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Abstract
We consider degenerate elliptic equations of second order in divergence form with
a symmetric random coefficient field a. Extending the work of Bella et al. (Ann
Appl Probab 28(3):1379–1422, 2018), who established the large-scaleC1,α regularity
of a-harmonic functions in a degenerate situation, we provide stretched exponential
moments for theminimal radius r∗ describing theminimal scale for thisC1,α regularity.
As an application to stochastic homogenization, we partially generalize results by
Gloria et al. (Anal PDE 14(8):2497–2537, 2021) on the growth of the corrector, the
decay of its gradient, and a quantitative two-scale expansion to the degenerate setting.
On a technical level, we demand the ensemble of coefficient fields to be stationary and
subject to a spectral gap inequality, and we impose moment bounds on a and a−1. We
also introduce the ellipticity radius re which encodes the minimal scale where these
moments are close to their positive expectation value.
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1 Introduction andmain results

In these notes,we present some ideas to generalize results fromstochastic homogeniza-
tion of uniformly elliptic operators −∇ · a∇ to the case of degenerate and unbounded
random coefficient fields a. The underlying random distribution is always assumed to
be stationary and ergodic. To quantify the degeneracy and unboundedness, we impose
moment bounds on the norm of a(x) and its pointwise inverse a(x)−1, x ∈ R

d . A
precise collection of our general assumptions is given in Definition 1.1.

For the sake of a simplified notation, we focus on scalar models where a : Rd →
R
d×d is a matrix field rather than a field of rank-4 tensors. But since we do not rely on

results from scalar PDE theory like maximum principles, we believe that our methods
also extend to systems provided that all arguments involving |a| or |a−1| also apply
to the respective generalizations μ and λ−1 as defined by the first author, Fehrman,
and Otto [9]. As we shall explain in more detail below (see Remark 2.2), we currently
have to restrict ourselves for technical reasons to symmetric matrix coefficient fields
a(x) = a(x)T ; this issue might be resolved by working only with the scalar quantities
μ and λ−1. However, this is beyond the scope of this contribution and is left as a
subject for future work. An alternative approach for non-symmetric coefficient fields
a(x) is outlined in [5, Chapter 10], where a variational formulation based on a “double-
variable” approach is presented.

To some extent, this paper continues the studies of the first author, Fehrman, and
Otto [9], where the large-scale C1,α regularity and a first-order Liouville principle for
a-harmonic functions were derived in the same setting. It is one of the goals of the
present contribution to provide stretched exponential moments for the minimal radius
r∗, which determines the minimal scale for the C1,α regularity. Moreover, we provide
quantitative estimates on the growth of the corrector and the decay of its gradient, and
we derive a quantitative two-scale expansion in our degenerate setting.

The starting point of our analysis is the work of Gloria, Neukamm, and Otto [22] on
the large-scale regularity of random elliptic operators. The main achievements of this
publication are large-scale Schauder and large-scale Calderón–Zygmund estimates
valid on scales larger than the minimal radius r∗. Their approach is in turn motivated
by the ideas of Avellaneda and Lin [6], who established a large-scale regularity theory
for elliptic operators with periodic coefficients, hence, on the torus. This enabled the
authors to apply compactness arguments which are generally not available. Previous
preprints [20, 21] of [22] follow in some cases different strategies which can be equally
valuable as they are sometimes better suited for an application in our situation. A key
ingredient in all three versions are functional inequalities (e.g. spectral gap and loga-
rithmic Sobolev inequalities), which allow to quantify certain aspects of the random
ensemble in an advantageous manner. A comparison of various forms of functional
inequalities and applications is given by Duerinckx and Gloria [16]. The basis for
our results on the corrector in stochastic homogenization and the two-scale expansion
is the contribution by Gloria, Neukamm, and Otto [23] on quantitative estimates in
stochastic homogenization.
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Definition 1.1 (Ensemble of coefficient fields) Let � be the space of symmetric coef-
ficient fields a : Rd → R

d×d , d ≥ 2, and let 〈·〉 denote an ensemble of coefficient
fields a, i.e. a probability measure on �, which we assume to be

• stationary, i.e. the probability distributions of a and a(x + ·) coincide for all
x ∈ R

d ,
• ergodic, i.e. every translation invariant random variable is almost surely constant.

For any a ∈ �, we define the (space-dependent) quantities

λ := ∣
∣a−1

∣
∣
−1 and μ := |a|.

We suppose λ(x), μ(x) ∈ (0,∞) for a.e. x ∈ R
d , and that p, q ∈ (1,∞) exist

satisfying

〈

μp〉
1
p + 〈

λ−q 〉
1
q =: K < ∞ and

1

p
+ 1

q
<

2

d
, (1.1)

where (1.1) is independent of x ∈ R
d due to the stationarity of the ensemble 〈·〉.

The concept of imposing stochastic moment bounds on the coefficient field a(x)
instead of assuming uniform ellipticity was successfully applied in a similar context
by Chiarini and Deuschel to prove an invariance principle for symmetric diffusion
processes on R

d [14]. In the context of homogenization, condition (1.1) was first
imposed by Andres et al. [2] for an ergodic random conductance model and later also
used in a time-dependent ergodic version thereof [15]. In our situation, the purpose of
(1.1) is to guarantee the sublinearity of the corrector (cf. Remark 1.5) and to allow for
specific Sobolev embeddings (e.g. in Lemma 2.3). Only recently, the first author and
Schäffner [11] showed that the relaxed version

1

p
+ 1

q
<

2

d − 1
(1.2)

guarantees local boundedness and the existence of a Harnack inequality for solu-
tions to linear, nonuniformly elliptic equations. The same result was already proven
by Trudinger [28] under the more restrictive version in (1.1). Condition (1.2) is, in
addition, optimal in the sense that local boundedness is generally not available if the
right-hand side is replaced by 2

d−1 + ε for any ε > 0; we refer to the references in
[11] for further details. As an application to stochastic homogenization, the authors
show that the pointwise sublinearity of the corrector, which was proven by Chiarini
and Deuschel [14] in a similar framework assuming (1.1), also holds under condition
(1.2). Stochastic moment bounds of the type (1.1) appeared recently also in studies
on the regularity properties of non-uniformly parabolic operators; see [1, 12] and the
references therein.

Related to Birkhoff’s ergodic theorem (see e.g. [24]) guaranteeing that

lim
r→∞

( 
Br (0)

μp
) 1

p +
( 

Br (0)
λ−q

) 1
q = K (1.3)
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for a.e. coefficient field a, we subsequently define the ellipticity radius re, which
determines the minimal scale on which the system behaves approximately elliptic.

Definition 1.2 For K as in (1.1), we define the ellipticity radius re ≥ 1 as the random
variable

re := inf

⎧

⎨

⎩
r ≥ 1

∣
∣
∣ ∀ ρ > r :

( 
Bρ(0)

μp

) 1
p

+
( 

Bρ(0)
λ−q

) 1
q

≤ 4K

⎫

⎬

⎭
.

We subsequently recall standard notions in stochastic homogenization including
the extended corrector (φ, σ ) = ((φi )i , (σi jk)i jk) and the homogenized field ahom.
Existence and uniqueness of the extended corrector will be discussed afterwards.

Definition 1.3 (Definition of the extended corrector (φ, σ )) In the situation of Defini-
tion 1.1 and for given ξ ∈ R

d , one calls the sublinear solution φξ of−∇·a(ξ +∇φξ ) =
0 onRd the corrector associated to ξ . Specifically for ξ being a canonical basis vector,
one considers the corrector φi , 1 ≤ i ≤ d, being a solution to

−∇ · qi = 0, qi := a(ei + ∇φi ). (1.4)

The vector qi is called the i th component of the flux and one introduces the flux
correction σi jk , 1 ≤ i, j, k ≤ d, as a vector-valued potential solving

∇ · σi = qi − 〈qi 〉, −
σi = ∇ × qi := (∂ j qik − ∂kqi j ) jk . (1.5)

Finally, one defines the homogenized field ahom via ahomei := 〈qi 〉.
Concerning the possible degeneracy and unboundedness of the coefficients a(x),

we mention that it is obviously not possible to perform estimates like c|v|2 ≤ v ·av ≤
C |v|2 for v ∈ R

d with uniform constants C ≥ c > 0. It is, therefore, advantageous
to introduce a separate notation for such quadratic forms and also for matrix products

a
1
2 Ma

1
2 with some M ∈ R

d×d .

Notation 1.4 For a ∈ R
d×d , M ∈ R

d×d , and v ∈ R
d , we set |v|2a := v · av and

|M |a := ∣
∣a

1
2 Ma

1
2
∣
∣ where | · | denotes the spectral norm onRd×d . For any measurable

D ⊂ R
d , we further abbreviate L2

a(D)d := {

f : D → R
d
∣
∣ f · a f ∈ L1(D)

}

and
H1
a (D) := {

u : D → R
∣
∣ ∇u · a∇u ∈ L1(D)

}

.

A question which typically arises in this context, is concerned with the so-called
Liouville principle. For example, given a subquadratic solution u of−∇ ·a∇u = 0 on
R
d , can one prove that u = c+ξ · x +φξ (x) for some ξ ∈ R

d? For the present setting,
the first author, Fehrman, and Otto [9] have shown that such a Liouville property
does hold (cf. Remark 1.5). The interest in such a principle also lies in its close
relation to Schauder estimates, which has been highlighted by Simon [27]. Moreover,
Liouville properties have been established in many situations including stationary and
ergodic degenerate systems [13], higher-order Liouville principles [17], and Liouville
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theorems for uniformly parabolic systems in a random setting supposing stationarity
and ergodicity [8].

The existence of an extended corrector (φ, σ ) as in Definition 1.3 directly follows
from [9, Lemma 1], while its uniqueness is an immediate consequence of the sublin-
earity of (φ, σ ) [9, Lemma 2] and a related Liouville principle [9, Theorem 1]. For
the sake of completeness, we recall these results in Remark 1.5 below. Identity (1.6)
shows that the extended corrector (φ, σ ) is sublinear w.r.t. ρ. While (1.6) gives only
a qualitative statement, we will prove a quantified version thereof in Corollary 2.4,
which will serve as an important tool in the latter part of this paper.

Remark 1.5 (Properties of the extended corrector (φ, σ ) [9, Lemmas 1,2, Theorem 1],
[14, Proposition 4.1]) Under the hypotheses of Definition 1.1, there exist a constant
C > 0 and random tensor fields φi and σi jk , 1 ≤ i, j, k ≤ d, satisfying (1.4)–(1.5) and
the skew-symmetry σi jk = −σik j , while the gradient fields are stationary, of vanishing
expectation

〈∇φi
〉 = 〈∇σi jk

〉 = 0,

and having bounded moments

d
∑

i=1

〈|∇φi |2a
〉 +

d
∑

i=1

〈

|∇φi |
2q
q+1

〉 q+1
2q +

d
∑

i, j,k=1

〈

|∇σi jk |
2p
p+1

〉 p+1
2p ≤ CK ,

where K is the constant from Definition 1.1. In addition, (φ, σ ) is sublinear in the
sense

lim
ρ→∞max

{
1

ρ

( 
Bρ

∣
∣
∣φ −

 
Bρ

φ

∣
∣
∣

2p
p−1

) p−1
2p

,
1

ρ

( 
Bρ

∣
∣
∣σ −

 
Bρ

σ

∣
∣
∣

2q
q−1

) q−1
2q }

= 0,

(1.6)

and a.e. coefficient field a satisfies the following Liouville principle: Any solution
u ∈ H1

a (Rd) to −∇ · a∇u = 0 in Rd subject to

lim
R→∞ R−(1+α)

( 
BR

|u| 2p
p−1

) p−1
2p = 0

for some α ∈ (0, 1) admits the representation u(x) = c + ξ · x + φξ (x) for some
c ∈ R and ξ ∈ R

d . Finally, the homogenized field ahom is uniformly elliptic.

The following lemma is basically a consequence of the collected results in
Remark 1.5 and [9, Theorem 2]. The claimed mean-value property in (1.8) is a direct
consequence of (1.7) which is typically referred to as a large-scale C1,α regularity
estimate. The first large-scale regularity result for a uniformly elliptic, scalar equation
was obtained by Marahrens and Otto [25], where the ergodicity of the random ensem-
ble was encoded by means of a logarithmic Sobolev inequality. For elliptic systems
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with stationary and coercive coefficients, the first author andOtto [10] derivedmoment
bounds on the corrector gradient by employing either a logarithmic Sobolev inequality
or a spectral gap estimate. We also mention the large-scale regularity theory for scalar
equations in a random environment developed by Armstrong and Smart [4]. A crucial
ingredient of their approach is the assumption of a finite range of dependence for the
symmetric coefficient field.More recently, large-scale regularity results have also been
shown for the randomconductancemodel byArmstrong andDario [3]. They prove that
the corresponding solutions on supercritical percolation clusters are close to harmonic
functions on large scales which admit stretched exponential moments. For similar
models subject to long-range correlations and decoupling inequalities, Sapozhnikov
[26] generalized several results, such as heat kernel bounds and parabolic Harnack
inequalities, which have already been known for the Bernoulli percolation.

