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Abstract
We present two criteria for the existence and uniqueness of a maximal strong solution
for a general class of stochastic partial differential equations. Each criterion has its
corresponding set of assumptions and can be applied to viscous fluid equations with
additive, multiplicative or a general transport type noise. In particular, we apply these
criteria to demonstrate well-posedness results for the 3D SALT [Stochastic Advection
by Lie Transport, (Holm in Proc R Soc A Math Phys Eng Sci 471:20140963, 2015)]
Navier–Stokes Equation in velocity and vorticity form, on the torus and the bounded
domain respectively.
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1 Introduction

The theoretical analysis of fluid models perturbed by transport type noise has been in
significant demand since the release of the seminal works [31] and [47]. In these papers
Holm and Memin establish a new class of stochastic equations driven by transport
noise which serve as fluid dynamics models by adding uncertainty in the transport of
the fluid parcels to reflect the unresolved scales. The significance of such equations in
modelling, numerical schemes and data assimilation continues to be well documented,
see [2, 5–8, 15, 17, 20, 30, 32, 37, 38, 53]. In contrast there has been limited progress in
provingwell-posedness for this class of equations:Crisan, Flandoli andHolm [11] have
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shown the existence and uniqueness of maximal solutions for the 3D Euler Equation
on the torus, whilst Crisan and Lang [9, 10, 36, 39] extended the well-posedness
theory for the Euler, Rotating Shallow Water and Great Lake Equations on the torus
oncemore. Alonso-Orán andBethencourt de León [1] show the same properties for the
Boussinesq Equations again on the torus, whilst Brzeźniak and Slavík [4] demonstrate
these properties on a bounded domain for the Primitive Equations but for a specific
choice of transport noisewhich facilitates their analysis. Indeed the theoretical analysis
of fluid equations driven by a specifically chosen transport noise is well developed in
the literature, see [3, 18, 19, 21, 45, 46].

The first step in developing the theoretical analysis of either stochastic or determin-
istic PDEs iswell-posedness. The class of equations in consideration is ever expanding;
Figure 2 of [8] gives a brief overview of just some of the determinstic fluid models,
each of which can be stochastically perturbed through a similarly widening array of
variational principles (beyond the seminal works [31] and [47], see more recently [32]
and [53]). The significance of an abstract approach to the well-posedness question is
clear, looking to encapsulate the similarities between these equations whilst working
in as much generality as possible to incorporate their technical differences. We state
our equation in the form

� t = �0 +
∫ t

0
A(s,�s)ds +

∫ t

0
G(s,�s)dWs (1.1)

forW a Cylindrical BrownianMotion and operatorsA andG which heuristically allow
for nonlinearity withA a second order differential operator and G of first order, at the
expense of some weak monotonicity and coercivity constraints (Sects. 3.1 and 4.1).
We prove the existence, uniqueness and maximality of solutions to (1.1) which are
strong in both the probabilistic and PDE sense. Looking to work in great generality,
we separate our results into two distinct criteria whereby we work under different sets
of assumptions (Sects. 3 and 4). In Sect. 3 we present the first criterion, requiring a
triple of embedded Hilbert Spaces. The criterion is extended in Sect. 4, giving rise to
solutions of the SPDE in a larger space. The results are applied to the SALT Navier-
Stokes Equation in both its velocity and vorticity form, applying only the result of
Sect. 3 to the vorticity form but requiring Sect. 4 for the velocity one, making explicit
the insufficieny of just Sect. 3 for solving the velocity equation in the optimal spaces.
In the interests of brevity we simply sketch these applications (Sect. 5), deferring a
complete proof to [25]. We emphasise that the well-posedness results of [25] are only
obtained from a direct application of the theory developed in the present manuscript.
We further note that some of the results of this paper were first announced in the
conference proceedings [26], which does not contain proofs.

The embedded Hilbert Spaces with respect to which we pose (1.1) are not assumed
to form a Gelfand Triple, a core difference between the current work and existing
ones. Variational approaches in a Gelfand Triple for additive and multiplicative noise
have long been studied, initially in the works [28, 35, 49] and more recently [41–43,
48]. Perhaps the most relevant papers come from Debussche, Glatt-Holtz and Temam
[13] as well as Röckner, Shang and Zhang [52]. In [13] the authors show existence,
uniqueness and maximality for an abstract fluids model perturbed by a multiplicative
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noise which does not extend to the case of a differential operator. The work [52] was
released just in recentweeks, inwhich the authors extend the frameworkof a variational
approach in theGelfandTriple to cover transport type noise. Their assumptions achieve
a global existence result, however, which naturally will not account for PDE-strong
solutions of the 3DNavier–StokesEquation and relatedmodels. Indeed the very setting
of aGelfandTriple lends itself to solutionswhich areweak in the analytic sense, though
we appreciate that Liu and Röckner [43] prove the existence of a local strong solution
to the incompressible 3D Navier–Stokes Equation with additive noise by working in
the spaces W 2,2 ↪−→ W 1,2 ↪−→ L2 with the understanding that the (W 2,2)∗ norm is
controlled by the L2 one. To directly work with such a triplet of spaces, Kato and
Lai [33] prove a PDE existence result which they apply to the Euler Equation in the
context of an ’admissable triplet’ of spaces, where a bilinear form relation that reduces
to the inner product of the middle space exists however there is no assumed duality
structure. We shall work in this setting throughout the paper.

The quoted works to solve an abstract SPDE have two distinct mechanisms of
proof: transformation of the SPDE to a random PDE, and energy estimates leading to
relative compactness methods. Our departure from the generalised ’admissable triplet’
framework in Sect. 3 is representative of a new method, which we summarise here.
This is in the context of embedded Hilbert spaces V ↪−→ H ↪−→ U , where:

• V is the space in which solutions have square integrability in time. This repre-
sents the most regular space and a sequence of finite-dimensional approximating
solutions are constructedwithin it. This is referred to as aGalerkinApproximation.

• H is the space in which solutions are continuous in time, and in which the ini-
tial condition takes value. Typically this space is where the analysis takes place,
through a bilinear form reducing to the H inner product where some weak coer-
civity assumption is used to generate the control in V . To ease the burden of a first
order diffusion operator we conduct much of the analysis in U , only working in
the H inner product to generate the V control for the Galerkin Approximations.

• U is the space inwhich solutions satisfy their identity. The described limitations are
circumvented by conducting analysis in the U inner product, which is combined
with the work in the H inner product to achieve the required regularity of the
solution. In particular a Cauchy property is shown in the U inner product; this is
an asset of our method as typically such a property must be shown in H , and in
fact is necessary in handling the differential operator in the noise term.

This is explained in more detail now. Our method takes inspiration from that of
Glatt-Holtz and Ziane in the paper [24], where they deduce the existence of a local
strong solution to the incompressible 3D Navier–Stokes Equation with multiplicative
noise by considering aGalerkinApproximationwhere each finite dimensional solution
is treated up to a first hitting time. Provided a Cauchy Property in the norm of the first
hitting time is satisfied, alongside a uniform rate of convergence of the processes to
their initial conditions, then a limiting process and almost surely positive stopping
time can be inferred (restated in the Appendix, Lemma 6.3) which is then shown to
be a solution as desired. In this paper the Cauchy Property is demonstrated for the
H inner product; to manage the differential operator in the noise we have to appeal
to some uniform higher regularity of the solutions, which is not immediately evident
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from the first hitting times. Moreover our proof comes with the additional step of
showing uniform boundedness generated in the H inner product, enabling us to prove
the Cauchy Property only for U . This summarises our existence approach for Sect. 3,
where we consider so called H -valued solutions of (1.1).

Adifferent notion of solution (U -valued) is considered in Sect. 4,where the criterion
of Sect. 3 is extended. A fourth Hilbert Space X (U ↪−→ X ) is introduced, with the
spaces serving a different purpose for the U -valued solutions:

• V is superfluous in making the definition of U -valued solutions, though we again
use an approximating sequence of solutions which must exist in this space.

• H is the space in which solutions have square integrability in time. The approx-
imating sequence of solutions are no longer in finite dimensions, but rather are
solutions of the full equation with H valued initial conditions.

• U is the space in which solutions are continuous in time, and in which the initial
condition takes value. The approximating solutions correspond to solutions for
H valued initial conditions convergent to the U valued one. A Cauchy property
is shown in this space, which directly generates the H control through a weak
coercivity assumption. We are afforded the option to show the Cauchy property in
this space as the differential operator in the noise term only prevented the Cauchy
property in Sect. 3 due to the difference in dimensionality of the approximating
sequence. As alluded to in the discussion there, an ’admissable triplet’ relation is
assumed for the spaces H ,U , X to facilitate working in this space.

• X is the space in which solutions satisfy their identity. The only analysis conducted
in this space is for the uniqueness of solutions, and to justify that the limiting
process obtained from the above Cauchy property is a solution.

The principle of the arguments (in line with [22, 23] for example) is to use the more
regular H -valued solutions corresponding to a sequence of H -valued initial conditions
which are convergent to aU -valued initial condition. This involves iterating the proce-
dure of Sect. 3 though in a much simplified way, as we do not need any uniform higher
regularity to justify the Cauchy property which is now shown directly in the space of
existence. This simplification is again owing to the fact that the transport type noise
only proves problematic when dealing with the difference of the finite dimensional
projection operators.

The text is structured as follows. In Sect. 2 we simply introduce some notation
and establish the stochastic framework. Section3 is where we prove the existence
of H -valued local strong solutions as described, in addition to their uniqueness and
maximality. The uniqueness is proved by simply showing that the expectation of the
norm of the difference of two solutions is null. As for maximality, we apply Zorn’s
Lemma at an abstract level to show the existence of a maximal solution. The maximal
time is then characterised as the blow up by showing that at the minimum between
this maximal time and any first hitting time in the required norm, then a local solution
exists and can be extended: thus the first hitting timemust be smaller than the maximal
time, as by definition themaximal time cannot be extended. Section4 follows the same
path of existence, uniqueness and maximality for the U -valued solutions as outlined.
We give the application to the SALT Navier–Stokes Equation in both its velocity and
vorticity forms in Sect. 5, again making explicit the necessity of having both Sects. 3
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and 4 and their distinction. To reach the main results more efficiently some of the
proofs are deferred to the Appendix I, which also contains a few key results from the
literature that we apply in the text and concludes this paper (Sect. 2).

