2U (T − s, uτ )

(
D�(uτ )ei DTτ (Uτ )�(um−1)ei , DTτ (Uτ )�(um−1)D�(uτ )ei

)
dσ ds

]

where we used (2.27) and Dsuτ = DTτ (Uτ )�(um−1) for s ∈ [tm−1, tm]. Using
Lemma 4.7 the term involving D3U can be estimated by

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

‖DTτ (Uτ )�(um−1)ei‖L6
x
‖�(uτ )ei‖L6

x

× ‖DTτ (Uτ )�(um−1)D�(uτ )ei‖L6
x
dσ ds

]

≤ c
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

‖�(um−1)ei‖L6
x
‖�(uτ )ei‖L6

x

× ‖�(um−1)D�(uτ )ei‖L6
x
dσ ds

]

≤ c
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

‖�(um−1)ei‖W 1,2
x

‖�(uτ )ei‖W 1,2
x

× ‖�(um−1)‖L(W 1,2
x )

‖D�(uτ )ei‖W 1,2
x

dσ ds

]

≤ c
M∑

m=2

E

∫ tm

tm−1

∫ s

tm−1

(
‖�(um−1)‖4L2(U;W 1,2

x )
+ ‖�(uτ )‖4L2(U;W 1,2

x )

)
dσ ds

+ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

‖D�(uτ )‖4L2(U;W 1,2
x )

dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(
‖um−1‖4W 1,2

x
+ ‖uτ‖4W 1,2

x
+ 1

)
dσ ds

]
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taking into account (4.14), (2.1) and Lemma 4.4. For the other termwe obtain similarly
by Lemma 4.6 the bound

M∑
m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

‖D�(uτ )ei DTτ (Uτ )�(um−1)ei‖L2
x

× ‖DTτ (Uτ )�(um−1)D�(uτ )ei‖L6
x
dσ ds

]

≤ c
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

‖�(um−1)ei‖L2
x
‖�(um−1)D�(uτ )ei‖L6

x
dσ ds

]

≤ c
M∑

m=2

∑
i≥1

E

[ ∫ tm

tm−1

∫ s

tm−1

‖�(um−1)ei‖L2
x
‖�(um−1)‖L(W 1,2

x )

× ‖D�(uτ )ei‖W 1,2
x

dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

‖�(um−1)‖3L2(U;W 1,2
x )

dσ ds

]

+ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

‖D�(uτ )‖3L2(U;W 1,2
x )

dσ ds

]

≤ c
M∑

m=2

E

[ ∫ tm

tm−1

∫ s

tm−1

(
‖um−1‖3W 1,2

x
+ 1

)
dσ ds

]
≤ cτ.

The L2
x -norm of the remaining terms in (5.10) can be estimated by the sum of

τ‖DTτ (Uτ )�(um−1)ei‖L2
x
‖DTτ (Uτ )�(um−1)‖L(L2

x ),

‖(DTτ (Uτ ) − id)um−1‖L2
x
‖D�(uτ )ei‖L(L2

x ),

τ
∑
i≥1

‖D2Tτ

(
Uτ

)(
�(um−1)e j ,�(um−1)e j

)‖L2
x
‖D�(uτ )ei‖L(L2

x ),

using boundedness of D� and D2�, cf. (2.1). By the properties of Tτ from (4.14),
(4.19) and (4.21) we bound these terms by

τ(1 + ‖um−1‖L2
x
)‖�(um−1)ei‖L2

x
,

τ‖um−1‖W 2,2
x

(1 + ‖Uτ‖W 1,2
x

)‖D�(uτ )ei‖L(L2
x ),

‖Uτ‖W 1,2
x

‖�(um−1)‖2L2(U;W 1,2
x )

‖D�(uτ )ei‖L(L2
x ).
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We conclude

|(V)1| ≤ cτ 2
M∑

m=2

E

(
1 + ‖um−1‖2W 2,2

x
+ ‖um−1‖3W 1,2

x

)
≤ cτ

using (4.28) and Lemma 4.4. The estimate for (IV)2 is analogous and we conclude

|(IV)| ≤ cτ. (5.11)

6 Conclusion

Combining the estimates (5.4), (5.5), (5.6), (5.7), (5.9) and (5.11) we have shown

E[ϕ(u(T , h))] − E[ϕ(uM )] ≤ cτ.

The proof of Theorem 5.1 is hereby complete.
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