Lemma 1.6 (Large-scale C1,α regularity and a mean-value property for a-harmonic
functions) For any α ∈ (0, 1) and K > 0, there exist constants C0, C1, and C2 such
that for all positive radii r < R and p, q ∈ (1,∞) satisfying 1

p + 1
q ≤ 2

d the following
holds: If

( 
Bρ

μp

) 1
p

+
( 

Bρ

λ−q

) 1
q

≤ 2K

and

max

{
1

ρ

( 
Bρ

∣
∣
∣φ −

 
Bρ

φ

∣
∣
∣

2p
p−1

) p−1
2p

,
1

ρ

( 
Bρ

∣
∣
∣σ −

 
Bρ

σ

∣
∣
∣

2q
q−1

) q−1
2q }

≤ 1

C0

for all ρ ∈ [r , R], then any solution u ∈ H1
a (BR) of −∇ · a∇u = 0 fulfills the

excess-decay

Exc(r) ≤ C1

( r

R

)2α
Exc(R), (1.7)

where the excess Exc(ρ) is defined as

Exc(ρ) := inf
ξ∈Rd

 
Bρ

∣
∣∇u − (ξ + ∇φξ )

∣
∣2
a,

and ∇u satisfies the mean-value property

 
Br

|∇u|2a ≤ C2

 
BR

|∇u|2a . (1.8)

We now introduce the minimal radius r∗ which quantifies the minimal scale on
which the (extended) corrector (φ, σ ) grows only sublinearly. For technical reasons,
we do not only demand r∗ ≥ re but even r∗ ≥ M0re for a specific constant M0 ≥ 1
detailed below.
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Definition 1.7 (Minimal radius) In the situation of Definition 1.1, we define the min-
imal radius as the random variable r∗ ≥ M0re given in the form

r∗ := inf
{

r ≥ M0re
∣
∣
∣ ∀ ρ > r :

max

⎧

⎨

⎩

1

ρ

( 
Bρ

∣
∣
∣φ −

 
Bρ

φ

∣
∣
∣

2p
p−1

) p−1
2p

,
1

ρ

( 
Bρ

∣
∣
∣σ −

 
Bρ

σ

∣
∣
∣

2q
q−1

) q−1
2q

⎫

⎬

⎭
≤ 1

C0

⎫

⎬

⎭

where C0 is the constant from Lemma 1.6, while M0 ≥ 1 is defined in (2.34).

The following spectral gap estimate (1.10) is our main stochastic assumption on
the underlying random environment. A very similar condition involving a coarsen-
ing partition {D} of Rd was used in [20]. Alternatively, one can employ multiscale
functional inequalities to describe the random ensemble (see Remark 1.9). A detailed
exposition of these ideas is given by Duerinckx and Gloria in [16]. We point out that
the more elementary spectral gap condition (1.10) is sufficient for the present study,
where we deduce stretched exponential moments for r∗ with a typically small expo-
nent ε. Nevertheless, we remark that multiscale functional inequalities could provide a
framework to obtain (with different techniques) stronger stretched exponential bounds
on r∗ in the spirit of Gloria, Neukamm, and Otto [22].

Definition 1.8 (Spectral gap inequality) Let the hypotheses of Definition 1.1 hold and
assume that a partition {D} of Rd and an exponent β ∈ [0, 1) exist such that

diam D ≤ (dist D + 1)β ≤ C(d)inn diam D, (1.9)

where inn diam D := 2 sup
{

r ≥ 0
∣
∣ ∃ x ∈ D : Br (x) ⊂ D

}

denotes the inner
diameter of D ⊂ R

d .
We say that a random field a satisfies the spectral gap (or Poincaré) inequality, if

there exists a constant κ ∈ (0, 1] such that

〈(

X(a) − 〈X(a)〉)2
〉

≤ 1

κ

〈
∑

D

( ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

)2
〉

(1.10)

for all σ(a)-measurable random variables X(a), where we recall that

ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

= sup
‖b‖L∞(D)=1

ˆ
D
b : a 1

2
∂X(a)

∂a
a

1
2

= sup
‖b‖L∞(D)=1

lim sup
t→0

X
(

a + ta
1
2 ba

1
2
) − X(a)

t
.

An upgraded version of the standard spectral gap estimate (1.10) to higher order
moments will be provided in Lemma 2.1, which will serve as a useful tool in various
situations subsequently in this paper.
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Remark 1.9 Instead of (1.10), one can also use a multiscale spectral gap inequality

〈(

X(a) − 〈X(a)〉)2
〉

≤
〈ˆ ∞

0

ˆ
Rd

( ˆ
B�(x)

∣
∣
∣
∂X(a)

∂a

∣
∣
∣

)2
dx

π(�)

(� + 1)d
d�

〉

(1.11)

or (multiscale) logarithmic Sobolev inequalities for quantifying the ergodicity of the
ensemble 〈·〉. Theweight functionπ : [0,∞) → [0,∞) in (1.11) is generally assumed
to be integrable. Integrable correlations Cov(a(x); a(0)) can be modeled with weights
decaying like π(�) ∼ (� + 1)−1−α for α > d. We refer to the work of Duerinckx and
Gloria [16] for further details.

The connection between the ellipticity radius re and the stochastic integrability
of the underlying coefficient field a satisfying the spectral gap inequality (1.10) is
clarified in the following lemma. We shall basically prove that stretched exponential
moment bounds on averages of |a|p and |a−1|q carry over to re.

Lemma 1.10 (Stretched exponential moments for re) Assume that an ensemble of
coefficient fields a ∈ � is given according toDefinition 1.1, which satisfies the spectral
gap estimate (1.10) along with β ∈ [0, 1) subject to (1.9). In case that

´
B1

λ−q and´
B1

μp possess stretched exponential moments

max

{〈

exp
( 1

C

( ˆ
B1

λ−q
)α)〉

,
〈

exp
( 1

C

( ˆ
B1

μp
)α)〉

}

< 2 (1.12)

for some constants α > 0 and C > 0, then the ellipticity radius re from Definition 1.2
is subject to

〈

exp
( 1

C
r

α
α+1

d
2 (1−β)

e

)〉

< 2 (1.13)

with the same parameter α > 0 but a possibly different constant C > 0.

We are now in a position to show that the minimal radius r∗ introduced in Defini-
tion 1.7 possesses stretched exponential moments by adapting the line of arguments
from Gloria, Neukamm, and Otto [20]. In contrast to the final version [22] of the
aforementioned preprint, optimal stochastic integrability is not achieved in [20]. The
main tool which allows the authors to improve the stochastic integrability of r∗ is a
modified extended corrector (φT , σT ) living on the length scale

√
T and arising from

a “massive approximation”. As we are currently not able to adapt this approach to
our situation, we resort to the more elementary approach in the preprint [20] where a
bound on r∗ similar to the one in (1.14) is obtained.

In a nutshell, the problemarises from the “massive term” 1
T (φT , σT ) in the following

system for (φT , σT ) (cf. [22, (37)–(39)]):

1

T
φT − ∇ · a(∇φT + e) = 0,

1

T
σT − 
σT = ∇ × qT , qT := a(∇φT + e).
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The additional massive term gives rise to an exponential localization of (φT , σT ) at the
length scale

√
T . Related to that, the authors of [22] repeatedlyworkwith convolutions

of ∇φT with a Gaussian distribution GT of variance T ; see e.g. [22, Proposition 3,
Lemma 2] and in particular the proofs thereof. In our situation, where we want to
formulate estimates also in terms of weighted L2

a and L2
a−1 norms, we have to face

the following structural obstacle: Given a function f ∈ L2
a(R

d)d , we generally end
up with f ∗GT /∈ L2

a(R
d)d . In other words, the space L2

a(R
d)d is not invariant under

such a convolution.

Theorem 1.11 (Stretched exponential moments for r∗) Suppose that the hypotheses
of Definition 1.1 on the ensemble of coefficient fields a ∈ � satisfying the spectral
gap inequality (1.10) hold together with β ∈ [0, 1) subject to (1.9). Moreover, assume
that

´
B1

λ−q and
´
B1

μp allow for the stretched exponential moments in (1.12) with
α := ε

1−ε
where ε ∈ (0, 1) is the hole-filling exponent from Proposition 1.12.

Then, the minimal radius r∗ as defined in Definition 1.7 fulfills

〈

exp
( 1

C
r
ε d
2 (1−β)

∗
)〉

< 2 (1.14)

for a sufficiently large constant C > 0.

An essential part of the proof of Theorem 1.11 is concerned with the sensitivity
analysis quantifying the dependence of ∇(φ, σ ) on the coefficient field a. At the end,
we need to control averages of ∇(φ, σ ) on balls around the origin, but we shall give a
slightly more general statement below. As above, the massive (φT , σT )-regularization
prevents us from proceeding as in [22]. However, we could prove an analogue of the
statement in the intermediate version [21], but as Theorem 1.11 is already posed in the
language of [20], it suffices to generalize the sensitivity result in [20] to our setting.

Proposition 1.12 (Sensitivity estimate for average integrals) Let the assumptions of
Definition 1.1 on the ensemble of coefficient fields a ∈ � be in place, and let a partition
{D} of Rd and β ∈ [0, 1) be given according to (1.9). Consider the linear functional

Fψ =
ˆ

g · ψ

acting on vector fields ψ : Rd → R
d , where g : Rd → R

d is supported in Br for
some radius r ≥ re.

Then, there exist a hole-filling exponent ε = ε(d, K ) ∈ (0, 1) and a constant
C = C(d, K ) > 1 such that for any g as above satisfying

max

{(  
Br

|g| 2p
p−1

) p−1
2p

,
(  

Br
|g| 2q

q−1

) q−1
2q
}

� r−d , (1.15)
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the following bound on the functional derivative of F holds:

∑

D

(ˆ
D

∣
∣
∣
∂F∇φ

∂a

∣
∣
∣
a

)2

+
∑

D

(ˆ
D

∣
∣
∣
∂F∇σ jk

∂a

∣
∣
∣
a

)2

≤ C

(

(r + r∗)1−ε(1−β)

r

)d

.

(1.16)

Wenowemploy the above results on the existence of stretched exponentialmoments
for theminimal radius r∗ (cf. Theorem 1.11) and the sensitivity estimate for (extended)
corrector gradients (cf. Proposition 1.12) to derive quantitative estimates on the decay
of the corrector gradient ∇(φ, σ ) and the growth of the corrector itself. Due to the
relatively weak (ε-dependent) stretched exponential moments available for r∗ (com-
pared to [22] and its preprint [21]), the subsequent results also involve a dependence
on ε.

Theorem 1.13 (Decay of the corrector gradient and growth of the corrector) Assume
that the ensemble of coefficient fields a ∈ � fulfills the assumptions of Definition 1.1
and satisfies the spectral gap estimate (1.10) along with β ∈ [0, 1) subject to (1.9).
Let ε ∈ (0, 1) denote the constant from Proposition 1.12.

Then, there exists a stationary random field C(x) with stretched exponential
moments

〈

exp

(
1

C
Cε(1−β)

) 〉

< 2 (1.17)

for a sufficiently large constant C > 0 such that the following assertions hold:

(1) If m : R
d → R

d is bounded and supported in Br , r ≥ 1,
ffl
Br

|m|2 = 1, and

assumption (1.12) holds true with α := ε
1−ε

, then, for all x ∈ R
d ,

∣
∣
∣
∣

 
Br

∇(φ, σ )(x + y) · m(y) dy

∣
∣
∣
∣
≤ C(x)r− ε

2 d(1−β).

(2) If ε ∈ (

0, α
α+1 − 1

min{p,q}
]

and (1.12) holds for some α > 1
min{p,q}−1 , then the

correctors (φ, σ ) fulfill

( 
B1(x)

|φ| 2p
p−1

) p−1
2p +

( 
B1(x)

|σ | 2q
q−1

) q−1
2q

�
∣
∣
∣
∣

 
B1

(φ, σ )

∣
∣
∣
∣
+ C(x)π(|x |)

together with

π(r) :=

⎧

⎪⎨

⎪⎩

1, 0 ≤ β < 1 − 2
εd ,

log(2 + r), β = 1 − 2
εd ,

r
εd
2 ( 2

εd −1+β), β > 1 − 2
εd .

(1.18)
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Our last result gives a quantitative estimate for a two-scale expansion. It is mainly
a consequence of Theorem 1.13 on the growth of the corrector and the stochastic
integrability of the random field C in (1.17). We formulate the statement in the same
spirit as in [23]; in particular, we employ the same averaging procedure over small
balls for reasons of generality (even though this might not be necessary in many
cases). But in contrast to [23], we again encounter the small parameter ε (coming
from Theorem 1.13), and we also get an additional term on the right-hand side of
(1.19) (which can be (formally) absorbed in the other term on the right-hand side in
the limit q → ∞).