2 Preliminaries

In the following O represents a subset of RN . Throughout the paper we consider
Banach Spaces as measure spaces equipped with the Borel σ -algebra, and will on
occassion use λ to represent the Lebesgue Measure.

Definition 2.1 Let (X , μ) denote a generalmeasure space, (Y, ‖·‖Y ) and (Z, ‖·‖Z ) be
Banach Spaces, and (U , 〈·, ·〉U ), (H, 〈·, ·〉H) be general Hilbert spaces.O is equipped
with Euclidean norm.

• L p(X ;Y) is the usual class of measurable p-integrable functions from X into Y ,
1 ≤ p < ∞, which is a Banach space with norm

‖φ‖p
L p(X ;Y)

:=
∫
X

‖φ(x)‖p
Yμ(dx).

The space L2(X ;Y) is a Hilbert Space when Y itself is Hilbert, with the standard
inner product

〈φ,ψ〉L2(X ;Y) =
∫
X

〈φ(x), ψ(x)〉Yμ(dx).

In the case X = O and Y = R
N note that

‖φ‖2L2(O;RN )
=

N∑
l=1

‖φl‖2L2(O;R)

for the component mappings φl : O → R.
• L∞(X ;Y) is the usual class of measurable functions from X into Y which are
essentially bounded, which is a Banach Space when equipped with the norm

‖φ‖L∞(X ;Y) := inf{C ≥ 0 : ‖φ(x)‖Y ≤ C for μ − a.e.x ∈ X }.

• L∞(O;RN ) is the usual class of measurable functions from O into RN such that
φl ∈ L∞(O;R) for l = 1, . . . , N , which is a Banach Space when equipped with
the norm

‖φ‖L∞ := sup
l≤N

‖φl‖L∞(O;R).

• C(X ;Y) is the space of continuous functions from X into Y .
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• Wm,p(O;R) for 1 ≤ p < ∞ is the sub-class of L p(O,R) which has all weak
derivatives up to orderm ∈ N also of class L p(O,R). This is a Banach space with
norm

‖φ‖p
Wm,p(O,R)

:=
∑

|α|≤m

‖Dαφ‖p
L p(O;R)

where Dα is the corresponding weak derivative operator. In the case p = 2,
Wm,2(U ,R) is a Hilbert Space with inner product

〈φ,ψ〉Wm,2(O;R) :=
∑

|α|≤m

〈Dαφ, Dαψ〉L2(O;R).

• Wm,∞(O;R) for m ∈ N is the sub-class of L∞(O,R) which has all weak deriva-
tives up to order m ∈ N also of class L∞(O,R). This is a Banach space with
norm

‖φ‖Wm,∞(O,R) := sup
|α|≤m

‖Dαφ‖L∞(O;RN ).

• Wm,p(O;RN ) for 1 ≤ p < ∞ is the sub-class of L p(O,RN ) which has all weak
derivatives up to order m ∈ N also of class L p(O,RN ). This is a Banach space
with norm

‖φ‖p
Wm,p(O,RN )

:=
N∑
l=1

‖φl‖p
Wm,p(O;R)

.

In the case p = 2 the space Wm,2(O,RN ) is Hilbertian with inner product

〈φ,ψ〉Wm,2(O;RN ) :=
N∑
l=1

〈φl , ψ l〉Wm,2(O;R).

• Wm,∞(O;RN ) is the sub-class of L∞(O,RN ) which has all weak derivatives up
to order m ∈ N also of class L∞(O,RN ). This is a Banach space with norm

‖φ‖Wm,∞(O,RN ) := sup
l≤N

‖φl‖Wm,∞(O;R).

• L (Y;Z) is the space of bounded linear operators from Y to Z . This is a Banach
Space when equipped with the norm

‖F‖L (Y;Z) = sup
‖y‖Y=1

‖Fy‖Z .

It is the dual space Y∗ when Z = R, with operator norm ‖·‖Y∗ .
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• L 2(U;H) is the space of Hilbert-Schmidt operators from U to H, defined as the
elements F ∈ L (U;H) such that for some basis (ei ) of U ,

∞∑
i=1

‖Fei‖2H < ∞.

This is a Hilbert space with inner product

〈F,G〉L 2(U;H) =
∞∑
i=1

〈Fei ,Gei 〉H

which is independent of the choice of basis.

2.1 Stochastic framework

We work with a fixed filtered probability space (�,F , (Ft ),P) satisfying the usual
conditions of completeness and right continuity. We takeW to be a cylindrical Brow-
nian Motion over some Hilbert Space U with orthonormal basis (ei ). Recall ([44],
Definition 3.2.36) that W admits the representation Wt = ∑∞

i=1 eiW
i
t as a limit in

L2(�;U′) whereby the (Wi ) are a collection of i.i.d. standard real valued Brownian
Motions and U′ is an enlargement of the Hilbert Space U such that the embedding
J : U → U′ is Hilbert-Schmidt andW is a J J ∗-cylindrical Brownian Motion over U′.
Given a process F : [0, T ] × � → L 2(U;H ) progressively measurable and such
that F ∈ L2

(
� × [0, T ];L 2(U;H )

)
, for any 0 ≤ t ≤ T we define the stochastic

integral

∫ t

0
FsdWs :=

∞∑
i=1

∫ t

0
Fs(ei )dW

i
s

where the infinite sum is taken in L2(�;H ).We can extend this notion to processes F
which are such that F(ω) ∈ L2

([0, T ];L 2(U;H )
)
for P−a.e. ω via the traditional

localisation procedure. In this case the stochastic integral is a local martingale inH .1

3 H-Valued solutions

In this section we state and prove our existence, uniqueness and maximality results
for an SPDE (1.1) satisfying the first set of assumptions. Throughout we will use c to
be a generic constant which can change from line to line.

1 A complete, direct construction of this integral, a treatment of its properties and the fundamentals of
stochastic calculus in infinite dimensions can be found in [50] Sect. 2. Properties that we shall make
frequent use of are the Burkholder-Davis-Gundy ([12] Theorem 4.36), the energy identity Proposition 6.5
stated in the appendix, and the passage of a bounded linear operator through the stochastic integral ([50]
Lemma 2.4.1).
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3.1 Assumptions

We state the assumptions for a triplet of separable, continuously embedded Hilbert
Spaces

V ↪→ H ↪→ U

and ask that there is a continuous bilinear form 〈·, ·〉U×V : U × V → R such that for
φ ∈ H and ψ ∈ V ,

〈φ,ψ〉U×V = 〈φ,ψ〉H . (3.1)

The operators A,G are such that for any T > 0, A : [0, T ] × V → U ,G : [0, T ] ×
V → L 2(U; H) are measurable. We assume that V is dense in H which is dense in
U .

Assumption 3.1 For a system (an) of elements of V , define the spaces Vn :=
span {a1, . . . , an} and Pn as the orthogonal projection to Vn in U , Pn : U → Vn .
Then:

1. There exists some constant c independent of n such that for all φ ∈ H ,

‖Pnφ‖2H ≤ c‖φ‖2H . (3.2)

2. There exists a real valued sequence (μn) with μn → ∞ such that for any φ ∈ H ,

‖(I − Pn)φ‖U ≤ 1

μn
‖φ‖H (3.3)

where I represents the identity operator in U .

Remark 3.2 The property (3.2) would be immediate for the U norm (and c = 1) by
definition of Pn as an orthogonal projection in U . This does not necessarily translate
to the H norm so it is a required assumption. We rely on this property when showing
the uniform boundedness of the Galerkin Equations (Proposition 3.21) as the bounds
we produce are dependent on the H norm of their initial conditions.

Remark 3.3 As well as the density of V in H , the purpose of (3.3) is to give us a rate of
approximation of elements of H by those in V for theU norm. This will be necessary
in showing the convergence of the Galerkin System (Theorems 3.24, 3.28).

We shall use general notation ct to represent a function c· : [0,∞) → R bounded
on [0, T ] for any T > 0, evaluated at the time t . Moreover we define functions K , K̃
relative to some non-negative constants p, p̃, q, q̃ . We use a generic notation to define
the functions K : U → R, K : U ×U → R, K̃ : H → R and K̃ : H × H → R by

K (φ) := 1 + ‖φ‖p
U ,

K (φ,ψ) := 1 + ‖φ‖p
U + ‖ψ‖qU ,

K̃ (φ) := K (φ) + ‖φ‖ p̃
H ,
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K̃ (φ,ψ) := K (φ,ψ) + ‖φ‖ p̃
H + ‖ψ‖q̃H

In the case of K̃ , when p̃, q̃ = 2 then we shall denote the general K̃ by K̃2. In this case
no further assumptions aremade on the p, q. That is, K̃2 has the general representation

K̃2(φ,ψ) = K (φ,ψ) + ‖φ‖2H + ‖ψ‖2H (3.4)

and similarly as a function of one variable.
We state the subsequent assumptions for arbitrary elements φ,ψ ∈ V , φn ∈ Vn ,

η ∈ H and t ∈ [0,∞), and a fixed κ > 0. Understanding G as an operator G :
[0,∞) × V × U → H , we introduce the notation Gi (·, ·) := G(·, ·, ei ).
Assumption 3.4

‖A(t,φ)‖2U +
∞∑
i=1

‖Gi (t,φ)‖2H ≤ ct K (φ)
[
1 + ‖φ‖2V

]
, (3.5)

‖A(t,φ) − A(t,ψ)‖2U ≤ ct
[
K (φ,ψ) + ‖φ‖p

V + ‖ψ‖qV
] ‖φ − ψ‖2V , (3.6)

∞∑
i=1

‖Gi (t,φ) − Gi (t,ψ)‖2U ≤ ct K (φ,ψ)‖φ − ψ‖2H . (3.7)