Corollary 1.14 (Quantitative two-scale expansion) Suppose that the ensemble of coef-
ficient fields a ∈ �meets the requirements of Definition 1.1 and fulfills the spectral gap
estimate (1.10). Besides, let (1.9) hold with β ∈ [0, 1), suppose that assumption (1.12)
with α > 1

min{p,q}−1 is in place, and let the hole-filling exponent from Proposition 1.12

be restricted to ε ∈ (

0, α
α+1 − 1

min{p,q}
]

. For R ≥ re and δ > 0, let g ∈ W 1, 2q
q−1 (Rd)

be supported in BR, and let uδ and uhom denote the solutions to

−∇ · a ( ·
δ

)∇uδ = ∇ · g, −∇ · ahom∇uhom = ∇ · g,

while the error zδ in the two-scale expansion and the small-scale average uhom,δ are
defined by

zδ := uδ − (

uhom,δ + δφi
( ·

δ

)

∂i uhom,δ

)

, uhom,δ(x) :=
 
Bδ(x)

uhom.

We then have

(ˆ
∣
∣∇zδ

∣
∣
2
a

) 1
2

� δ
1+ d

2q

(ˆ
|∇g| 2q

q−1

) q−1
2q + Cδ,gδπ(δ−1)

(ˆ
π(|x |)2|∇g|2

) 1
2

(1.19)

where π(r) is defined in (1.18) and where the random field Cδ,g satisfies

〈

exp

(
1

C
C
(

1+ α+1
α

ε
min{p,q}

)−1
ε(1−β)

δ,g

)〉

< 2 (1.20)

for a sufficiently large constant C > 0 independent of δ, g, p, and q.

We conclude this section with a remark on the relations between the constants
introduced above. In particular, we show that all conditions imposed on the constants
are indeed feasible.

Remark 1.15 From the definition of the hole-filling exponent ε ∈ (0, 1) in terms of the
constant E = CdC2

SobC
2
PoiK

2 in Step 1 of the proof of Proposition 1.12 (cf. (2.13))
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we see that

1 + 1

E
= 2εd ≤ 1 + 2d − 1

d
εd ≤ 1 + 2dε �⇒ ε ≥ 1

CdC2
SobC

2
PoiK

2
(1.21)

for an adapted constant Cd ≥ 1. Thus, (1.21) provides an initial lower bound for
ε ∈ (0, 1) only in terms of the constant K ≥ 1 from (1.1) and domain-dependent
constants CSob ≥ 1 and CPoi ≥ 1.

The requirements on α > 0 and ε ∈ (0, 1) in Theorem 1.13 and Corollary 1.14
should be seen as compatibility conditions for the orders of stochastic integrability of
the minimal radius r∗ and the ellipticity radius re. On the one hand, α > 1

min{p,q}−1 is

needed to ensure the positivity of α
α+1 − 1

min{p,q} . On the other hand, ε ∈ (

0, α
α+1 −

1
min{p,q}

]

guarantees that certain powers of r∗ and re are stochastically integrable with
the same order at the end of the proof of Theorem 1.13. Here, we use the fact that
ε ∈ (0, 1) can indeed be chosen sufficiently small since (2.12) remains true for smaller
ε. Finally, the order of stochastic integrability of the random fields Cδ,g in (1.20) lies
in the interval (0, ε(1 − β)).

2 Large-scale C1,˛ regularity quantified by theminimal radius r∗

2.1 Proof of Lemma 1.6: a mean-value property for a-harmonic functions

Proof of Lemma 1.6 We divide the proof into two steps. First, we derive a non-
degeneracy property for ξ +∇φξ with ξ ∈ R

d , while the desired mean-value property
is proven as a consequence in the second step.

Step 1. Excess decay and non-degeneracy. Under the hypotheses of the lemma, we
may apply [9, Theorem 2] to establish (1.7). Note that we subsequently use (1.7) with
the choice α := 1

2 . Following [22], we shall first prove a non-degeneracy condition
for the correctors φξ in the sense

c|ξ |2 ≤
 
Br

∣
∣ξ + ∇φξ

∣
∣
2
a ≤ C |ξ |2 (2.1)

for all r ≥ r∗ and ξ ∈ R
d where 0 < c < C are independent of r and ξ . For the lower

bound, we first recall the elementary bound

(ˆ
Br

|ξ + ∇φξ |
2q
q+1

) q+1
q ≤

(ˆ
Br

λ−q
) 1

q
ˆ
Br

|ξ + ∇φξ |2a .

Together with Poincaré’s inequality, we derive

( 
Br

|ξ + ∇φξ |2a
) 1

2
�
( 

Br
|ξ + ∇φξ |

2q
q+1

) q+1
2q

� 1

r

( 
Br

|ξ · x + φξ −
 
Br

φξ |
2q
q+1

) q+1
2q

.
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The triangle inequality, Jensen’s inequality, and the sublinear growth of the corrector
now yield

( 
Br

|ξ + ∇φξ |2a
) 1

2

� 1

r

( 
Br

|ξ · x | 2q
q+1

) q+1
2q − 1

r

( 
Br

∣
∣
∣φξ −

 
Br

φξ

∣
∣
∣

2q
q+1

) q+1
2q

≥ |ξ |
r

( 
Br

|x | 2q
q+1

) q+1
2q − |ξ |

r

( 
Br

∣
∣
∣φ −

 
Br

φ

∣
∣
∣

2p
p−1

) p−1
2p

� |ξ | − 1

C0
|ξ |

taking the scaling of φξ and the notation φ = (φi )i into account. Choosing the constant
C0 > 0 sufficiently large, one arrives at the desired lower bound in (2.1). Similarly,
the upper bound is a consequence of the Caccioppoli estimate (carried out e.g. in [9,
Lemma 3])

ˆ
Br

|ξ + ∇φξ |2a ≤ 4

r2

(ˆ
B2r

μp
) 1

p
(ˆ

B2r

∣
∣
∣ξ · x + φξ −

 
B2r

φξ

∣
∣
∣

2p
p−1

) p−1
p

.

By the same reasoning as above, we obtain

( 
Br

|ξ + ∇φξ |2a
) 1

2

� |ξ |
r

( 
B2r

|x | 2p
p−1

) p−1
2p

+ |ξ |
r

( 
B2r

∣
∣
∣φ −

 
B2r

φ

∣
∣
∣

2p
p−1

) p−1
2p

� |ξ | + 1

C0
|ξ |.

The claimed bound (2.1) now follows.
Step 2. Mean-value property. The ideas of [22] also apply to our situation, but we

present the main steps for completeness. The lower bound in (2.1) ensures for any
ρ ∈ [r∗, R] the existence of a unique ξρ ∈ R

d such that

Exc(ρ) =
 
Bρ

∣
∣∇u − (ξρ + ∇φξρ )

∣
∣2
a . (2.2)

For radii ρ, ρ′ ∈ [r∗, R] satisfying 0 < ρ′ − ρ ≤ ρ, we deduce by virtue of (2.1), the
linearity of ξ �→ φξ , and the triangle inequality

|ξρ − ξρ′ |2 �
 
Bρ

∣
∣ξρ − ξρ′ + ∇φξρ−ξρ′

∣
∣
2
a �

 
Bρ

∣
∣∇u − (ξρ + ∇φξρ )

∣
∣
2
a

+
 
Bρ

∣
∣∇u − (ξρ′ + ∇φξρ′ )

∣
∣2
a .
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Due to the minimality property (2.2) of ξρ and ρ < ρ′ ≤ 2ρ, this entails

|ξρ − ξρ′ |2 �
 
Bρ

∣
∣∇u − (ξρ′ + ∇φξρ′ )

∣
∣2
a � Exc(ρ′). (2.3)

For arbitrary R ≥ r ≥ r∗, we let N ∈ N be the integer such that 2−(N+1)R < r ≤
2−N R, which allows us to use (2.3) and (1.7) (with α = 1

2 ) to estimate

|ξr − ξR |2 ≤
(

N
∑

n=0

|ξ2−(n+1)R − ξ2−n R |
)2

�
(

N
∑

n=0

2− n
2
√

Exc(R)

)2

� Exc(R).

(2.4)

By means of (2.2), (2.1), and (2.4), we thus get

 
Br

|∇u|2a � Exc(r) + |ξr |2 ≤ Exc(r) + Exc(R) + |ξR |2.

Moreover, (1.7) and the definition of the excess ensureExc(r) � Exc(R) ≤ ffl
BR

|∇u|2a ,
while

|ξR |2 �
 
BR

∣
∣ξR + ∇φξR

∣
∣2
a � Exc(R) +

 
BR

|∇u|2a

is a result of (2.1) and (2.2). This concludes the argument. ��

2.2 Proof of Lemma 1.10: stretched exponential moments for re

Lemma 2.1 (Pth power spectral gap estimate) Let the ensemble of coefficient fields
a ∈ � satisfy the assumptions in Definition 1.1 and the spectral gap estimate (1.10)
with an arbitrary partition {D} of Rd . Then, there exists a constant C > 0 such that

〈

(ζ − 〈ζ 〉)2P
〉 1
P ≤ CP2

κ

〈(
∑

D

(ˆ
D

∣
∣
∣
∂ζ

∂a

∣
∣
∣
a

)2
)P〉

1
P

(2.5)

for any random variable ζ and all P ∈ N, P ≥ 2.

Proof The arguments are basically the same as in [20] but adapted to our degenerate
setting. Applying the spectral gap estimate (1.10) to ζ P , we first derive

〈ζ 2P 〉 ≤ 〈ζ P 〉2 + 1

κ

〈
∑

D

(ˆ
D

∣
∣
∣
∂ζ P

∂a

∣
∣
∣
a

)2〉

.
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Elementary calculus guarantees that

∑

D

(ˆ
D

∣
∣
∣
∂ζ P

∂a

∣
∣
∣
a

)2

= P2ζ 2(P−1)
∑

D

(ˆ
D

∣
∣
∣
∂ζ

∂a

∣
∣
∣
a

)2

,

while Hölder’s inequality on the level of the probability measure 〈·〉 yields
〈
∑

D

(ˆ
D

∣
∣
∣
∂ζ P

∂a

∣
∣
∣
a

)2〉

≤ P2〈ζ 2P 〉1− 1
P

〈(
∑

D

(ˆ
D

∣
∣
∣
∂ζ

∂a

∣
∣
∣
a

)2
)P〉

1
P

.

Young’s inequality now allows to get rid of 〈ζ 2P 〉 on the right-hand side and to derive

〈ζ 2P 〉 ≤ C〈ζ P 〉2 +
(
CP2

κ

)P
〈(

∑

D

(ˆ
D

∣
∣
∣
∂ζ

∂a

∣
∣
∣
a

)2
)P〉

(2.6)

with some constant C > 0. We now argue how to replace 〈ζ P 〉2 by 〈ζ 2〉P on the right-

hand side. To this end, one writes ζ P = ζ P P−2
P−1 ζ P 1

P−1 and applies Hölder’s inequality
with exponents 2 P−1

P−2 and 2 P−1
P followed by Young’s inequality leading to

〈ζ P 〉2 ≤ 〈ζ 2P 〉 P−2
P−1 〈ζ 2〉 P

P−1 ≤ 1

C
〈ζ 2P 〉 + CP−2〈ζ 2〉P

with another constant C > 0. Using again the original spectral gap inequality and
noting that it suffices to prove (2.5) for the case 〈ζ 〉 = 0, we further obtain

〈ζ 2〉P ≤ 1

κ P

〈
∑

D

(ˆ
D

∣
∣
∣
∂ζ

∂a

∣
∣
∣
a

)2
〉P

.

The proof is finished taking Jensen’s inequality 〈(·)〉P ≤ 〈(·)P 〉 into account. ��
Proof of Lemma 1.10 We divide the proof into two steps.

Step 1. Exponential concentration for
ffl
BR

μp and
ffl
BR

λ−q . We start by recalling
the upgraded spectral gap estimate from (2.5) and by applying it to X(a) := ffl

BR
μp

for some arbitrary R ≥ 1. The same arguments are also applicable to
ffl
BR

λ−q . This
yields

〈(

X(a) − 〈X(a)〉)2r
〉 1
2r ≤ Cr

〈(
∑

D

(ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

)2
)r〉 1

2r

(2.7)

for all r ∈ N, r ≥ 2. In a similar setting, exponential concentration and stretched expo-
nential moments were shown in [16, Proposition 1.10] for arbitrary random variables
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X(a) by assuming a deterministic bound of the form

∑

D

(ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

)2

≤ C

(albeit employing a multiscale spectral gap inequality). Such a deterministic bound
cannot be expected in our situation, instead we shall prove that

〈(
∑

D

(ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

)2
)r〉 1

2r

� r
1
α R− d

2 (1−β) (2.8)

holds true where � means ≤ up to the prescribed parameters d, p, q, and K . To this
end, we first calculate

∑

D

(ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

)2

=
∑

D

(

sup
‖b‖L∞(D)=1

ˆ
D
b : a 1

2
∂X(a)

∂a
a

1
2

)2

=
∑

D

⎛

⎝ sup
‖b‖L∞(D)=1

lim sup
t→0

X
(

a + ta
1
2 ba

1
2

)

− X(a)

t

⎞

⎠

2

.

Next, we apply the elementary mean value theorem with some θ, ϑ ∈ [0, 1] to obtain

X
(

a + ta
1
2 ba

1
2
) − X(a)

t
= 1

t

 
BR

(
∣
∣a + ta

1
2 ba

1
2
∣
∣
p − |a|p

)

= p
 
BR

(

(1 − θ)|a| + θ
∣
∣a + ta

1
2 ba

1
2
∣
∣
)p−1∣∣a + ϑ ta

1
2 ba

1
2
∣
∣′ : a 1

2 ba
1
2

�
 
BR

|a|p−1(1 − θ + θ |I + tb|)p−1∣∣a
1
2 ba

1
2
∣
∣

� R−d
ˆ
BR∩D

μp,

where we use the identity |A2| = |A|2 for the spectral norm of any symmetric matrix
A ∈ R

d×d and the uniform boundedness ||A|′ : B| � |B| of the derivative of the

spectral norm for any A, B ∈ R
d×d , whilewe assumew.l.o.g. that 1t

(

X
(

a+ta
1
2 ba

1
2
)−

X(a)
)

is positive for t > 0 sufficiently small. Note that we further employed the
boundedness of b and the fact that b vanishes outside of D. Moreover, every instance
of a and b inside an integral refers to a(x) and b(x), respectively. As a consequence,

〈(
∑

D

(ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

)2 )r〉 1
2r

� R−d

〈(
∑

D∩BR �=∅

(ˆ
BR∩D

μp
)2)r

〉 1
2r

.
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By recalling (1.9), we notice that the number of subdomains D obeying D ∩ BR �= ∅
equals (up to fixed constants)

ˆ R

0

(
l

(l + 1)β

)d−1 dl

(l + 1)β
�
ˆ R

0
l(1−β)(d−1)−βdl � Rd(1−β).

Jensen’s inequality then leads to

〈(
∑

D

(ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

)2
)r〉 1

2r

� R− d
2 (1+β)

〈

R−d(1−β)
∑

D∩BR �=∅

(ˆ
D

μp
)2r

〉 1
2r

.

Likewise, any subdomain D can be covered by at most |D| � Rβd unit balls B1(xk)
with appropriate xk ∈ D, hence, applying Jensen’s inequality once more results in

〈(
∑

D

(ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

)2
)r〉 1

2r

� R− d
2 (1−β)

〈

R−d(1−β)
∑

D∩BR �=∅
R−βd

∑

k

(ˆ
B1(xk )

μp
)2r

〉 1
2r

.

Pulling the expectation inside and using the stationarity of the underlying ensemble,
we deduce

〈(
∑

D

(ˆ
D

∣
∣
∣
∂X(a)

∂a

∣
∣
∣
a

)2
)r〉 1

2r

� R− d
2 (1−β)

〈(ˆ
B1

μp
)2r

〉 1
2r

.

Owing to (1.12) and Lemma A.1, we know that
〈

(
´
B1

μp)2r
〉 1
2r � r

1
α , which gives

rise to (2.8). Together with (2.7), this results in

〈

(X(a) − 〈X(a)〉)2r
〉 1
2r � r

α+1
α R− d

2 (1−β).

An elementary argument shows that
〈

(X(a) − 〈X(a)〉) α
α+1 r

〉 1
r � r R− α

α+1
d
2 (1−β),

which by Lemma A.1 entails

〈

exp

(
1

C
R

α
α+1

d
2 (1−β) (X(a) − 〈X(a)〉) α

α+1

)〉

< 2
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for a sufficiently large constant C > 0 depending only on fixed model parameters.
Therefore,

〈

I

( 
BR

μp − 〈μp〉 > δ

)〉

� exp

(

− 1

C
δ

α
α+1 R

α
α+1

d
2 (1−β)

)

. (2.9)

Step 2. Stretched exponential moments for re. For any r0 > 1 we now estimate the
probability of the event re > r0 as follows:

〈I (re > r0)〉 ≤
〈

I

(

∃ r > r0 :
 
Br

μp > (2K )p ∨
 
Br

λ−q > (2K )q
)〉

≤
〈

I

(

∃ n ≥ n0 :
 
Bbn

μp >
(2K )p

bd
∨

 
Bbn

λ−q >
(2K )q

bd

)〉

where b = b(d, p, q, K ) ∈ (1, 2) is a constant specified below and n0, n ∈ N satisfy
bn0−1 < r0 ≤ bn0 and bn−1 < r ≤ bn . Notice that

ffl
Bbn

μp > ( r
bn )d(2K )p >

b−d(2K )p according to the assumption in the first line and that an analogous estimate
holds for λ−q . The previous estimate is continued via

〈I (re > r0)〉 ≤
∞
∑

n=n0

〈

I

( 
Bbn

μp >
(2K )p

bd

)〉

+
∞
∑

n=n0

〈

I

( 
Bbn

λ−q >
(2K )q

bd

)〉

.

Weare hence in a position to employ (2.9) after choosing b ∈ (1, 2) sufficiently close to
1 in order to guarantee that the lower bounds inside the indicator functions subsequently
stay positive. Besides, we only provide the argument for the term involving μ, while
the same reasoning also applies to the other term. This yields

∞
∑

n=n0

〈

I

( 
Bbn

μp >
(2K )p

bd

)〉

≤
∞
∑

n=n0

〈

I

( 
Bbn

μp − 〈μp〉 >
(2K )p

bd
− K p

)〉

≤
∞
∑

n=n0

exp

(

− 1

C

(
(2K )p

bd
− K p

) α
α+1 (

bn
) α

α+1
d
2 (1−β)

)

≤ C0 exp

(

−c1r
α

α+1
d
2 (1−β)

0

)

together with (large) constants C,C0 ≥ 1, and a (small) constant c1 ∈ (0, 1). For

the third inequality above, we pull out the factor exp
(

−c1(bn0)
α

α+1
d
2 (1−β)

)

and esti-

mate the remaining sum using the crude bound (bn)
α

α+1
d
2 (1−β) − (bn0)

α
α+1

d
2 (1−β) �
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log(b)(n − n0). We can now derive moment bounds of order k ≥ 1 via

〈

rke
〉

=
〈ˆ ∞

0
I (re > r)

d

dr
rkdr

〉

≤
ˆ ∞

0
C0 exp

(

−c1r
α

α+1
d
2 (1−β)

) d

dr
rkdr

=
ˆ ∞

0
C0c1

α

α + 1

d

2
(1 − β)r

α
α+1

d
2 (1−β)−1 exp

(

−c1r
α

α+1
d
2 (1−β)

)

rkdr .

By means of the substitution t = c1r
α

α+1
d
2 (1−β), the last expression rewrites as

〈

rke
〉

=
ˆ ∞

0
C0e

−t
(

t

c1

) α+1
α

2k
d(1−β)

dt = C0c
− α+1

α
2k

d(1−β)

1 �

(
α + 1

α

2k

d(1 − β)
+ 1

)

.

The stretched exponential bound (1.13) for re of order α
α+1

d
2 (1−β) now immediately

follows as

〈

exp

(
1

C
r

α
α+1

d
2 (1−β)

e

)〉

≤ 1 +
∞
∑

k=1

〈

r
α

α+1
d
2 (1−β)k

e

〉

Ckk! ≤ 1 + C0

∞
∑

k=1

�(k + 1)

Ckck1k!
< 2

(2.10)

for C > 0 large enough. ��

2.3 Proof of Proposition 1.12: a sensitivity estimate for average integrals

Remark 2.2 The reason for demanding symmetric coefficient fields a(x) = a(x)T is
mainly related to the subsequent proof of Proposition 1.12, which does not seem to
generalize to the case of non-symmetric a. In particular, the arguments in (2.22) and

(2.23) heavily rely on the symmetry of a. In (2.23), we smuggle in a− 1
2 and a

1
2 leading

to |g|a−1 and |ψ |a after applying Hölder’s inequality. In the absence of symmetry and
assuming that an appropriate notion of the square root of a matrix is chosen, the terms
which we insert should still cancel and be of the order − 1

2 and 1
2 w.r.t. a. Owing to

(2.22) and the fact that the matrix a should partially cancel within the norm | · |a−1 , we

see that the definition of | · |a−1 has to be of the form |g|2
a−1 := gT (a

1
2 )−T (a

1
2 )−1g.

Since (2.22) shall be controlled in terms of | · |a in the subsequent estimate, | · |a needs
to be defined as |ψ |2a := ψT (a

1
2 )T a

1
2 ψ . But the structure of | · |a−1 and | · |a now

prevents us from proceeding as in (2.23) unless a is symmetric.

Proof of Proposition 1.12 We follow a strategy similar to the one in [20], which sepa-
rates the proof into several steps. Throughout the proof, we will use the notation

F∇(φ, σ ) :=
ˆ

g̃ · ∇φ +
ˆ

ḡ · ∇σ

for compactly supported g = (g̃, ḡ).
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Step 1. Energy estimate for all r ≥ re. We claim that any a-harmonic function u
on Rd , i.e. any solution to

−∇ · a∇u = 0, (2.11)

satisfies
ˆ
Br (x)

|∇u|2a ≤ 4d
( r

R

)εd
ˆ
BR(x)

|∇u|2a (2.12)

for some ε > 0 and for all R ≥ r ≥ re, where generic constants here and in the
subsequent proof only depend on the dimension d.

Applying theCaccioppoli estimate for solutions to (2.11) from [9, Lemma3] entails

 
Bre (x)

|∇u|2a � Kr−2
e

( 
A

|u − ū| 2p
p−1

) p−1
p

where we abbreviate A := B2re (x)\Bre (x) and ū := ´
A u. Since the condition

1
p +

1
q ≤ 2

d guarantees the embedding W 1, 2q
q+1 (A) ↪→ L

2p
p−1 (A), we infer from Sobolev’s

inequality (observing the correct scaling w.r.t. re) that

 
Bre (x)

|∇u|2a � Kr
−2−d p−1

p
e

(ˆ
A

|u − ū| 2p
p−1

) p−1
p

� C2
SobKr

−2−d p−1
p

e r
−d

(
1
p + 1

q

)

e
⎛

⎝

(ˆ
A

|u − ū| 2q
q+1

) q+1
q + r2e

(ˆ
A

|∇u| 2q
q+1

) q+1
q

⎞

⎠

� C2
SobC

2
PoiKr

−2−d p−1
p

e r
−d( 1

p + 1
q )

e r2e

(ˆ
A

|∇u| 2q
q+1

) q+1
q

= C2
SobC

2
PoiKr

−d q+1
q

e

(ˆ
A

|∇u| 2q
q+1

) q+1
q

where we employed the correctly scaled Poincaré inequality for the third estimate.
Thanks to Hölder’s inequality (cf. [9, Lemma 3]), we conclude that

 
Bre (x)

|∇u|2a � C2
SobC

2
PoiK

( 
A

|∇u| 2q
q+1

) q+1
q

� C2
SobC

2
PoiK

2
 
A

|∇u|2a .

Rewriting this estimate in terms of an explicit constant E := CdC2
SobC

2
PoiK

2, we get

ˆ
Bre (x)

|∇u|2a ≤ E
ˆ
B2re (x)\Bre (x)

|∇u|2a .
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The bound in (2.12) now follows from a so-called hole-filling trick, which amounts to
adding E

´
Bre (x)

|∇u|2a to both sides. This results in

ˆ
Bre (x)

|∇u|2a ≤ E

E + 1

ˆ
B2re (x)

|∇u|2a ≤
(

E

E + 1

)n ˆ
B2nre (x)

|∇u|2a

where the second bound simply follows by iteration. Defining ε > 0, n ∈ N, and
N ∈ N via

E

E + 1
= 2−εd , 2n−1re ≤ r < 2nre, 2N−1re ≤ R < 2Nre, (2.13)

we arrive at
ˆ
Br (x)

|∇u|2a ≤
ˆ
B2nre (x)

|∇u|2a ≤ 2−εd(N−1−n)

ˆ
B2N−1re

(x)
|∇u|2a

≤ 22εd
( r

R

)εd
ˆ
BR(x)

|∇u|2a

provided N−1 ≥ n. In case that N = n, this inequality obviously holds true. To ensure
that the expression on the right-hand side (or an upper bound thereof) is increasing for
decreasing ε, we simply skip ε ∈ (0, 1) within the factor 22εd .