Assumption 3.5

2〈PnA(t,φn),φn〉H +
∞∑
i=1

‖PnGi (t,φn)‖2H ≤ ct K̃2(φ
n)
[
1 + ‖φn‖2H

]
− κ‖φn‖2V ,

(3.8)
∞∑
i=1

〈PnGi (t,φn),φn〉2H ≤ ct K̃2(φ
n)
[
1 + ‖φn‖4H

]
. (3.9)

Assumption 3.6

2〈A(t,φ) − A(t,ψ),φ − ψ〉U +
∞∑
i=1

‖Gi (t,φ) − Gi (t,ψ)‖2U

≤ ct K̃2(φ,ψ)‖φ − ψ‖2U − κ‖φ − ψ‖2H ,

(3.10)
∞∑
i=1

〈Gi (t,φ) − Gi (t,ψ),φ − ψ〉2U ≤ ct K̃2(φ,ψ)‖φ − ψ‖4U . (3.11)

Assumption 3.7

2〈A(t,φ),φ〉U +
∞∑
i=1

‖Gi (t,φ)‖2U ≤ ct K (φ)
[
1 + ‖φ‖2H

]
, (3.12)
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∞∑
i=1

〈Gi (t,φ),φ〉2U ≤ ct K (φ)
[
1 + ‖φ‖4H

]
. (3.13)

Assumption 3.8

〈A(t, φ) − A(t, ψ), η〉U ≤ ct (1 + ‖η‖H ) [K (φ,ψ) + ‖φ‖V + ‖ψ‖V ] ‖φ − ψ‖H .

(3.14)

We now briefly address the purpose of these assumptions.

• Assumption 3.4 provides the growth and local Lipschitz type constraints, which
ensure that the integrals in (3.15) are well defined and that solutions to the Galerkin
Equations (3.18) exist. The growth restriction (3.5) also facilitates the convergence
of the Galerkin Approximations by controlling the difference of terms with their
finite dimensional projections (Proposition 3.24, Theorem 3.28), whilst we use
(3.7) to show that the approximating sequence of stochastic integrals converge to
the appropriate limit (Theorem 3.28).

• Assumption 3.5 contains a coercivity type constraint and facilitates uniformbound-
edness of the solutions of the Galerkin Equations (Proposition 3.21).

• Assumption 3.6 is a monotonicity requirement, necessary for the Cauchy Property
of theGalerkin Approximations (Proposition 3.24) and the uniqueness of solutions
(Theorem 3.29).

• Assumption 3.7 is used to show the uniform rate of convergence of the Galerkin
Approximations to their initial conditions (Theorem 3.25).

• Assumption 3.8 is used to show the convergence of the time integrals in the
Galerkin Approximations to the appropriate limit (Theorem 3.28).

3.2 Definitions andmain results

With these assumptions in place we state the relevant definitions and results.

Definition 3.9 (H -valued local strong solution) Let �0 : � → H beF0-measurable.
A pair (�, τ ) where τ is a P-a.s. positive stopping time and � is a process such that
for P − a.e. ω, � ·(ω) ∈ C ([0, T ]; H) and � ·(ω)1·≤τ(ω) ∈ L2 ([0, T ]; V ) for all
T > 0 with � ·1·≤τ progressively measurable in V , is said to be an H -valued local
strong solution of the Eq. (1.1) if the identity

� t = �0 +
∫ t∧τ

0
A(s,�s)ds +

∫ t∧τ

0
G(s,�s)dWs (3.15)

holds P-a.s. in U for all t ≥ 0.2

Remark 3.10 If (�, τ ) is an H -valued local strong solution of the Eq. (1.1), then
� · = � ·∧τ due to the identity (3.15).

2 A detailed justification that the terms in this definition are well defined is given in [27] Sects. 2.2 and 2.4,
referring to (3.5).
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Remark 3.11 The progressive measurability condition on � ·1·≤τ may look a little
suspect as �0 itself may only belong to H and not V making it impossible for � ·1·≤τ

to be even adapted in V . We are mildly abusing notation here; what we really ask is
that there exists a process � which is progressively measurable in V and such that
�· = � ·1·≤τ almost surely over the product space � × [0,∞) with product measure
P × λ for λ the Lebesgue measure on [0,∞).

Definition 3.12 (H -valued maximal strong solution) A pair (�,) such that there
exists a sequence of stopping times (θ j ) which are P-a.s. monotone increasing and
convergent to , whereby (� ·∧θ j , θ j ) is an H -valued local strong solution of the Eq.
(1.1) for each j , is said to be an H -valued maximal strong solution of the Eq. (1.1) if
for any other pair (�, �) with this property then  ≤ � P-a.s. implies  = � P-a.s..

Remark 3.13 We do not require to be finite in this definition, in which case we mean
that the sequence (θ j ) is monotone increasing and unbounded for such ω.

Definition 3.14 An H -valued maximal strong solution (�,) of the Eq. (1.1) is said
to be unique if for any other such solution (�, �), then  = � P-a.s. and

P ({ω ∈ � : � t (ω) = �t (ω) ∀t ∈ [0,)}) = 1.

The following is the main result of the section, and holds true if the assumptions of
Sect. 3.1 are met.

Theorem 3.15 For any given F0-measurable �0 : � → H, there exists a unique
H-valued maximal strong solution (�,) of the Eq. (1.1). Moreover at P − a.e. ω

for which (ω) < ∞, we have that

sup
r∈[0,(ω))

‖�r (ω)‖2H +
∫ (ω)

0
‖�r (ω)‖2V dr = ∞. (3.16)

Our method has already been discussed in the introduction and in the necessity of
each assumption in 3.1, though now we explicitly lay out the steps taken in proving
Theorem 3.15. The remainder of Sect. 3 follows the path portrayed here.
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Suppose that �0 ∈ L∞(�; H)

Consider a Galerkin Approximation and show that local solu-
tions of the finite dimensional equations exist up until first hitting

times taken in the norm of L∞([0, T ];U ) ∩ L2([0, T ]; H)

Demonstrate that these solutions are
uniformly bounded in the norm of

L2
(
�; L∞([0, T ]; H) ∩ L2([0, T ]; V )

)
up until the first hitting times

Show a Cauchy Property in the norm of
L2

(
�; L∞([0, T ];U ) ∩ L2([0, T ]; H)

)
up until the first hitting times

Prove a uniform rate of convergence of
the processes to their initial conditions

Apply the Convergence of Random
Cauchy Sequences lemma (Lemma 6.3)
to deduce the existence of a limiting pro-
cess and stopping time, which is shown
to be an H -valued local strong solution

Consider an arbitrary �0, reliev-
ing the L∞(�; H) constraint

Establish uniqueness of H -
valued local strong solutions

Verify the existence and uniqueness of H -valued max-
imal strong solutions for the bounded initial condi-
tion, and characterise the maximal time as in (3.16)

Partition the arbitrary �0 into countably many intervals within each
of which it is bounded, combining them to prove Theorem 3.15

3.3 The Galerkin system

For now we shall assume that

�0 ∈ L∞(�; H). (3.17)

We consider the Galerkin Equations

�n
t = �n

0 +
∫ t

0
PnA(s,�n

s )ds +
∫ t

0
PnG(s,�n

s )dWs (3.18)
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for the initial condition �n
0 := Pn�0 and PnG(ei , s, ·) := PnGi (s, ·). Note that from

(3.17), (3.2) and the embedding of H into U we have that

sup
n∈N

‖�n
0‖2L∞(�,H) < ∞, sup

n∈N
‖�n

0‖2L∞(�,U ) < ∞. (3.19)

Remark 3.16 We may consider the finite dimensional Vn as a Hilbert Space equipped
with any of the equivalent V , H ,U inner products.

Definition 3.17 A pair (�n, τ ) where τ is a P-a.s. positive stopping time and �n is
an adapted process in Vn such that for P − a.e. ω, �n· (ω) ∈ C ([0, T ]; Vn) for all
T > 0, is said to be a local strong solution of the Eq. (3.18) if the identity

�n
t = �n

0 +
∫ t∧τ

0
PnA(s,�n

s )ds +
∫ t∧τ

0
PnG(s,�n

s )dWs (3.20)

holds P-a.s. in Vn for all t ≥ 0.

A justification that this formulation makes sense is largely similar to that of Defi-
nition 3.9. Using that Pn is an orthogonal projection in U , then we have the bounds

∫ t∧τ(ω)

0
‖PnA

(
s,�n

s (ω)
)‖2Uds ≤

∫ t∧τ(ω)

0
‖A (

s,�n
s (ω)

)‖2Uds < ∞
∫ t∧τ(ω)

0

∞∑
i=1

‖PnGi
(
s,�n

s (ω)
)‖2Uds ≤

∫ t∧τ(ω)

0

∞∑
i=1

c‖Gi
(
s,�n

s (ω)
)‖2Hds < ∞

from which we are deferred to Definition 3.9. The continuity of the Pn in U ensures
that the measurability is preserved, so identity (3.20) makes sense. Note that in this
case, we do not need to pass to someP×λ almost everywhere equal process to satisfy
the progressivemeasurability. In looking to deduce the existence of such a solution, we
first consider a truncated version of the equation. For any fixed R > 0, we introduce
the function fR : [0,∞) → [0, 1] constructed such that

fR ∈ C∞ ([0,∞); [0, 1]) , fR(x) = 1 ∀x ∈ [0, R], fR(x) = 0 ∀x ∈ [2R,∞).

We consider now the equation

�
n,R
t = �

n,R
0 +

∫ t

0
fR

(
‖�n,R

s ‖2H
)
PnA(s,�n,R

s )ds

+
∫ t

0
fR

(
‖�n,R

s ‖2H
)
PnG(s,�n,R

s )dWs (3.21)

for �
n,R
0 := �n

0 which we use as an intermediary step to deduce the existence of
solutions as in Definition 3.17. Solutions of the truncated equation are defined in the
sense of Proposition 6.1 (See Appendix II), and indeed due to (3.17) and Assumption
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3.4 we can apply this proposition in the case of H := Vn , A := PnA, G := PnG to
deduce the existence of solutions to (3.21) for all n ∈ N, R > 0.