Step 2. Energy estimates for r ≥ r∗. We start by noting that

 
BR

|∇φi + ei |2a � 1 (2.14)

for all R ≥ r , where the constant on the right-hand side only depends on d and K .
This follows from a Caccioppoli estimate as stated in [9, Lemma 3] since r∗ ≥ re in
particular ensures R ≥ re. The definition of the minimal radius r∗ in Definition 1.7
then allows for a constant upper bound.

As in [20], we now claim that for all γ ∈ (0, d) and any decaying functions u and
g related via

−∇ · a∇u = ∇ · g, (2.15)

we have

ˆ
Br

|∇u|2a �
ˆ ( |x |

r
+ 1

)−γ

|g|2a−1 (2.16)

with generic constants only depending on d and γ in this paragraph. Restricting oneself
by scaling to the case r = 1, one is left to prove

(ˆ
B1

|∇u|2a
) 1

2

�
(ˆ

B1
|g|2a−1

) 1
2 +

∞
∑

n=1

(
1

(2n)d

ˆ
2n−1<|x |<2n

|g|2a−1

) 1
2
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taking the following elementary estimate into account:

(ˆ
B1

|g|2a−1

) 1
2 +

∞
∑

n=1

(
1

(2n)d

ˆ
2n−1<|x |<2n

|g|2a−1

) 1
2

�
(ˆ

B1
(|x | + 1)−γ |g|2a−1

) 1
2 +

∞
∑

n=1

(

2n
) γ−d

2

(ˆ
2n−1<|x |<2n

(|x | + 1)−γ |g|2a−1

) 1
2

�
(ˆ

(|x | + 1)−γ |g|2a−1

) 1
2

.

As a result of the unique solvability of (2.15) in the class of decaying solutions, wemay
assume that g is either supported in B1 or in B2n\B2n−1 for some n ∈ N. In the first case,
we employ the energy estimate for (2.15) to derive

´
B1

|∇u|2a ≤ ´ |∇u|2a �
´
B1

|g|2
a−1 .

If supp g ⊂ B2n\B2n−1 , we additionally use the mean-value property from Lemma 1.6
to deduce

´
B1

|∇u|2a � (2n)−d
´
|x |<2n |∇u|2a � (2n)−d

´
2n−1<|x |<2n |g|2

a−1 .
In order to ensure an appropriate bound on the gradient of the flux correction, ∇σ ,

we also need the subsequent result. For all γ ∈ (0, d) and decaying functions u and g
satisfying

−
u = ∇ · g,

we have

(ˆ
Br

|∇u| 2p
p+1

) p+1
p

�
ˆ ( |x |

r
+ 1

)−γ

|g|2a−1, (2.17)

where generic constants may depend on d, γ , and K in this context. As above, it
is enough to prove the result for r = 1 and under the additional assumption that
supp g ⊂ B2 or supp g ⊂ B2n\B2n−1 for some n ∈ N, n ≥ 2. In the former case, we
invoke a Calderón–Zygmund estimate (see, e.g., [18, Subsections 7.1.2–7.1.3]) to find

ˆ
B1

|∇u|
2p
p+1 �

ˆ
B2

|g|
2p
p+1 �

ˆ
B2

∣
∣a

1
2
∣
∣

2p
p+1

∣
∣a− 1

2 g
∣
∣

2p
p+1 �

(ˆ
B2

|a|p
) 1

p+1
(ˆ

B2
|g|2a−1

) p
p+1

.

As r ≥ r∗ ≥ re, and since we work with the scaling r = 1, we conclude that

(ˆ
B1

|∇u| 2p
p+1

) p+1
p

�
ˆ
B2

|g|2a−1 . (2.18)

In the latter case, we first recall that the mean-value property also holds true for

the L
2p
p+1 norm. This follows from Jensen’s inequality and the standard mean-value

property of harmonic functions, namely u = 1
|BR |1BR ∗ u and, hence, ∇u(x) =ffl

BR(x) ∇u(y) dy for R > 0: Specifying R := 2n−1 − 1, we derive |∇u(x)| 2p
p+1 ≤
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ffl
BR(x) |∇u(y)| 2p

p+1 dy ≤
(
2n
R

)d ffl
B2n

|∇u(y)| 2p
p+1 dy ≤ 4d

ffl
B2n

|∇u(y)| 2p
p+1 dy. As a

consequence,

ˆ
B1

|∇u| 2p
p+1 �

 
B2n

|∇u| 2p
p+1 .

Applying now an analogue of (2.18) on B2n , we infer that

(ˆ
B1

|∇u| 2p
p+1

) p+1
p

� (2n)−d p+1
p

(ˆ
|x |<2n

|∇u| 2p
p+1

) p+1
p

� (2n)−d
ˆ
2n−1<|x |<2n

|g|2a−1 . (2.19)

By the same arguments as above, we see that (2.18) and (2.19) give rise to (2.17).
The generalization of the previous estimate (2.16) provided in [20] also holds in

our situation. For any 0 < γ ′ < γ < d and functions u and g subject to (2.15), one
has

ˆ ( |x |
r

+ 1

)−γ

|∇u|2a �
ˆ ( |x |

r
+ 1

)−γ ′

|g|2a−1, (2.20)

where here the generic constants only depend on d, γ , and γ ′. As above, we restrict
ourselves to r = 1. By using (2.16) with r := 2ρ therein for some ρ ≥ 1, we find

ˆ
ρ<|x |<2ρ

|∇u|2a �
ˆ ( |x |

2ρ
+ 1

)−γ ′

|g|2a−1 � ργ ′
ˆ

(|x | + 1)−γ ′ |g|2a−1 .

Multiplying with ρ−γ , we obtain
´
ρ<|x |<2ρ |x |−γ |∇u|2a � ργ ′−γ

´
(|x |+1)−γ ′ |g|2

a−1 .
Setting ρ := 2n , recalling γ ′ < γ , and taking the sum over n ∈ N, we arrive at

ˆ
|x |≥1

(|x | + 1)−γ |∇u|2a �
ˆ

(|x | + 1)−γ ′ |g|2a−1 .

The case |x | < 1 is treated by the previous estimate (2.16) for r = 1:

ˆ
|x |<1

(|x | + 1)−γ |∇u|2a ≤
ˆ

|x |<1
|∇u|2a �

ˆ
(|x | + 1)−γ ′ |g|2a−1 .

Step 3. Sensitivity estimate for all r ≥ r∗. We proceed by following [20] and recall
that the defining equations for the decaying functions φ and σ jk (where we skip the
index i for notational convenience) read

−∇ · a(∇φ + e) = 0, −
σ jk = ∂ j qk − ∂kq j , q = a(∇φ + e). (2.21)
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Fixing an element D of the underlying partition of Rd , we shall write aD for a coef-
ficient field which may differ from a only inside of D. The corresponding solutions
to (2.21) for a replaced by aD are then denoted by φD and σ jkD . As a result, the
differences φ − φD and σ − σ jkD are subject to

−∇ · a∇(φ − φD) = ∇ · (a − aD)(∇φD + e),

−
(σ jk − σ jkD) = ∂ j (a(∇φ + e) − aD(∇φD + e))k
− ∂k (a(∇φ + e) − aD(∇φD + e)) j .

Taking a linear combination with scalar coefficients {cD}D , we get

−∇ · a∇
∑

D

cD(φ − φD) = ∇ ·
∑

D

cD(a − aD)(∇φD + e),

−

∑

D

cD(σ jk − σ jkD) = ∂ j

∑

D

cD (a(∇φ + e) − aD(∇φD + e))k

− ∂k
∑

D

cD (a(∇φ + e) − aD(∇φD + e)) j .

With the help of estimate (2.20) in Step 2, we now derive

ˆ
Br

∣
∣
∣∇

∑

D

cD(φ − φD)

∣
∣
∣

2

a
+
ˆ ( |x |

r
+ 1

)−γ ∣
∣
∣∇

∑

D

cD(φ − φD)

∣
∣
∣

2

a

�
ˆ ( |x |

r
+ 1

)−γ ′ ∣
∣
∣

∑

D

cD(a − aD)(∇φD + e)
∣
∣
∣

2

a−1

≤
ˆ ( |x |

r
+ 1

)−γ ′
∑

D

c2D

∣
∣
∣a− 1

2 (a − aD)a− 1
2 a

1
2 (∇φD + e)

∣
∣
∣

2

≤
∑

D

c2D sup
x∈D

∣
∣a − aD

∣
∣
2
a−1

ˆ
D

( |x |
r

+ 1

)−γ ′

|∇φD + e|2a .

Note that we crucially employed the inclusion supp(a − aD) ⊂ D and the fact that
the elements of the partition are disjoint when pulling the square inside the sum over
all D. Moreover, all generic constants appearing in this part of the proof only depend
on d, γ , and γ ′. Next, we observe that

a(∇φ + e) − aD(∇φD + e) = a∇(φ − φD) + (a − aD)(∇φD + e)
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together with the previous estimates and γ ′ ≤ γ leads to

ˆ
Br

∣
∣
∣

∑

D

cD(∇φ − ∇φD)

∣
∣
∣

2

a
+
ˆ ( |x |

r
+ 1

)−γ ∣
∣
∣

∑

D

cD (a(∇φ + e) − aD(∇φD + e))
∣
∣
∣

2

a−1

≤
ˆ
Br

∣
∣
∣

∑

D

cD(∇φ − ∇φD)

∣
∣
∣

2

a
+
ˆ ( |x |

r
+ 1

)−γ ∣
∣
∣a∇

∑

D

cD(φ − φD)

∣
∣
∣

2

a−1

+
ˆ ( |x |

r
+ 1

)−γ ′ ∣
∣
∣

∑

D

cD(a − aD)(∇φD + e)
∣
∣
∣

2

a−1

�
∑

D

c2D sup
x∈D

∣
∣a − aD

∣
∣2
a−1

ˆ
D

( |x |
r

+ 1

)−γ ′

|∇φD + e|2a . (2.22)

Similarly, we apply (2.17) to find

(ˆ
Br

∣
∣
∣∇

∑

D

cD(σ jk − σ jkD)

∣
∣
∣

2p
p+1

) p+1
p

�
ˆ ( |x |

r
+ 1

)−γ ∣
∣
∣

∑

D

cD (a(∇φ + e) − aD(∇φD + e))
∣
∣
∣

2

a−1

�
∑

D

c2D sup
x∈D

∣
∣a − aD

∣
∣2
a−1

ˆ
D

( |x |
r

+ 1

)−γ ′

|∇φD + e|2a .

Due to the definition of the functional

Fψ =
ˆ

g · ψ with

( 
Br

|g|2a−1

) 1
2

� K
1
2

( 
Br

|g| 2q
q−1

) q−1
2q

� r−d ,

we have

|Fψ | =
∣
∣
∣

ˆ
Br

gT a− 1
2 a

1
2 ψ

∣
∣
∣ ≤

(ˆ
Br

|a− 1
2 g|2

) 1
2
(ˆ

Br
|a 1

2 ψ |2
) 1

2 ≤
( 

Br
|ψ |2a

) 1
2

(2.23)

and

|Fψ | ≤
(ˆ

Br
|g| 2p

p−1

) p−1
2p

(ˆ
Br

|ψ | 2p
p+1

) p+1
2p

� r−d p+1
2p

(ˆ
Br

|ψ | 2p
p+1

) p+1
2p

�
( 

Br
|ψ | 2p

p+1

) p+1
2p

.
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Consequently, we deduce that

rd
∣
∣
∣

∑

D

cD(F∇φ − F∇φD)

∣
∣
∣

2 + rd
∣
∣
∣

∑

D

cD(F∇σ jk − F∇σ jkD)

∣
∣
∣

2

�
∑

D

c2D sup
x∈D

∣
∣a − aD

∣
∣
2
a−1

ˆ
D

( |x |
r

+ 1

)−γ ′

|∇φD + e|2a .

Thus, an elementary l2 duality argument guarantees the bound

rd
∑

D

|F∇φ − F∇φD|2 + rd
∑

D

|F∇σ jk − F∇σ jkD|2

� sup
D

(

sup
x∈D

∣
∣a − aD

∣
∣2
a−1

ˆ
D

( |x |
r

+ 1

)−γ ′

|∇φD + e|2a
)

.

We now specify aD := a + ta
1
2 δaDa

1
2 for t ∈ R, |t | � 1, and a perturbation δaD

being bounded and supported in D. In the limit t → 0, the previous estimate becomes

rd
∑

D

∣
∣
∣

ˆ
D

∂F∇φ

∂a
: a 1

2 δaDa
1
2

∣
∣
∣

2 + rd
∑

D

∣
∣
∣

ˆ
D

∂F∇σ jk

∂a
: a 1

2 δaDa
1
2

∣
∣
∣

2

� sup
D

sup
x∈D

|δaD|2 · sup
D

ˆ
D

( |x |
r

+ 1

)−γ ′

|∇φD + e|2a .

Lemma A.3 now allows for an explicit estimate of the matrix-valued derivative of F
in terms of specific matrix norms. But as all matrix norms on R

d×d are equivalent,
Lemma A.3 also holds for the spectral norm | · | up to an additional constant. Hence,
we arrive at

rd
∑

D

(ˆ
D

∣
∣
∣
∂F∇φ

∂a

∣
∣
∣
a

)2

+ rd
∑

D

(ˆ
D

∣
∣
∣
∂F∇σ jk

∂a

∣
∣
∣
a

)2

� sup
D

ˆ
D

( |x |
r

+ 1

)−γ ′

|∇φD + e|2a � sup
D

(
dist D

r
+ 1

)−γ ′ ˆ
D

|∇φD + e|2a .
(2.24)

To derive the announced sensitivity estimate for r ≥ r∗, we set ρ := diam D and
choose x ∈ D such that R := dist D = |x |. The assumption ρ ≤ (R + 1)β with
β ∈ (0, 1) on the coarseness of the partition as well as the hole-filling estimate (2.12)
ensure that

ˆ
D

|∇φD + e|2a ≤
ˆ
Bρ(x)

|∇φD + e|2a �
(

1

R + 1

)εd(1−β) ˆ
BR+1(x)

|∇φD + e|2a .
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Applying (2.12) once more in case that r∗ > 2R + 1, we obtain

ˆ
D

|∇φD + e|2a �
(

1

R + r∗ + 1

)εd(1−β) ˆ
Bmax{2R+1,r∗}

|∇φD + e|2a .

While this estimate trivially follows from the previous one in case that r∗ ≤ 2R + 1,
we treat the additional factor from the hole-filling estimate in case that r∗ > 2R +
1 via

(
1

R+1

)εd(1−β) (
2R+1
r∗

)εd ≤
(

1
R+1

)εd(1−β) (
2R+1
r∗

)εd(1−β)

�
(

1
r∗

)εd(1−β)

�
(

1
R+r∗+1

)εd(1−β)

. The remaining integral is controlled via the Caccioppoli estimate

(2.14), which results in

ˆ
D

|∇φD + e|2a �
(

1

R + r∗ + 1

)εd(1−β)

(R + r∗ + 1)d ≤ (R + r)d(1−ε(1−β))

recalling r ≥ r∗ ≥ 1. Going back to (2.24) and defining γ ′ := d(1 − ε(1 − β)) < d,
we conclude that

rd
∑

D

(ˆ
D

∣
∣
∣
∂F∇φ

∂a

∣
∣
∣
a

)2

+ rd
∑

D

(ˆ
D

∣
∣
∣
∂F∇σ jk

∂a

∣
∣
∣
a

)2

� rd(1−ε(1−β)). (2.25)

Step 4. Sensitivity estimate for all r ≥ re. The range of radii r ∈ [re, r∗) is covered
by applying the result from the previous step to the functional

F̃ψ :=
(
r

r∗

) d
2

Fψ.

Since (2.23) holds true, we infer

∣
∣F̃ψ

∣
∣2 =

(
r

r∗

)d

|Fψ |2 ≤
(
r

r∗

)d  
Br

|ψ |2a ≤
 
Br∗

|ψ |2a .

This enables us to employ (2.25) for F̃ and r = r∗ therein resulting in

(r∗)d
(
r

r∗

)d ∑

D

(ˆ
D

∣
∣
∣
∂F∇φ

∂a

∣
∣
∣
a

)2

+ (r∗)d
(
r

r∗

)d ∑

D

(ˆ
D

∣
∣
∣
∂F∇σ jk

∂a

∣
∣
∣
a

)2

� (r∗)d(1−ε(1−β)). (2.26)

Combining (2.25) and (2.26) establishes the announced estimate (1.16). ��
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2.4 Auxiliary results on the sublinear growth of the extended corrector (�,�)

Lemma 2.3 For 0 < L < ρ < ∞, 1 ≤ s < d, s ≤ S < ∞ such that θ := d( 1s − 1
S ) ∈

[0, 1), and u ∈ W 1,s(Br ), we have

1

ρ

( 
Bρ

∣
∣
∣u −

 
Bρ

u
∣
∣
∣

S
) 1

S ≤ C(d)

( 
Bρ

∣
∣
∣

 
BL (x)

∇u
∣
∣
∣

s
dx

) 1
s + C(d)

(
L

ρ

)1−θ( 
B2ρ

|∇u|s
) 1

s

.

(2.27)

Proof By scaling we can assume ρ = 1, in which case (2.27) reduces for some L ≤ 1
to

(ˆ
B1

∣
∣
∣u −

 
B1

u
∣
∣
∣

S
) 1

S ≤ C(d)

(ˆ
B1

∣
∣
∣

 
BL (x)

∇u
∣
∣
∣

s
dx

) 1
s + C(d)L1−θ

(ˆ
B2

|∇u|s
) 1

s

.

(2.28)

To show this, we apply the triangle inequality to estimate the left-hand side by

(ˆ
B1

∣
∣
∣u −

 
B1

u
∣
∣
∣

S
) 1

S ≤
(ˆ

B1

∣
∣
∣(u − uL ) −

 
B1

(u − uL )

∣
∣
∣

S
) 1

S +
(ˆ

B1

∣
∣
∣uL −

 
B1

uL
∣
∣
∣

S
) 1

S

,

where uL(x) := ffl
BL (x) u. Combining Jensen’s, Sobolev’s, and Poincaré’s inequalities

(while using 1
S ≥ 1

s − 1
d ), we get for the second term on the right-hand side

(ˆ
B1

∣
∣
∣uL −

 
B1

uL
∣
∣
∣

S
) 1

S ≤ C(d)

(ˆ
B1

∣
∣
∣uL −

 
B1

uL
∣
∣
∣

ds
d−s

) d−s
ds

≤ C(d)

(ˆ
B1

|∇(uL)|s
) 1

s = C(d)

(ˆ
B1

|(∇u)L)|s
) 1

s

.

For the first term, we apply Hölder’s inequality (with exponents s
s−S(1−θ)

, s
S(1−θ)

∈
(1,∞) after splitting the integrand as | · |S = | · |θ S| · |(1−θ)S) and Jensen’s inequality,
followed in the next step by the above Sobolev inequality and the convolution estimate:

(ˆ
B1

∣
∣
∣(u − uL) −

 
B1

(u − uL)

∣
∣
∣

S
) 1

S

≤ C(d)

(ˆ
B1

∣
∣
∣(u − uL) −

 
B1

(u − uL)

∣
∣
∣

ds
d−s

)θ d−s
ds
(ˆ

B1
|u − uL |s

) 1−θ
s

≤ C(d)

(ˆ
B1

|∇(u − uL)|s
) θ

s

L1−θ

(ˆ
B2

|∇u|s
) 1−θ

s ≤ C(d)L1−θ

(ˆ
B2

|∇u|s
) 1

s

,

which proves (2.28). ��
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Corollary 2.4 For 0 < L < r , θ := d
2

(
1
p + 1

q

)

∈ (0, 1), and

K̄ := sup
R≥r

( 
BR

|a|p
) 1

p +
( 

BR

|a−1|q
) 1

q

,

the extended corrector (φ, σ ) from Definition 1.3 satisfies

1

r

( 
Br

∣
∣
∣φ −

 
Br

φ

∣
∣
∣

2p
p−1

) p−1
2p + 1

r

( 
Br

∣
∣
∣σ −

 
Br

σ

∣
∣
∣

2q
q−1

) q−1
2q

�
( 

Br

∣
∣
∣

 
BL (x)

∇φ

∣
∣
∣

2q
q+1

dx

) q+1
2q +

( 
Br

∣
∣
∣

 
BL (x)

∇σ

∣
∣
∣

2p
p+1

dx

) p+1
2p

+ K̄
1
2

(
L

r

)1−θ(

1 + 1

r

( 
B8r

∣
∣
∣φ −

 
B8r

φ

∣
∣
∣

2p
p−1

) p−1
2p

+ 1

r

( 
B8r

∣
∣
∣σ −

 
B8r

σ

∣
∣
∣

2q
q−1

) q−1
2q
)

. (2.29)

Proof We start with σ . Using Lemma 2.3 with u = σ , S = 2q
q−1 , and s = 2p

p+1 , we get

1

r

( 
Br

∣
∣
∣σ −

 
Br

σ

∣
∣
∣

2q
q−1

) q−1
2q

≤ C(d)

( 
Br

∣
∣
∣

 
BL (x)

∇σ

∣
∣
∣

2p
p+1

dx

) p+1
2p + C(d)

(
L

r

)1−θ( 
B2r

|∇σ | 2p
p+1

) p+1
2p

(2.30)

with θ = d
2 ( 1p + 1

q ) < 1. To estimate the second term on the right-hand side, we

assume w.l.o.g. that
ffl
B4r

σ = 0 and consider ησ with a smooth cut-off function η for
B2r in B4r , which then by −
σi jk = ∂ j qik − ∂kqi j =: ∇ · q̃ with q̃ = qike j − qi j ek
satisfies


(ησi jk) = ∇ · (2σi jk∇η − ηq̃) + ∇η · q̃ − σi jk
η.

By a Calderón–Zygmund estimate for the Laplacian (see, e.g., [18, Subsections 7.1.2–
7.1.3]) combined with Sobolev’s and Jensen’s inequalities, this implies

(ˆ
B2r

|∇σi jk |
2p
p+1

) p+1
2p ≤

(ˆ
Rd

|∇(ησi jk)|
2p
p+1

) p+1
2p

� 1

r

(ˆ
B4r

|σi jk |
2p
p+1

) p+1
2p +

(ˆ
B4r

|q̃| 2p
p+1

) p+1
2p

.
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Using the definition of q̃ via qi = a(∇φi + ei ) we see that by Hölder’s inequality

( 
B4r

|q̃| 2p
p+1

) p+1
2p ≤

( 
B4r

|a|p
) 1

2p
( 

B4r
|∇φi + ei |2a

) 1
2

,

which combined with the previous inequality (after taking averages on both sides)
yields

( 
B2r

|∇σi jk |
2p
p+1

) p+1
2p

� 1

r

( 
B4r

|σi jk |
2p
p+1

) p+1
2p + K̄

1
2

( 
B4r

|∇φi + ei |2a
) 1

2

.

Note that the same arguments apply if we replace σ by σ − ffl
B4r

σ . We then plug the
previous estimate into (2.30) and use Jensen’s inequality to obtain

1

r

( 
Br

∣
∣
∣σ −

 
Br

σ

∣
∣
∣

2q
q−1

) q−1
2q ≤ C(d)

( 
Br

∣
∣
∣

 
BL (x)

∇σ

∣
∣
∣

2p
p+1

dx

) p+1
2p

+ C(d)

(
L

r

)1−θ 1

r

( 
B4r

∣
∣
∣σ −

 
B4r

σ

∣
∣
∣

2q
q−1

) q−1
2q + C(d)

(
L

r

)1−θ

K̄
1
2

( 
B4r

|∇φ + e|2a
) 1

2

.

(2.31)

To control the last term on the right-hand side, we observe that testing −∇ ·
a
(

∇(φ − ffl
B8r

φ) + e
)

= 0 with η2(φ −ffl
B8r

φ), where η is a cut-off function for B4r

in B8r , entails

 
B8r

∣
∣
∣∇

(

η

(

φ −
 
B8r

φ

)) ∣
∣
∣

2

a
�
 
B8r

|e|2a +
 
B8r

∣
∣
∣φ −

 
B8r

φ

∣
∣
∣

2|∇η|2a

� K̄

(

1 + 1

r2

( 
B8r

∣
∣
∣φ −

 
B8r

φ

∣
∣
∣

2p
p−1

) p−1
p
)

, (2.32)

where we used Hölder’s inequality together with |∇η| � 1
r .

Using Lemma 2.3 with u = φ, S = 2p
p−1 and s = 2q

q+1 , we get that

1

r

( 
Br

∣
∣
∣φ −

 
Br

φ

∣
∣
∣

2p
p−1

) p−1
2p

≤ C(d)

( 
Br

∣
∣
∣

 
BL (x)

∇φ

∣
∣
∣

2q
q+1

dx

) q+1
2q + C(d)

(
L

r

)1−θ( 
B2r

|∇φ| 2q
q+1

) q+1
2q

.