The motivation for considering (3.21) is to prove the existence of local strong
solutions to (3.18) by considering local intervals of existence on which the truncation
threshold isn’t reached. More than this, for any first hitting time in the fundamental
L∞([0, T ];U ) ∩ L2([0, T ]; H) norm, we show that a large enough truncation can be
chosen so that solutions to (3.18) exist up until the first hitting time. The local strong
solutions can then be controlled uniformly across ω on their time of existence, and
these times are intrinsic to the application of the Convergence of Random Cauchy
Sequences lemma (Lemma 6.3) which we use to justify the existence of an H -valued
local strong solution of the Eq. (1.1).

Lemma 3.18 For any t > 0, M > 1 and fixed n ∈ N, there exists an R > 0 such that
the following holds; letting �n,R be the solution of (3.21) and

τ
M,t
n,R (ω) := t ∧ inf

{
s ≥ 0 : sup

r∈[0,s]
‖�n,R

r (ω)‖2U +
∫ s

0
‖�n,R

r (ω)‖2Hdr

≥ M + ‖�n
0(ω)‖2U

}

then (�
n,R

·∧τ
M,t
n,R

, τ
M,t
n,R ) is a local strong solution of (3.18).

Proof See Appendix I.

Remark 3.19 For notational convenience we define �n· := �
n,R

·∧τ
M,t
n,R

and

τM,t
n (ω) := t ∧ inf

{
s ≥ 0 : sup

r∈[0,s]
‖�n

r (ω)‖2U +
∫ s

0
‖�n

r (ω)‖2Hdr ≥ M + ‖�n
0(ω)‖2U

}
.

(3.22)

Of course τ
M,t
n is nothing but τM,t

n,R , but we shall henceforth work with the local strong

solution (�n, τ
M,t
n ).

Remark 3.20 The stopping time τ
M,t
n is the first hitting time with respect to a norm

which is central to the arguments of the paper, alongside the analogous norm for the
smaller spaces V and H . As such for functions � ∈ L∞([S, T ];U )∩ L2([S, T ]; H),
� ∈ L∞([S, T ]; H) ∩ L2([S, T ]; V ) we define the norms

‖�‖2UH ,S,T : = sup
r∈[S,T ]

‖�r (ω)‖2U +
∫ T

S
‖�r (ω)‖2Hdr (3.23)

‖�‖2HV ,S,T : = sup
r∈[S,T ]

‖�r (ω)‖2H +
∫ T

S
‖�r (ω)‖2V dr (3.24)

making explicit the dependence on the times S, T . During commentary to express an
idea we may refer to these as the ’UH ’ and ’HV ’ norms respectively. In the case
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S = 0 we reduce the notation to

‖�‖2UH ,T : = ‖�‖2UH ,0,T

‖�‖2HV ,T : = ‖�‖2HV ,0,T .

We fix arbitrary t > 0 and M > 1 in the definition (3.22). The stopped process
�n

·∧τ
M,t
n

is a genuine square integrable semimartingale in Vn (where the stochastic

integral is a true square integrable martingale). Indeed the stopped process is bounded
uniformly in s and P − a.e. ω, and satisfies the bound

‖�n(ω)‖2
UH ,τ

M,t
n (ω)

≤ M + ‖�0‖2L∞(�,U ) (3.25)

for every n, P − a.e. ω, or equivalently with the notation

�̃
n
· := �n· 1·≤τ

M,t
n

(3.26)

that
‖�̃n

(ω)‖2UH ,T ≤ M + ‖�0‖2L∞(�,U ) (3.27)

for any T > 0. The significance of working with an initial condition (3.17) is high-
lighted by the bounds (3.25), (3.27) being constant. The passage to a general initial
condition will take place in Sect. 3.7. Recalling the definitions of K , K̃2 as in (3.4),

K (φ) := 1 + ‖φ‖p
U , K̃2(φ) = K (φ) + ‖φ‖2H ,

then (3.27) implies the existence of a constant c dependent on�0, M, t but independent
of n, ω such that

sup
r∈[0,t]

K (�̃
n
r (ω)) ≤ c, K̃2(�̃

n
r ) ≤ c

(
1 + ‖�̃n

r ‖2H
)

. (3.28)

3.4 Existencemethod for a bounded initial condition

We now proceed to formalise and demonstrate the steps laid out in the introduction
to prove the existence of H -valued local strong solutions, starting with the uniform
boundedness property. The significance of the result is that we work up to first hit-
ting times giving us a trivial control (3.25) in the UH norm P-a.s., but in fact with
Assumption 3.5 we can generate a control in expectation for the finer HV norm. Such
a property is necessary in proving the Cauchy attribute for the UH norm to come in
Proposition 3.24, where the initial idea is that we must take the limit in m → ∞ to
nullify the term

∑∞
i=1‖[I − Pm]Gi (s, �̃m

s )‖2U . From (3.3) this is bounded by

∞∑
i=1

1

μ2
m

‖Gi (s, �̃m
s )‖2H
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and so we would be happy if there was some workable bound on
∑∞

i=1‖Gi (s, �̃m
s )‖2H

uniform in m. As elucidated in the introduction this is where our method must depart
from that of Glatt-Holtz and Ziane in [24], as heuristically in their case

∞∑
i=1

‖Gi (s, �̃m
s )‖2H ≤ c

(
‖�̃m

s ‖2H + 1
)

and the necessary control arrives courtesy of (3.27). For applications to a gradient-
dependent noise and thus working with the assumption (3.5) instead, we must have
control in the V norm hence the need for Proposition 3.21. Even where not directly
instructed by application, this facilitates some more leeway in the assumptions which
we hope can be appreciated in other employment.

Proposition 3.21 There exists a constant C dependent on M, t but independent of n
such that for the local strong solution (�n, τ

M,t
n ) of (3.18),

E‖�n‖2
HV ,τ

M,t
n

≤ C
[
E
(
‖�n

0‖2H
)

+ 1
]
. (3.29)

Proof See Appendix I.

Remark 3.22 In particular through (3.2) and (3.19) we have that

E‖�n‖2
HV ,τ

M,t
n

≤ C . (3.30)

In order to show the aforementioned Cauchy property we use an intermediary
lemma, combining our assumptions to give precisely what we need in our energy
estimate for the difference of two solutions of (3.18).

Lemma 3.23 With notation as in Sect. 3.1, for arbitrary m < n, φ ∈ Vn,ψ ∈ Vm,
define

A = 2〈PnA(s,φ) − PmA(s,ψ),φ − ψ〉U +
∞∑
i=1

‖PnGi (s,φ) − PmGi (s,ψ)‖2U

B =
∞∑
i=1

〈PnGi (s,φ) − PmGi (s,ψ),φ − ψ〉2U .

Then for a sequence (λm) with λm → ∞, we have that

A ≤ cs K̃2(φ,ψ)‖φ − ψ‖2U − κ

2
‖φ − ψ‖2H + cs

λm
K (φ,ψ)

[
1 + ‖φ‖2V + ‖ψ‖2V

]
;

B ≤ cs K̃2(φ,ψ)‖φ − ψ‖4U + cs
λm

K (φ,ψ)
[
1 + ‖ψ‖2V

]
.

Proof See Appendix I.
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We are now all set to prove the Cauchy property, as required to apply the Con-
vergence of Random Cauchy Sequences lemma (Lemma 6.3) in order to deduce the
existence of a limiting process and stopping time. The idea behind showing the Cauchy
property (3.32) is that for each given j ∈ N, there exists an n j such that for all k ≥ n j ,

E‖�k − �n j ‖2
UH ,τ

M,t
n j ∧τ

M,t
k

≤ 2−2 j .

Thus by defining the sets

� j :=
{
ω ∈ � : ‖�n j+1(ω) − �n j (ω)‖2

UH ,τ
M,t
n j (ω)∧τ

M,t
n j+1 (ω)

≤ 2−( j+2)
}

we can justify that

P

⎛
⎝ ∞⋂

K=1

∞⋃
j=K

�C
j

⎞
⎠ = 0

from Borel-Cantelli and the Chebyshev Inequality. The complement set is thus of
full measure and the desired pointwise Cauchy property holds on that set. In fact we
would work with a slightly different set of first hitting times, but this is the concept
and motivation behind the following theorem.

Proposition 3.24 For any m, n ∈ N with m < n, define the process �m,n by

�m,n
r (ω) := �n

r (ω) − �m
r (ω).

Then for the sequence (λ j ) proposed in Lemma 3.23 and m sufficiently large such that
λm > 1, there exists a constant C dependent on M, t but independent of m, n such
that

E‖�m,n‖2
UH ,τ

M,t
m ∧τ

M,t
n

≤ C

[
E‖�m,n

0 ‖2U + 1√
λm

]
(3.31)

and in particular,

lim
m→∞ sup

n≥m

[
E‖�m,n‖2

UH ,τ
M,t
m ∧τ

M,t
n

]
= 0. (3.32)

Proof See Appendix I.

The following proposition justifies the second property required in invoking the
Convergence of Random Cauchy Sequences lemma (Lemma 6.3), which is a uniform
rate of convergence of the (�n) to their initial conditions. The idea is for none of the
�n to reach the threshold of the first hitting time τ

M,t
n in an arbitrarily small time.

Out of this we can construct a limiting stopping time which is less than at least a
subsequence of the (τ

M,t
n ) and is ensured to be strictly positive P-a.s..
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Proposition 3.25 We have that

lim
S→0

sup
n∈N

E

[
‖�n‖2

UH ,τ
M,t
n ∧S

− ‖�n
0‖2U

]
= 0 (3.33)

and in particular,

lim
S→0

sup
n∈N

P

({
‖�n‖2

UH ,τ
M,t
n ∧S

≥ M − 1 + ‖�n
0‖2U

})
= 0. (3.34)

Proof See Appendix I.