(2.33)
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By means of Hölder’s inequality, we see that

( 
B2r

∣
∣
∣∇

(

φ −
 
B8r

φ

) ∣
∣
∣

2q
q+1

) q+1
2q

� K̄
1
2

( 
B8r

∣
∣
∣∇

(

η

(

φ −
 
B8r

φ

)) ∣
∣
∣

2

a

) 1
2

,

whichweuse in (2.33) to control the last integral. Finally, suchmodified (2.33) together
with (2.32) and (2.31) yield (2.29), which completes the proof. ��

2.5 Proof of Theorem 1.11: stretched exponential moments for r∗

Proof of Theorem 1.11 Step 1. Control of the minimal radius r∗. Let p, q ∈ (1,∞) be
the integrability exponents of a and a−1 from Definition 1.1. We shall follow the lines
of [20] to derive an estimate for the minimal radius r∗. To this end, we first assume
that M0re < r ≤ r∗ holds with some positive radius r and the positive constant M0
from Definition 1.7 which is specified in (2.34) below. We introduce

X(r) := max

⎧

⎨

⎩

1

r

( 
Br

∣
∣
∣φ −

 
Br

φ

∣
∣
∣

2p
p−1

) p−1
2p

,
1

r

( 
Br

∣
∣
∣σ −

 
Br

σ

∣
∣
∣

2q
q−1

) q−1
2q

⎫

⎬

⎭
.

With another positive radius r ′ subject to r ′ < r , we may employ Corollary 2.4 to
obtain

X(r) �
(r ′

r

)1−θ (
1 + X(8r)

) +
( 

Br

∣
∣
∣

 
Br ′ (x)

∇φ

∣
∣
∣

2p
p+1

) p+1
2p

+
( 

Br

∣
∣
∣

 
Br ′ (x)

∇σ

∣
∣
∣

2q
q+1

) q+1
2q

with θ = d
2

(
1
p + 1

q

)

< 1. From the definition of r∗ and the constant C0 in Def-

inition 1.7, we deduce that there exists some ρ ≥ r such that X(ρ) ≥ 1
C0

while

X(ρ′) ≤ 2
C0

for all ρ′ ≥ ρ. Note that we crucially employed the assumption
M0re < r∗, which ensures that such a ρ ≥ r actually exists. We infer

X(ρ′) ≥
(

ρ

ρ′
)1+d max

{ p−1
2p ,

q−1
2q

}

X(ρ) ≥
(
1

2

)1+d max
{ p−1

2p ,
q−1
2q

}

1

C0
, X(8ρ′) ≤ 2

C0

for all ρ′ ∈ (ρ, 2ρ). The choice r := ρ′ and r ′ := ρ′′ ∈ (0, ρ′) entails

1

C
≤
(

ρ′′

ρ′

)1−θ

+
( 

Bρ′

∣
∣
∣

 
Bρ′′ (x)

∇φ

∣
∣
∣

2p
p+1

) p+1
2p

+
( 

Bρ′

∣
∣
∣

 
Bρ′′ (x)

∇σ

∣
∣
∣

2q
q+1

) q+1
2q
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with a positive constant C(d, p, q, K ,C0) which is in particular independent of M0.
One can now absorb the first term on the right-hand side by setting ρ′′ := ρ′

M0
with

M0 := (2C)
1

1−θ (2.34)

leading to

1

2C
≤
⎛

⎜
⎝

 
Bρ′

∣
∣
∣

 
B ρ′

M0

(x)
∇φ

∣
∣
∣

2p
p+1

⎞

⎟
⎠

p+1
2p

+
⎛

⎜
⎝

 
Bρ′

∣
∣
∣

 
B ρ′

M0

(x)
∇σ

∣
∣
∣

2q
q+1

⎞

⎟
⎠

q+1
2q

.

Taking the power 2P , P ∈ N, applying Jensen’s inequality, and integrating over
(ρ, 2ρ), we find

1

4(4C)2P
≤
ˆ 2ρ

ρ

 
Bρ′

∣
∣
∣

 
B ρ′

M0

(x)
∇(φ, σ )

∣
∣
∣

2P 1

ρ′ .

Since the previous calculation holds for any configuration satisfying M0re < r ≤ r∗,
we arrive at

〈I (M0re < r ≤ r∗)〉 ≤ CP
ˆ ∞

r
M0

〈
∣
∣
∣

 
Bρ

∇(φ, σ )

∣
∣
∣

2P
〉

1

ρ
(2.35)

extending the range of integration, renaming variables, and using the stationarity offfl
Bρ(x) ∇(φ, σ ).
Step 2. Control of the corrector gradient ∇(φ, σ ). We keep the assumptions and

the notation from the previous step and consider some ρ > r
M0

. As a result of the
vanishing expectation of ∇(φ, σ ), the spectral gap estimate (2.5) ensures the bound

〈
∣
∣
∣

 
Bρ

∇(φ, σ )

∣
∣
∣

2P
〉 1

P

≤ CP2

κ

〈(
∑

D

(ˆ
D

∣
∣
∣

∂

∂a

 
Bρ

∇(φ, σ )

∣
∣
∣
a

)2)P
〉 1

P

.

Recalling the notation F∇(φ, σ ) = ´
Rd g∇(φ, σ ) = ffl

Bρ
∇(φ, σ ) with g :=

|Bρ |−11Bρ , which in particular fulfills the condition

(ffl
Bρ

|g| 2p
p−1

) p−1
2p

� ρ−d , Propo-

sition 1.12 guarantees

〈
∣
∣
∣

 
Bρ

∇(φ, σ )

∣
∣
∣

2P
〉 1

P

� P2

〈(

(ρ + r∗)1−ε(1−β)

ρ

)dP〉
1
P

.
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Here and in the remainder of this proof, all generic constants may depend on d, p, q,
β, ε, κ , K , and C0. Together with the estimate on the minimal radius in (2.35), we
derive

〈I (M0re < r ≤ r∗)〉 1
P �

(ˆ ∞
r
M0

〈
∣
∣
∣

 
Bρ

∇(φ, σ )

∣
∣
∣

2P
〉

1

ρ

) 1
P

� P2

⎛

⎝

ˆ ∞
r
M0

〈(

(ρ + r∗)1−ε(1−β)

ρ

)dP〉
1

ρ

⎞

⎠

1
P

.

An evaluation of the integral over ρ after using the triangle inequality gives rise to

〈

I (M0re < r ≤ r∗)
〉 1
P � P2

(( 1

εdP(1 − β)

( r

M0

)−εdP(1−β)) 1
P

+
( 1

dP

( r

M0

)−dP) 1
P 〈
rdP(1−ε(1−β))∗

〉 1
P

)

.

Keeping track only of the dependence of the constants on P , this expression simplifies
to

〈I (M0re < r ≤ r∗)〉 1
P � P2

(
1

rεd(1−β)
+ 1

rd

〈

rdP(1−ε(1−β))∗
〉 1
P
)

.

To derive a bound on 〈I (r∗ ≥ r)〉, we first note that

〈I (r∗ ≥ r)〉 1
P ≤ 〈I (M0re ≥ r)〉 1

P + 〈I (M0re < r ≤ r∗)〉 1
P

by elementary arguments, where 〈I (M0re ≥ r)〉 1
P � exp

(

− 1
CP

(
r
M0

)ε d
2 (1−β)

)

due

to (1.13) with α = ε
1−ε

. As a consequence of the scalar inequality e−x ≤ x−2 for any
x > 0, we obtain

exp

(

− 1

CP

(
r

M0

)ε d
2 (1−β)

)

≤ C2P2Mεd(1−β)
0

rεd(1−β)
.

Hence, we established the estimate

〈I (r∗ ≥ r)〉 1
P � P2

(
1

rεd(1−β)
+ 1

rd

〈

rdP(1−ε(1−β))∗
〉 1
P
)

. (2.36)

Step 3. Buckling and exponential moments of r∗. We introduce s := r
ε
2 d(1−β),

s∗ := r
ε
2 d(1−β)
∗ , Q := 1

ε(1−β)
> 1, and we replace P ≥ 1 by P

2 (now with P ≥ 2) in
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(2.36). The transformed estimate then reads

〈I (s∗ ≥ s)〉 1
P ≤ C̃ P

(
1

s
+ 1

sQ

〈

(sQ−1∗ )P
〉 1
P
)

(2.37)

with some constant C̃ ≥ 1. The basic idea of buckling in this context is to assume that
there exists a constant � ≥ 1 such that

〈I (s∗ ≥ s)〉 ≤ exp
(

− s

�

)

(2.38)

holds true for all s ≥ �. This assumption is in general only satisfied for min{s∗, δ−1}
with δ > 0 instead of s∗. Showing that (2.38) (with min{s∗, δ−1}) entails � ≤ C for
some constant C ≥ 1, which is in particular independent of δ, allows to transfer the
uniform exponential decay to 〈I (s∗ ≥ s)〉.

Imposing (2.38), we calculate for any P ≥ 2,

〈sP∗ 〉 ≤
ˆ ∞

0
〈I (s∗ ≥ s)〉 d

ds
sP ds ≤

ˆ ∞

0
exp

(

1 − s

�

) d

ds
sP ds

= e
ˆ ∞

0

1

�
exp

(

− s

�

)

sP ds = e
ˆ ∞

0
e−t (�t)P dt = e�P P!.

We thus obtain 〈sP∗ 〉 1
P ≤ eP� for all P ≥ 2 and infer from (2.37) the estimate

〈I (s∗ ≥ s)〉 1
P ≤ C̃ P

(
1

s
+ 1

sQ
(eP(Q − 1)�)Q−1

)

≤ C0
P

s

(

1 +
(
P�

s

)Q−1
)

with another constant C0 ≥ 1. By defining �′ := 2C0�
Q−1
Q ≥ 1, we have

〈I (s∗ ≥ s)〉 1
P ≤ C0

P

s

⎛

⎝
�′

2C0
+
(

�

2C0�
Q−1
Q

)Q−1
⎞

⎠ ≤ P

s
�′

provided s ≥ P�′. The best upper bound for 〈I (s∗ ≥ s)〉 ≤ ( P
s �′)P can be found by

optimizing the right-hand side in P leading to P = s
e�′ . In order to guarantee P ≥ 2

(due to the variable transformation at the beginning of this step), we have to demand
s ≥ 2e�′. Note that s ≥ P�′ is trivially satisfied. Consequently,

〈I (s∗ ≥ s)〉 ≤ e−P ≤ exp
(

− s

2e�′
)

for all s ≥ 2e�′. This shows that (2.38) also holds true with 2e�′ instead of �.

Taking the best constant � in (2.38) ensures � ≤ 2e�′ = 4C0e�
Q−1
Q and, finally,

� ≤ (4C0e)Q .
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Moments of s∗ of order k ∈ N are now derived as above via

〈sk∗〉 ≤
ˆ ∞

0
〈I (s∗ ≥ s)〉 d

ds
sk ds ≤

ˆ ∞

0
exp

(

− s

�

) d

ds
sk ds

=
ˆ ∞

0

1

�
exp

(

− s

�

)

sk ds =
ˆ ∞

0
e−t (�t)k dt = �kk!.

As an immediate consequence, we obtain stretched exponential moments of r∗ in the
sense that

〈

exp

(
1

C
r

ε
2 d(1−β)
∗

)〉

= 1 +
∞
∑

k=1

1

k!
〈sk∗〉
Ck

≤ 1 +
∞
∑

k=1

�k

Ck
< 2

for a sufficiently large constant C > 0. ��

3 Two applications to stochastic homogenization

3.1 Proof of Theorem 1.13: decay and growth properties of the extended corrector

Proof of Theorem 1.13 We define the random variable

F(x) :=
 
Br

∇(φ, σ )(x + y) · m(y) dy

which is stationary and satisfying 〈F〉 = 0 thanks to the according properties of
∇(φ, σ ). From the P-spectral gap inequality (2.5) and the sensitivity estimate (1.16),
we thus derive

〈

|F |2P
〉 1
2P � P

〈(
∑

D

(ˆ
D

∣
∣
∣
∂F

∂a

∣
∣
∣
a

)2
)P〉

1
2P

� P

〈(

(r + r∗)1−ε(1−β)

r

)Pd〉
1
2P

for any P ∈ N, P ≥ 2. Taking r ≥ 1 and r∗ ≥ 1 into account, this simplifies to

〈

|F |2P
〉 1
2P � Pr− ε

2 d(1−β)
〈

r (1−ε(1−β))Pd∗
〉 1
2P

. (3.1)

The first part of the theorem is a consequence of establishing stretched exponential
moments for

C(x) := r
ε
2 d(1−β)

∣
∣F(x)

∣
∣.

123



Stochastics and Partial Differential Equations: Analysis and Computations

To this end, we choose Q ≥ 1 and let P ∈ N be the integer such that Q ≤ P < Q+1.
Estimate (3.1) then entails

〈

|C|2Q
〉 1
2Q � Q

〈

r (1−ε(1−β))(Q+1)d∗
〉 1
2(Q+1)

.