We are now in a position to apply the Convergence of Random Cauchy Sequences
lemma (Lemma 6.3) and would like to put this limiting pair forward as a candidate
solution. The convergence is deduced only in the UH norm, though, so we need a
little additional work to justify the HV regularity and progressive measurability in V .
This is the content of the following theorem.

Theorem 3.26 There exists a stopping time τ
M,t∞ , a subsequence (�nl ) and a process

� · = � ·∧τ
M,t∞ whereby � ·1·≤τ

M,t∞ is progressively measurable in V and such that:

• P

({
0 < τ

M,t∞ ≤ τ
M,t
nl

)}
= 1;

• For P − a.e. ω, � ·(ω)1·≤τ
M,t∞ (ω)

∈ L2 ([0, T ]; V ) for all T > 0;

• ForP−a.e. ω,�nl (ω) → �(ω) in L∞
(
[0, τM,t∞ (ω)];U

)
∩L2

(
[0, τM,t∞ (ω)]; H

)
,

i.e.
‖�nl (ω) − �(ω)‖2

UH ,τ
M,t∞ (ω)

−→ 0; (3.35)

• �nl → � holds in the sense that

E‖�nl − �‖2
UH ,τ

M,t∞
−→ 0. (3.36)

Proof From Propositions 3.24 and 3.25, we can directly apply the Convergence of
Random Cauchy Sequences lemma (Lemma 6.3) to the sequence of stopped pro-
cesses (�n

·∧τ
M,t
n

) and the spaces H1 = H , H2 = U . This guarantees us the

existence of our stopping time, subsequence and limit process satisfying the first
and third bullet points. It remains to show the progressive measurability, the regu-
larity specified by the second bullet point, and that the convergence (3.36) holds.
We immediately note that as τ

M,t∞ ≤ τ
M,t
nl for every nl P-a.s. we need not make

any reference to the fact that the processes �nl are stopped at τ
M,t
nl . Due to this

property, (3.32) implies that the sequence (�
nl· 1·≤τ

M,t∞ ) is genuinely Cauchy in

L2
[
�; L∞ ([0, T ];U ) ∩ L2 ([0, T ]; H)

]
so it admits a limit process. The limit (3.35)

informs us that the sequence converges P-a.s. to �1·≤τ
M,t∞ , and this must agree with

the limit in L2
[
�; L∞ ([0, T ];U ) ∩ L2 ([0, T ]; H)

]
which provides (3.36). It should

be noted that we could not jump straight to (3.36) for the whole sequence (�n) as we
are only guaranteed that τM,t∞ ≤ τ

M,t
nl P-a.s. for the subsequence.
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We look to show the second bullet point in Theorem 3.26. Proposition 3.21 asserts
that the sequence of truncated processes (�

nl· 1·∧τ
M,t∞ ) are uniformly bounded in

L2
(
�; L2 ([0, T ]; V )

)
. Moreover we can extract a weakly convergent subsequence

(�
n j

·∧τ
M,t∞

) in this space, with limit process (which we shall call �̂) respecting the same

bound.Thegoal is to show that �̂ · = � ·1·∧τ
M,t∞ as an element of L2 ([0, T ]; V ),P-a.s..

To this endwenote that the subsequence (�
n j· 1·∧τ

M,t∞ )which isweakly convergent to �̂

in L2
[
�; L2 ([0, T ]; V )

]
is also weakly convergent to �̂ in L2

[
�; L2 ([0, T ]; H)

]
from the continuous embedding of V into H . But we have already established the
strong convergence of (�

nl· 1·∧τ
M,t∞ ) to � ·1·∧τ

M,t∞ in this space [contained in (3.36)],
and hence the strong and therefore weak convergence of the further subsequence
(�

nl· 1·∧τ
M,t∞ ). By the uniqueness of limits in the weak topology we have succeeded in

our goal, so for P − a.e. ω, � ·(ω)1·∧τ
M,t∞ (ω)

∈ L2 ([0, T ]; V ).
It only remains to show that � ·1·≤τ

M,t∞ is progressively measurable in V . We use

an identical argument here, noting that as (�
nl· 1·≤τ

M,t∞ ) is a sequence of progressively

measurable processes in V , then for each fixed time T we have that each�
nl· 1·≤τ

M,t∞ is
measurable with respect to the product sigma algebraFT ×B([0, T ]) and can in fact be
considered as a uniformly bounded sequence in the space L2 (� × [0, T ]; V ) where
�×[0, T ] is equipped with the described product sigma algebra. Moreover obtaining
� ·1·≤τ

M,t∞ as a weak limit in this space demonstrates the progressive measurability.
The proof is concluded.

Remark 3.27 Just to be precise once more, in the progressive measurability argument
here we understand that the (�

nl· 1·≤τ
M,t∞ ) are identical to the genuinely progressively

measurable (�
nl· 1·≤τ

M,t∞ ) stipulated inRemark 3.11 in the normof L2 (� × [0, T ]; V ).
We then use the same identification for the limit.

Theorem 3.28 The pair (�, τ
M,t∞ ) specified in Theorem 3.26 is an H-valued local

strong solution of the Eq. (1.1) as defined in Definition 3.9.

Proof After Theorem 3.26 it only remains to show the identity (3.15) in U , and the
continuity in H . We look to first show the identity (3.15) and use this in conjunction
with Proposition 6.5 to deduce the continuity. It is sufficient to demonstrate that

〈�s∧τ
M,t∞ , φ〉U = 〈�0, φ〉U+

〈∫ s∧τ
M,t∞

0
A(r ,�r )dr , φ

〉

U

+
〈∫ s∧τ

M,t∞

0
G(r ,�r )dWr , φ

〉

U

(3.37)

holds P-a.s. for all s ≥ 0 and φ ∈ H (from the density of H in U ). To this end we
consider the limit limnl→∞ �

nl
s∧τ

M,t∞
[which in U is of course �s∧τ

M,t∞ from (3.35)]

with the idea to show that

lim
nl→∞〈�nl

0 , φ〉U = 〈�0, φ〉U (3.38)
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lim
nl→∞

〈∫ s∧τ
M,t∞

0
PnlA(r ,�nl

r )dr , φ

〉

U

=
〈∫ s∧τ

M,t∞

0
A(r ,�r )dr , φ

〉

U

(3.39)

lim
nl→∞

〈∫ s∧τ
M,t∞

0
PnlG(r ,�nl

r )dWr , φ

〉

U

=
〈∫ s∧τ

M,t∞

0
G(r ,�r )dWr , φ

〉

U

.(3.40)

P-a.s. for all φ ∈ H (or at least for a further subsequence). Firstly from (3.3) we have
that

‖�nl
0 − �0‖U = ‖(I − Pnl )�0‖U ≤ 1

μnl
‖�0‖H

so in particular (3.38) holds. To show (3.39), we consider the term

J1 := E

∣∣∣∣∣
〈∫ s∧τ

M,t∞

0
PnlA(r ,�nl

r )dr , φ

〉

U

−
〈∫ s∧τ

M,t∞

0
A(r ,�r )dr , φ

〉

U

∣∣∣∣∣

and have that

J1 ≤ E

∫ s∧τ
M,t∞

0

∣∣〈PnlA(r , �nl
r ) − A(r , �r ), φ〉U

∣∣ dr

≤ E

∫ s∧τ
M,t∞

0

∣∣〈Pnl

[A(r , �nl
r ) − A(r , �r )

]
, φ〉U

∣∣ + |〈(I − Pnl )A(r , �r ), φ〉U |dr

≤ E

∫ s∧τ
M,t∞

0
cr (1 + ‖Pnl φ‖H )

[
K (�nl

r , �r ) + ‖�nl
r ‖V + ‖�r‖V

] ‖�nl
r − �r‖Hdr

+E

∫ s∧τ
M,t∞

0

1

μnl
‖φ‖H‖A(r , �r )‖Udr

≤ c(1 + ‖φ‖H )

(
E

∫ s∧τ
M,t∞

0
K (�nl

r , �r ) + ‖�nl
r ‖2V + ‖�r‖2V dr

) 1
2

·
(
E

∫ s∧τ
M,t∞

0
‖�nl

r − �r‖2Hdr
) 1

2

+ ‖φ‖H
μnl

E

∫ s∧τ
M,t∞

0
cr K (�r ) [1 + ‖�r‖V ] dr

≤ c(1 + ‖φ‖H )

(
E

∫ s∧τ
M,t∞

0
K (�nl

r , �r ) + ‖�nl
r ‖2V + ‖�r‖2V dr

) 1
2

·
(
E

∫ s∧τ
M,t∞

0
‖�nl

r − �r‖2Hdr
) 1

2

+ c‖φ‖H
μnl

(
E

∫ s∧τ
M,t∞

0
K (�r )

[
1 + ‖�r‖2V

]
dr

) 1
2

having employed the assumptions (3.2), (3.3), (3.5), (3.14) and usingHölder’s Inequal-
ity on the product space. It is swiftly noted that � retains the bounds (3.28) and (3.30)
up until τM,t∞ based on the convergences (3.35), (3.36) in these spaces, so substituting

123



Stoch PDE: Anal Comp (2024) 12:1201–1264 1221

into the above we arrive at

J1 ≤ c

(
E

∫ s∧τ
M,t∞

0
‖�nl

r − �r‖2Hdr
) 1

2

+ c

μnl

at which point taking the limit nl → ∞ with (3.36) in mind sends this to zero. This is
of course not quite the statement (3.39) that we wished to prove as we have taken the
limit in expectation, but we can extract a new subsequence �m j along which (3.39)
holds. Let’s continue to work with this subsequence and turn our attention to (3.40),
where we consider

J2 := E

∥∥∥∥∥
∫ s∧τ

M,t∞

0
Pm jG(r ,�

m j
r )dWr −

∫ s∧τ
M,t∞

0
G(r ,�r )dWr

∥∥∥∥∥
2

U

and have that

J2 = E

∫ s∧τ
M,t∞

0

∞∑
i=1

‖Pm jGi (r , �
m j
r ) − Gi (r , �r )‖2Udr

≤ 2E
∫ s∧τ

M,t∞

0

∞∑
i=1

(∥∥∥Pm j

[
Gi (r , �

m j
r ) − Gi (r , �r )

]∥∥∥2
U

+ ‖(I − Pm j )Gi (r , �r )‖2U
)
dr

≤ 2E
∫ s∧τ

M,t∞

0
cr K (�

m j
r , �r )‖�m j

r − �r‖2Hdr + 2E
∫ s∧τ

M,t∞

0

c

μ2
m j

∞∑
i=1

‖Gi (r , �r )‖2Hdr

≤ cE
∫ s∧τ

M,t∞

0
‖�m j

r − �r‖2Hdr + c

μ2
m j

E

∫ s∧τ
M,t∞

0
1 + ‖�r‖2V dr

similar to controlling J1 just now with the assumptions (3.3), (3.5), (3.7) and applying
the Itô Isometry. We conclude here in the same way as (3.39), showing in fact a
stronger convergence which implies (3.40), ultimately deducing the existence of a
further subsequence along which (3.38), (3.39) and (3.40) all hold. The identity (3.15)
thus holds in U , and it is clear that we can apply Proposition 6.5 to deduce that
� ·∧τ

M,t∞ ∈ C([0, T ]; H), concluding the proof.

3.5 Uniqueness

Having shown the existence of H -valued local strong solutions for a bounded initial
condition, we move on now to uniqueness but show this for any given initial condition
�0 (relieving the L∞(�; H) constraint).

Theorem 3.29 Suppose that (�1, τ1) and (�2, τ2) are two H-valued local strong
solutions of the Eq. (1.1) for a given F0-measurable �0 : � → H, and introduce the
notation

� := �1 − �2, τ := τ1 ∧ τ2.
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Then
E‖�‖2UH ,τ = 0 (3.41)

and in particular

P
({

ω ∈ � : �1
t∧τ(ω)(ω) = �2

t∧τ(ω)(ω) ∀t ∈ [0,∞)
})

= 1. (3.42)

Proof We follow a similar procedure to that used in Proposition 3.24. To this end we
appreciate that the difference process satisfies the identity

�t∧τ =
∫ t∧τ

0
A(s,�1

s ) − A(s,�2
s )ds +

∫ t∧τ

0
G(s,�1

s ) − G(s,�2
s )dWs

for all t ≥ 0, P-a.s. in U . Through the Itô Formula3 we see that

‖�t∧τ‖2U = 2
∫ t∧τ

0
〈A(s,�1

s ) − A(s,�2
s ),�s〉Uds

+
∫ t∧τ

0

∞∑
i=1

‖Gi (s,�1
s ) − Gi (s,�2

s )‖2Uds

+ 2
∫ t∧τ

0
〈G(s,�1

s ) − G(s,�2
s ),�s〉UdWs .

to which we rapidly go through the steps of Proposition 3.24, introducing analogous
notation

�̃
1
· = �1· 1·≤τ , �̃

2
· = �2· 1·≤τ , �̃· = �·1·≤τ

fixing any time t > 0 and stopping times 0 ≤ θ j < θk ≤ t , and applying (3.10) to
deduce that

‖�̃r‖2U + κ

∫ r

θ j

‖�̃‖2Hds ≤ ‖�̃θ j ‖2U

+
∫ r

θ j

cs K̃2(�̃
1
s , �̃

2
s )‖�̃s‖2U + 2

∫ r

θ j

〈G(s, �̃
1
s ) − G(s, �̃

2
s ), �̃s〉UdWs

for all θ j ≤ r ≤ θk P-a.s.. We need to be slightly careful before employing the
same procedure, as we no longer have any assumptions towards integrability over the
probability space (owing to the fact that we are not restricted to an interval on which
bounds such as (3.27) necessarily hold). In order to continue with the same idea we
have to introduce a further sequence of stopping times (γR),

γ
j
R(ω) := R ∧ inf

{
s ≥ 0 : sup

r∈[0,s]
‖�̃ j

r (ω)‖2U +
∫ s

0
‖�̃ j

r (ω)‖2H ≥ R

}

3 To rigorously justify this application,we in fact need to take truncation byγR (introduced shortly hereafter)
first, so that all terms are square integrable in time. Of course we arrive at (3.43) all the same.
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γR := γ 1
R ∧ γ 2

R

with corresponding notation

�̃
1,R
· = �̃

1
· 1·≤γR , �̃

2,R
· = �̃

2
· 1·≤γR , �̃

R
· = �̃·1·≤γR .

Multiplying our inequality by the indicator function 1·≤γR , it is clear that

‖�̃R
r ‖2U + κ

∫ r

θ j

‖�̃R
s ‖2Hds ≤ ‖�̃R

θ j
‖2U

+
∫ r

θ j

cs K̃2(�̃
1,R
s , �̃

2,R
s )‖�̃R

s ‖2U

+ 2
∫ r

θ j

〈G(s, �̃
1,R
s ) − G(s, �̃

2,R
s ), �̃

R
s 〉UdWs (3.43)

holds for every R > 0. The boundedness of the processes �̃
1,R

, �̃
2,R

in conjunction
with the assumption (3.11) affords us the right to take expectation and apply the BDG
Inequality once we take the supremum, landing us at the inequality

E‖�̃R‖2UH ,θ j ,θk
≤ cE‖�̃R

θ j
‖2U

+ cE
∫ θk

θ j

cs K̃2(�̃
1,R
s , �̃

2,R
s )‖�̃R

s ‖2U

+ 2cE

(∫ θk

θ j

cs K̃2(�̃
1,R
s , �̃

2,R
s )‖�̃R

s ‖4Uds
) 1

2

.

having scaled again to remove the κ and use theUH norm.We had precisely the same
terms in the proof of Proposition 3.24, so following the same steps used to reach (6.11)
we see that for some constant ĉ,

E‖�̃R‖2UH ,θ j ,θk
≤ ĉE

(
‖�̃R

θ j
‖2U +

∫ θk

θ j

K̃2(�̃
1,R
s , �̃

2,R
s )‖�̃R

s ‖2Uds
)

. (3.44)

We again apply the Stochastic Grönwall lemma (Lemma 6.2) for the processes

φ = ‖�̃1,R − �̃
2,R‖2U , ψ = ‖�̃1,R − �̃

2,R‖2H , η = K̃2(�̃
1,R

, �̃
2,R

)

and critically for c̃ = 0 to see that

E‖�̃R‖2UH ,θ j ,θk
≤ CE‖�̃R

0 ‖2U = 0.
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We can drop the dependence on γR by observing that the sequence (γR) tends to
infinity P-a.s. as R → ∞. Moreover the sequence of random variables

(
‖�̃R‖2UH ,θ j ,θk

)

is monotone increasing in R, and convergent to ‖�̃‖2UH ,θ j ,θk
P-a.s.. Thus we may

apply the monotone convergence theorem to this sequence of random variables to see
that

E‖�̃‖2UH ,θ j ,θk
= lim

R→∞E‖�̃R‖2UH ,θ j ,θk

= 0.

This is equivalent to the statement (3.41), which implies (3.42) by noting that

E sup
r∈[0,t]

‖�1
r∧τ − �2

r∧τ‖2U = 0.

3.6 Maximality for the bounded initial condition

In this subsection we show the existence and uniqueness of an H -valued maximal
strong solution for the bounded initial condition (3.17) as defined in Definitions 3.12,
3.14. Moreover we prove Theorem 3.15 for this bounded initial condition, and pass to
the unbounded case in Sect. 3.7.

To this end we define X as the set of all stopping times σ such that there exists a
process� for which (�, σ ) is an H -valued local strong solution. We also defineY as
the set of all stopping times given by theP-a.s. limit of monotone increasing elements
of X . We prove the existence of a maximal solution by showing that the maximum
of any two elements of X is again inX , a property which we use for the sequences
in X to bound sequences in Y which then enables an application of Zorn’s Lemma
to deduce a maximal element.

Remark 3.30 For the bounded initial condition (3.17), the set X is non-empty from
Theorem 3.28.

Lemma 3.31 For any σ1, σ2 ∈ X we have that σ1 ∨ σ2 ∈ X .

Proof It is clear that σ1 ∨ σ2 is again a P-a.s. positive stopping time, so we must
simply show the existence of a � such that (�, σ1 ∨ σ2) is an H -valued local strong
solution. By definition of X we have that (�1, σ1) and (�2, σ2) are such solutions
for some processes �1,�2. From the uniqueness result Theorem 3.29 we have that
�1·∧σ1∧σ2

and �2·∧σ1∧σ2
are indistinguishable, which ensures that the definition of �

at P − a.e. ω by

�(ω) := �k(ω) for σ1(ω) ∨ σ2(ω) = σk(ω)
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is consistent, or more specifically

�(ω) :=

⎧⎪⎨
⎪⎩

�1(ω) = �2(ω) if σ1(ω) = σ2(ω)

�1(ω) if σ2(ω) < σ1(ω)

�2(ω) if σ1(ω) < σ2(ω).

It is clear that� satisfies the pathwise properties required inDefinition 3.9. Progressive
measurability follows too as the sigma algebra generated by � is contained in the
maximum of those generated by �1 and �2, which up until any T is contained in
FT × B ([0, T ]) by progressive measurability of the processes �1, �2 and standard
properties of the sigma algebra.

Theorem 3.32 For the bounded initial condition (3.17), there exists an H-valued max-
imal strong solution of the Eq. (1.1).