Replacing Q by γ Q
2 for some γ > 0 and demanding Q ≥ 4

γ
to guarantee γ Q

2 ≥ 2,
we obtain

〈

|C|γ Q
〉 1
Q � Qγ

〈

r
(1−ε(1−β))(

γ Q
2 +1)d

∗
〉 γ

2( γ Q
2 +1) ≤ Qγ

〈

r (1−ε(1−β))γ Qd∗
〉 1
2Q

.

Together with Theorem 1.11 and Lemma A.1, we derive the bound

〈

r (1−ε(1−β))γ Qd∗
〉 1
2Q � Q

γ (1−ε(1−β))
ε(1−β) ,

which results in

〈

|C|γ Q
〉 1
Q � Q

γ
(

1+ (1−ε(1−β))
ε(1−β)

)

= Q
γ

ε(1−β) = Q

for γ := ε(1 − β). Applying again Lemma A.1 concludes the argument.
Concerning the growth of the correctors (φ, σ ), we start by employing Sobolev’s

inequality related to the embedding W 1, 2q
q+1 (B(x)) ↪→ L

2p
p−1 (B(x)) on the unit ball

B(x) := B1(x), which holds by the condition 1
p + 1

q ≤ 2
d . We infer

( 
B(x)

|φ| 2p
p−1

) p−1
2p

�
( 

B(x)
|φ| 2q

q+1

) q+1
2q +

( 
B(x)

|∇φ| 2q
q+1

) q+1
2q

.

Poincaré’s inequality and an elementary estimate involving the ellipticity radius re(x)
give rise to

( 
B(x)

|φ| 2p
p−1

) p−1
2p

�
∣
∣
∣

 
B(x)

φ

∣
∣
∣ + re(x)

d q+1
2q

( 
Bre(x)(x)

|∇φ| 2q
q+1

) q+1
2q

.

Hölder’s inequality followed by a hole-filling argument then yields

( 
B(x)

|φ| 2p
p−1

) p−1
2p

�
∣
∣
∣

 
B(x)

φ

∣
∣
∣ + re(x)

d q+1
2q

(
r∗(x)
re(x)

) d
2 (1−ε)

( 
Br∗(x)(x)

|∇φ|2a
) 1

2

.
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Owing to a Caccioppoli estimate of the last term above and the definition of the
minimal radius r∗(x) from Definition 1.7, we deduce

( 
B(x)

|φ| 2p
p−1

) p−1
2p

�
∣
∣
∣

 
B(x)

φ

∣
∣
∣+ re(x)

d q+1
2q

(
r∗(x)
re(x)

) d
2 (1−ε)

( 
Br∗(x)(x)

∣
∣
∣φ −

 
Br∗(x)(x)

φ

∣
∣
∣

2p
p−1

) p−1
2p

�
∣
∣
∣

 
B(x)

φ

∣
∣
∣+ r∗(x)

d
2 (1−ε)re(x)

d
2 ( 1q +ε)

.

As in [21], we proceed by calculating

 
Bt (x)

(φ(y) − φ(x)) dy =
ˆ t

0

 
Br (x)

∇φ(y) · y − x

r
dy dr

for any t ≥ 1. This identity easily follows from the integral mean value theorem.
Hence,

∂t

 
Bt (x)

φ =
 
Bt (x)

∇φ(y) · y − x

t
dy.

Moreover, we have
ffl
Bt (x)

∣
∣ y−x

t

∣
∣
2
dy � 1, which allows us to employ the first part of

this theorem ensuring that

∣
∣
∣∂t

 
Bt (x)

φ

∣
∣
∣ ≤ C(x)t−

ε
2 d(1−β)

and, consequently,

∣
∣
∣

 
BR(x)

φ −
 
B(x)

φ

∣
∣
∣ ≤

ˆ R

1

∣
∣
∣∂t

 
Bt (x)

φ

∣
∣
∣ ≤ C(x)

ˆ R

1
t−

ε
2 d(1−β) � C(x)π(R)

recalling the definition of π(r) from (1.18). In a similar fashion, we find that

 
BR(x)

φ −
 
BR

φ =
 
BR

(φ(x + y) − φ(y)) dy

=
 
BR

ˆ 1

0
∇φ(y + t x) · x dt dy

= |x |
ˆ 1

0

 
BR

∇φ(y + t x) · x

|x | dt dy.
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Since
ffl
BR

∣
∣ x
|x |
∣
∣
2 = 1, we conclude as above that

∣
∣
∣

 
BR(x)

φ −
 
BR

φ

∣
∣
∣ ≤ R− ε

2 d(1−β)|x |
ˆ 1

0
C(t x) dt .

We may now apply the previous estimates to the right-hand side of the following
inequality,

∣
∣
∣

 
B(x)

φ

∣
∣
∣ ≤

∣
∣
∣

 
B

φ

∣
∣
∣ +

∣
∣
∣

 
B

φ −
 
BR

φ

∣
∣
∣ +

∣
∣
∣

 
BR

φ −
 
BR(x)

φ

∣
∣
∣+

∣
∣
∣

 
BR(x)

φ −
 
B(x)

φ

∣
∣
∣,

leading to

∣
∣
∣

 
B(x)

φ

∣
∣
∣ ≤

∣
∣
∣

 
B

φ

∣
∣
∣ +

(

C(0) + C(x) +
ˆ 1

0
C(t x) dt

)

π(|x |)

when choosing R := |x |. Together, we have
( 

B(x)
|φ| 2p

p−1

) p−1
2p

� r∗(x)
d
2 + re(x)

d
2 ( 1

εq +1)

+
∣
∣
∣

 
B

φ

∣
∣
∣ +

(

C(0) + C(x) +
ˆ 1

0
C(t x) dt

)

π(|x |).

Observe that r∗(x)
d
2 is stochastically integrable with stretched exponential moment

ε(1 − β) as
〈

exp
(

1
C r

ε
2 d(1−β)
∗

)〉

< 2 due to (1.14) and that re(x)
d
2 ( 1

εq +1) is

also integrable with the same moment ε(1 − β) since
(

1
εq + 1

)

ε ≤ α
α+1 and

〈

exp

(

1
C r

α
α+1

d
2 (1−β)

e

)〉

< 2 due to (1.13). This closes the proof for the second part of

the theorem as the same arguments also apply to σ by basically exchanging p and q.
��

3.2 Proof of Corollary 1.14: a quantitative two-scale expansion

Proof of Corollary 1.14 We follow the strategy presented in [21, 23] and first notice
that by a scaling argument it is sufficient to prove the claim for δ = 1. Next, we derive
the following equation for z where (·)1 denotes averaging over a ball of radius 1:

−∇ · a∇z = ∇ · (g − g1 + (aφi − σi )∇∂i uhom,1). (3.2)

The calculation is carried out in [23] but we recall the main steps of the proof for
completeness. From the representation z := u − (

uhom,1 + φi∂i uhom,1
)

, we obtain

a∇z = a∇u − ∂i uhom,1a(∇φi + ei ) − aφi∇∂i uhom,1
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and

−∇ · a∇z = ∇ · (g − g1) + ∇ · (aφi∇∂i uhom,1) + ∇∂i uhom,1 · (∇ · σi ).

The claim is now a result of the skew-symmetry of σi , more precisely of

∇∂i uhom,1 · (∇ · σi ) = −∇ · (σi∇∂i uhom,1).

Testing (3.2) with z entails

ˆ
|∇z|2a �

ˆ
|g − g1|2a−1 +

ˆ
|φi∇∂i uhom,1|2a +

ˆ
|σi∇∂i uhom,1|2a−1 .

For the first term on the right-hand side we aim to apply Poincaré’s inequality noting

that g − g1 ∈ W 1, 2q
q−1 (Rd) is supported in BR+1. Up to several constants depending

in particular on R, we get

ˆ
|g − g1|2a−1 �

(ˆ
BR+1

∣
∣a−1∣∣q

) 1
q
(ˆ

BR+1

∣
∣∇g − 1 ∗ ∇g

∣
∣

2q
q−1

) q−1
q

�
(ˆ

∣
∣∇g

∣
∣

2q
q−1

) q−1
q

.

For the second term, we note that ∇∂i uhom,1 = 1
|B|1B ∗ ∇∂i uhom (with B := B1(0))

leading together with Jensen’s inequality to

ˆ
|φi∇∂i uhom,1|2a �

ˆ
|a||φi |2

∣
∣
∣

ˆ
B(x)

∇∂i uhom
∣
∣
∣

2
�
ˆ

|a||φ|2 1B ∗ |∇2uhom|2.

Proceeding with Hölder’s inequality, we deduce

ˆ
|φi∇∂i uhom,1|2a �

ˆ (ˆ
B(x)

|a||φ|2
)

|∇2uhom|2

≤
ˆ (ˆ

B(x)
|a|p

) 1
p
(ˆ

B(x)
|φ| 2p

p−1

) p−1
p |∇2uhom|2.

Theorem 1.13 and
ffl
B φ = 0, therefore, result in

ˆ
|φi∇∂i uhom,1|2a �

ˆ
4Kre(x)

d
p C(x)2π(|x |)2|∇2uhom|2 � C2g,p

ˆ
π(|x |)2|∇g|2,

where we introduced the random field

C2g,p :=
´ C(x)2re(x)

d
p π(|x |)2|∇2uhom|2´

π(|x |)2|∇g|2 .
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Employing the stationarity of C(x) and re(x) as well as a weighted L2 estimate for
∇2uhom (recall that π(·) as defined in (1.18) is a Muckenhoupt weight), we infer the
bound

〈

Crg,p
〉

≤

⎛

⎜
⎜
⎝

´ 〈

C(x)r re(x)
dr
2p

〉 2
r
π(|x |)2|∇2uhom|2´

π(|x |)2|∇g|2

⎞

⎟
⎟
⎠

r
2

�
〈

Cr r
dr
2p
e

〉

for any r ≥ 2. Now let r ≥ 2
ε(1−β)

(1+ α+1
α

ε
p ) and observe that the previous estimate

gives rise to

〈

C(1+ α+1
α

ε
p )−1ε(1−β)r

g,p

〉

�
〈

C(1+ α+1
α

ε
p )−1ε(1−β)r r

d
2p (1+ α+1

α
ε
p )−1ε(1−β)r

e

〉

≤
〈

Cε(1−β)r
〉 1
1+ α+1

α
ε
p

〈

r
α

α+1
d
2 (1−β)r

e

〉
α+1
α

ε
p

1+ α+1
α

ε
p � (cr)r

using Hölder’s inequality, the stochastic integrability of C and re from Theorem 1.13
and Lemma 1.10, respectively, and Lemma A.1. This ensures the announced stretched
exponential moment bounds for Cg,p. The same arguments also show that

ˆ
|σi∇∂i uhom,1|2a−1 � C2g,q

ˆ
π(|x |)2|∇g|2

together with the random field

C2g,q :=
´ C(x)2re(x)

d
q π(|x |)2|∇2uhom|2´

π(|x |)2|∇g|2

allowing for the same stochastic integrability as Cg,p up to replacing p by q. ��
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Appendix A: Some auxiliary tools

Lemma A.1 (see e.g. [21, Lemma 6]) The following statements on a nonnegative ran-
dom variable F are equivalent.

(1) There exists a constant C ≥ 1 such that

〈

exp

(
1

C
F

)〉

< 2.

(2) There exists some p0 ∈ N and a constant C ≥ 1 such that

〈

F p〉
1
p ≤ Cp

for all p ∈ N, p ≥ p0.

Notation A.2 For a matrix M ∈ R
d×d , we write

|M |F1 :=
d
∑

i=1

d
∑

j=1

|Mi j |, |M |F∞ := sup
i≤d

sup
j≤d

|Mi j |.

Lemma A.3 Let M : Rd → R
d×d and suppose that

∑

D

(ˆ
D
M : a 1

2 Na
1
2

)2

≤ c2 sup
D

‖|N |F∞‖2L∞(D)

for some c > 0 and all bounded N : Rd → R
d×d . Then, we have

∑

D

∥
∥
∣
∣a

1
2 Ma

1
2
∣
∣
F1

∥
∥2
L1(D)

≤ c2.

Proof We first observe that

∑

D

‖|M |F1‖2L1(D)
= sup

N∈Rd×d

Nbounded

∑

D

(´
D M : N)2

supD ‖|N |F∞‖2L∞(D)
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for all matrix-valued functions M, N ∈ R
d×d provided that Ni j (·) is bounded for all i

and j . This can be verified by elementary arguments from linear algebra. The previous
identity, in particular, implies that the bound

∑

D ‖|M |F1‖2L1(D)
≤ c2 holds, if

∑

D

(ˆ
D
M : N

)2

≤ c2 sup
D

‖|N |F∞‖2L∞(D)

for some c > 0 and all bounded N : Rd → R
d×d . Replacing M by a

1
2 Ma

1
2 and

observing that a
1
2 Ma

1
2 : N = M : a 1

2 Na
1
2 allows to conclude. ��
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