Proof We wish to show that there exists a  ∈ Y such that for any � ∈ Y ,  ≤ �

P-a.s. implies  = � P-a.s.. This will be sufficient to conclude the proof, as for 

given by the limit of (σ j ) with corresponding solutions (� j , σ j ), our process � can
be consistently defined on [0,) through

�(ω) := � j (ω) on [0, σ j (ω)] (3.45)

in the same manner as in Lemma 3.31. We apply Zorn’s Lemma on Y , which we
understand to be a partially ordered set for the relation ′ ≤′ defined by �1 ≤ �2 if and
only if for P − a.e. ω, �1(ω) ≤ �2(ω). The result would then follow from Zorn’s
Lemma if we can prove that for every sequence (�k) in Y with �1 ≤ · · · ≤ �k ≤
�k+1 ≤ . . . there exists a � ∈ Y whereby �k ≤ � for all k. Suppose now that each
�k is given by the increasing limit of (σ k

j ). Let’s define the sequence (γn) as

γn :=
n∨

k=1

σ k
n

which by virtue of Lemma 3.31 is a sequence in X . Inherited from each (σ k
n ), note

that this is a P-a.s. monotone increasing sequence and therefore admits a limiting
stopping time which we claim to be our �. By definition � ∈ Y , and for each fixed k
we see that γn ≥ σ k

n for n ≥ k. We thus have that the limit of the (γn) dominates the
limit of the (σ k

n ), which proves the result.

Remark 3.33 An alternative approach could be taken without appealing to Zorn’s
Lemma, which is given in [14] Sect. 18 pp. 71. The method is very involved and
we would have to work to extract the results we need from the proof of Doob’s given
theorem. We find our method to be simpler and more direct, hence of our preference.

Theorem 3.34 Let (�,) be an H-valued maximal strong solution of the Eq. (1.1).
Then (�,) is unique in the sense of Definition 3.14.
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Proof We start by showing that  = � P-a.s.. Suppose that (θ j ), (γ j ) are the
sequences in X convergent to ,� respectively as stipulated in Definition 3.12.
From Lemma 3.31 we have that the sequence (θ j ∨ γ j ) lives in X , and is clearly
monotone increasing and convergent to  ∨ � P-a.s.. But then  ∨ � ∈ Y , which
by the fact that ,� ≤  ∨ � P-a.s. and the definition of the maximal solution,
 =  ∨ � = � P-a.s. The first part is complete. The second then follows from
Theorem 3.29 as seen in the consistent construction (3.45).

The way we chose to define the maximal time did not exclude the possibility that
some � ∈ Y could be such that � >  on a set of positive measure, which is often
excluded from the definition: see [29], [11]. The following corollary shows that such
a scenario cannot occur.

Corollary 3.35 Let (�,) be the unique H-valued maximal strong solution of the Eq.
(1.1). Then for any � ∈ Y ,  ≥ � P-a.s..

Proof Via the same arguments we have that  =  ∨ � P-a.s. which concludes the
proof.

Corollary 3.35 is necessary in establishing the blow-up criterion (3.53) below. We
consider the maximal solution up until the minimum of a first hitting time in the HV
norm and the maximal time, we show that a solution exists up until this time, and
deduce from Lemma 6.4 and Corollary 3.35 that it must therefore be the first hitting
time (as the solution can be extended, but no solution can exist beyond the maximal
time on a set of positive measure). So the maximal time is greater than the first hitting
time for any hitting threshold, from which the result is deduced. The details are given
in the following.

Lemma 3.36 Let (�,) be the H-valued maximal strong solution of the Eq. (1.1)
and τ be a stopping time. If ρ := τ ∧  is inX and if for all s ∈ [0, ρ] we have that
�s ∈ L∞ (�; H), then

P ({ω ∈ � : τ(ω) < (ω)}) = 1.

Proof Suppose the contrary, that is there exists a set D ⊂ � on which ρ(ω) = (ω)

and P(D) > 0. By Lemma 6.44 there exists a new stopping time γ such that γ > ρ

P-a.s. and γ ∈ X . Evidently then γ ∈ Y as we can simply take the constant
sequence, but then Corollary 3.35 asserts that  ≥ γ P-a.s.. We have thus reached
our contradiction as on D,  = ρ < γ .

We now look to construct a solution up until the minimum of the first hitting time
and the maximal time, which is a somewhat technical task. Of course the point is to

4 The Lemma is stated as it is in the original paper [24] though there is an additional technicality which
we ought to address here. The proof involves shifting the stochastic basis so that uρ is treated as the initial
condition, from which point a new local solution is known to exist which is then an extension of ρ from the
initial time zero. The technicality here is that one requires solutions to exist for an initial condition of the
regularity of uρ , and as we have only proved that solutions exist for an initial condition in L∞(�; H), this
regularity is required in the assumption.
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prove that this is in fact a solution only up until the first hitting time which is strictly
less than the maximal time, but a priori we do not know this and so immediately we
would have to ask how the maximal solution � is defined at  (by definition � is
only defined on [0,)). We circumvent the issue by constructing a new process which
must agree with � on [0,) and is continuous on [0,∞).

To simplify proceedings we make the details of this setting concrete before stating
the result. (�,) continues to be the H -valued maximal strong solution of the Eq.
(1.1) and let (θ j ) be the sequence stipulated in Definition 3.12. We suppose without
loss of generality that � is a process defined on [0,∞) by �r (ω) = 0 for (ω) ≤ r ,
in order for the first hitting time to be well defined. Indeed for any M > 1 and t > 0
we define

τM
t (ω) := t ∧ inf

{
s ≥ 0 : ‖�(ω)‖2HV ,s ≥ M + ‖�0(ω)‖2H

}
(3.46)

and proceed to dissect this definition. Firstly note that � ∈ C ([0,); H) as � ·∧θ j ∈
C
([0, θ j ]; H

)
P-a.s. for every j and θ j → . As we set � to be zero at  then

supr∈[0,(ω))‖�r (ω)‖2H = supr∈[0,(ω)]‖�r (ω)‖2H so the process

η· := ‖�‖2HV ,·

doesn’t just belong to C ([0,);R), but would only fail to be continuous at  if
limr→ ηr = ∞. The point, therefore, is that there are no jump type discontinuities so
the threshold of the first hitting time (3.46) ismet continuously, i.e.η ∈ C

([0, τM
t ];R).

In particular τM
t is a well defined stopping time and � satisfies the bound

‖�‖2
HV ,τM

t
≤ M + ‖�0‖2H (3.47)

analogous to (3.25). Towards an application of Lemma 3.36 we introduce the stopping
time

ρM
t := τM

t ∧ . (3.48)

Through the same reasoning that the terms of (3.15) are well defined, and the control
(3.47), we are justified in defining the process

�r := �0 +
∫ r∧ρM

t

0
A(s,�s)ds +

∫ r∧ρM
t

0
G(s,�s)dWs (3.49)

in U . Similarly to Remark 3.10 we have the property

�· = �·∧ρM
t

. (3.50)

Proposition 3.37 Let (�, ρM
t ) be as defined in (3.49), (3.48). Then (�, ρM

t ) is an
H-valued local strong solution of the Eq. (1.1).
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Proof Observe that for any time r < ρM
t P-a.s.,

�r = lim
j→∞ �r∧θ j

= lim
j→∞

[
�0 +

∫ r∧θ j

0
A(s,�s)ds +

∫ r∧θ j

0
G(s,�s)dWs

]

= lim
j→∞ �r∧θ j

= �r (3.51)

taking the limits P-a.s. in U , using that � ∈ C ([0,); H) so in particular
� ∈ C

([0, ρM
t );U)

and similarly � ∈ C ([0,∞);U ) as the sum of integrals in
U . Combining this with the construction (3.49) we see that

�r = �0 +
∫ r∧ρM

t

0
A(s,�s)ds +

∫ r∧ρM
t

0
G(s,�s)dWs

so (�, ρM
t ) satisfies the required identity (3.15). In the same vein we have that

for P − a.e. ω and every T > 0, �·(ω)1·≤ρM
t (ω) is identical to � ·(ω)1·≤ρM

t (ω)

as an element of L2 ([0, T ]; V ) where we know the latter belongs to this space
from (3.47). The continuity is more involved; as specified we know at least that
�(ω) ∈ C

([0, ρM
t (ω)); H)

but we must address a potential discontinuity at ρM
t .

To this end we claim that for P − a.e. ω,

�·∧θ j (ω)(ω) = � ·∧θ j (ω)∧ρM
t (ω)(ω). (3.52)

We consider two cases, the first that θ j (ω) < ρM
t (ω). In this case the property (3.52) is

immediate by simply replacing r with θ j (ω) in (3.51). The alternative is that θ j (ω) ≥
ρM
t (ω), for which we note that� ·∧θ j∧ρM

t
is again a local strong solution and therefore

� ·∧θ j (ω)∧ρM
t (ω)(ω) ∈ C ([0, t]; H) by definition. Moreover in this case, � ·(ω) ∈

C
([0, ρM

t (ω)]; H)
so � ·(ω) ∈ C

([0, ρM
t (ω)];U)

. Recalling again that �·(ω) ∈
C ([0,∞);U ) and �r (ω) = �r (ω) for r < ρM

t (ω), we see that � and � do not just
agree up until ρM

t (ω) but must also agree at this time due to the continuity in U . This
is summarised as the equivalence �·(ω) = � ·∧ρM

t (ω)(ω). Moreover from (3.50) and

being in the case θ j (ω) ≥ ρM
t (ω) we have that

�·(ω) = �·∧ρM
t (ω)(ω) = �·∧ρM

t (ω)∧θ j (ω)(ω) = �·∧θ j (ω)(ω)

and similarly � ·∧ρM
t (ω)(ω) = � ·∧θ j (ω)∧ρM

t (ω)(ω). Putting all of this together,

�·∧θ j (ω)(ω) = �·(ω) = � ·∧ρM
t (ω)(ω) = � ·∧θ j (ω)∧ρM

t (ω)(ω)

justifying (3.52).
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We shall use this property to first show the progressive measurability in V , which
follows from the fact that the sequence �·∧θ j1·∧ρM

t
= � ·∧θ j1·∧ρM

t
is uniformly

bounded in the space L2 (� × [0, T ]; V ) courtesy of (3.47). Once more � × [0, T ]
is equipped with product sigma algebra FT × [0, T ], on which � ·∧θ j1·∧ρM

t
is mea-

surable using its progressive measurability. We use a similar argument to that seen
in Theorem 3.26, deducing a weakly convergent subsequence in this space which
gives rise to a progressively measurable process in V . To show that this limit is
in fact �·1·∧ρM

t
, we appreciate that the convergence �·∧θ j → � P-a.s. in the

space C([0, T ];U ) implies that of �·∧θ j1·∧ρM
t

→ �·1·∧ρM
t
P-a.s. in L2([0, T ];U ).

Furthermore this limit holds in L2
(
�; L2([0, T ];U )

)
by applying the dominated

convergence theorem to the sequence
(
(‖�·∧θ j1·∧ρM

t
− �·1·∧ρM

t
‖2
L2([0,T ];U )

)
with

domination coming from (3.47). We already know that � is progressively measurable
in U as a continuous and adapted process in this space (adaptedness follows from
the convergence �r∧θ j∧ρM

t
→ �r P-a.s.) so �·∧θ j1·∧ρM

t
→ �·1·∧ρM

t
holds too in

L2 (� × [0, T ];U ). The limit trivially holds weakly in this space as well, and must
agree with the weak limit taken in L2 (� × [0, T ]; V ) from the continuous embedding
V ↪−→ U , so by uniqueness of limits in the weak topology the progressive measurabil-
ity is shown. Moreover similarly to Theorem 3.28 we apply Proposition 6.5 to deduce
that �· ∈ C([0, T ]; H) P-a.s. and the result is shown.

We have now all but proved Theorem 3.15 in the case of the bounded initial condi-
tion. The following Theorem summarises the work of this subsection and rounds off
the proof.

Theorem 3.38 Let (�,) be the H-valued maximal strong solution of the Eq. (1.1).
Then at P − a.e. ω for which (ω) < ∞, we have that

sup
s∈[0,(ω))

‖�(ω)‖2HV ,s = ∞. (3.53)

Furthermore τM
t given in (3.46) is well defined and such that (� ·∧τM

t
, τM

t ) is an
H-valued local strong solution of the Eq. (1.1).

Remark 3.39 The property (3.53) is precisely (3.16).

Proof Proposition 3.37 informs us that ρM
t ∈ X , so we can apply Lemma 3.36 to

deduce that

P
({

ω ∈ � : τM
t (ω) < (ω)

})
= 1.

Of course M > 1, t > 0 were arbitrary so from the characterisation of τM
t we observe

that

sup
s∈[0,(ω))

‖�(ω)‖2HV ,s > M + ‖�0(ω)‖2H
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for P − a.e. ω, from which we infer (3.53). In addition we must have that ρM
t = τM

t
so (�, τM

t ) is an H -valued local strong solution and therefore (� ·∧τM
t

, τM
t ) is too,

immediate from (3.52) and taking j large enough so that θ j (ω) > τM
t (ω).

3.7 Existence andmaximality for an unbounded initial condition

In the previous subsection we showed the existence and maximality of an H -valued
local strong solution of the Eq. (1.1) for any given H -valued initial condition �0 with
�0 ∈ L∞(�; H). We now show that such solutions exist for an arbitrary H -valued
initial condition (not necessarily bounded), proving Theorem 3.15.

Theorem 3.40 For any given F0-measurable �0 : � → H, there exists an H-valued
maximal strong solution (�,) of the Eq. (1.1).

Proof The idea is to piece together solutions obtained for the bounded initial condition,
as seen in [23] (and generalised from [24]). For any given k ∈ N ∪ {0} we know
that there exists a unique H -valued maximal strong solution (�k,k) for the initial
condition �01{k≤‖�0‖H<k+1}, and we claim that the pair (�,) defined at each time
t ∈ [0, T ] and ω ∈ � by

� t (ω) :=
∞∑
k=1

�k
t (ω)1{k≤‖�0(ω)‖H<k+1}, (ω) :=

∞∑
k=1

k(ω)1{k≤‖�0(ω)‖H<k+1}

is our desired solution for the initial condition �0 (where for each fixed ω the infinite
sum is simply a single element). The first task is to show the existence of a sequence
of stopping times (θ j ) which are P-a.s. monotone increasing and convergent to ,
whereby (� ·∧θ j , θ j ) is a local strong H -valued solution of the Eq. (1.1) for each j .
There is only one natural choice for the θ j , which is using that for each fixed k there
is a sequence (θkj ) with the properties above for the maximal solution (�k,k), and
constructing

θ j (ω) :=
∞∑
k=1

θkj (ω)1{k≤‖�0(ω)‖H<k+1}.

Immediately it’s clear that for P − a.e. ω, (�(ω),(ω)) = (�k(ω),k(ω)) for
some k and similarly (�(ω), θ j (ω)) = (�k(ω), θkj (ω)). The P-a.s. monotonicity
and convergence θ j →  comes promptly from the construction, and for each j the
pair (�(ω), θ j (ω)) inherits the pathwise properties of a solution from the solutions
to the bounded problems. In particular θ j is a P-a.s. positive stopping time and for
P − a.e. ω, � ·∧θ j (ω)(ω) ∈ C ([0, T ]; H) and � ·(ω)1·≤θ j (ω) ∈ L2 ([0, T ]; V ) for all
T > 0. In assessing the identity (3.15), let’s now introduce the more compact notation

Ak := {ω ∈ � : k ≤ ‖�0(ω)‖H < k + 1} .
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Then P-a.s. in Ak we have the identity

�k
t = �k

0 +
∫ t∧θkj

0
A(s,�k

s )ds +
∫ t∧θkj

0
G(s,�k

s )dWs

or equivalently on this set that

� t = �0 +
∫ t∧θ j

0
A(s,�s)ds +

∫ t∧θkj

0
G(s,�k

s )dWs

though we have to be a bit more precise with the stochastic integral. We need to justify
that

1Ak

∫ t∧θkj

0
G(s,�k

s )dWs = 1Ak

∫ t∧θ j

0
G(s,�s)dWs

P-a.s., which we do via the manipulations

1Ak

∫ t∧θkj

0
G(s,�k

s )dWs = 1Ak

∫ t

0
1θkj

G(s,�k
s )dWs

=
∫ t

0
1Ak1s≤θkj

G(s,�k
s )dWs

=
∫ t

0
1Ak1Ak∩{s≤θkj }G(s,�k

s1Ak )dWs

=
∫ t

0
1Ak1Ak∩{s≤θ j }G(s,�s1Ak )dWs

=
∫ t

0
1Ak1s≤θ jG(s,�s)dWs

= 1Ak

∫ t∧θ j

0
G(s,�s)dWs

where we require that 1Ak is F0-measurable which is owing to the F0-measurability
of �0. Therefore the identity (3.15) holds P-a.s. on every Ak hence P-a.s. on the
whole of �. To conclude that (�, θ j ) is a local strong solution for the initial condition
�0 it only remains to show that � ·1·≤θ j is progressively measurable in V , which we
deduce from

� t (ω)1t≤θ j (ω) =
∞∑
k=1

�k
t (ω)1t≤θ j (ω)1{k≤‖�0(ω)‖H<k+1}

=
∞∑
k=1

�k
t (ω)1t≤θkj (ω)1{k≤‖�0(ω)‖H<k+1}
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by construction, or equivalently that

� ·1·≤θ j =
∞∑
k=1

�k· 1·≤θkj
1{k≤‖�0‖H<k+1}

for the limit taken pointwise almost everywhere over the product space � × [0, T ] in
V (again for each fixed element of this product space, the infinite sum is in reality just
a single term which we know to belong to V from the progressive measurability of
the �k1·≤θkj

). Moreover for each fixed T we can consider the sequence of processes

(ω, t) �→
(∑N

k=1 �k
t (ω)1t≤θkj (ω)1{k≤‖�0(ω)‖H<k+1}

)
as mappings � × [0, T ] → V

where we equip � × [0, T ] with the sigma algebra FT × B([0, T ]). The pointwise
limit preserves the measurability which concludes the argument that (�, θ j ) is an
H -valued local strong solution.

It remains to show that if (�, �)were any other pair with this property, then ≤ �

P-a.s. implies = �P-a.s.. To this end suppose that (γ j ) is the sequence of stopping
times for �, and define now for each fixed k, j the stopping time

γ k
j := γ j1{k≤‖�0‖H<k+1}

along with the process

�̂
k, j

(ω) := �k(ω) for θkj (ω) ∨ γ k
j (ω) = θkj (ω)

�̂
k, j

(ω) := �(ω) for θkj (ω) ∨ γ k
j (ω) = γ k

j (ω).

Whilst we do not claim that (�, γ k
j ) is a local strong solution for the initial

condition �01{k≤‖�0‖H<k+1} (indeed γ k
j is unlikely to be P-a.s. positive), note

that from the uniqueness Theorem 3.29 we have that � ·∧θ j∧γ j and �·∧θ j∧γ j are
indistinguishable. This implies indistinguishability of �k

·∧θkj ∧γ k
j
1{k≤‖�0‖H<k+1} and

�·∧θkj ∧γ k
j
1{k≤‖�0‖H<k+1} so the definition of �̂

k, j
is consistent. Moreover the exact

arguments of Lemma 3.31 continue to apply here to demonstrate that (�̂
k, j

, θkj ∨ γ k
j )

is a local strong solution for �01{k≤‖�0‖H<k+1} (we of course rely on (�, γ j ) being
a solution for �0). Thus from the maximality of k and Corollary 3.35, we have
θkj ∨ γ k

j ≤ k P-a.s. and in particular γ k
j ≤ k . Defining

�k := �1{k≤‖�0‖H<k+1}

we have that γ k
j → �k P-a.s. therefore �k ≤ k P-a.s.. Evidently though

� =
∞∑
k=1

�k1{k≤‖�0‖H<k+1}
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demonstrating that � ≤  P-a.s..

Theorem 3.41 For any given F0-measurable �0 : � → H, there exists a unique
H-valued maximal strong solution (�,) of the Eq. (1.1). Moreover at P − a.e. ω

for which (ω) < ∞, we have that

sup
r∈[0,(ω))

‖�r (ω)‖2H +
∫ (ω)

0
‖�r (ω)‖2V dr = ∞.

Furthermore for any M > 1, t > 0 the stopping time

τM
t (ω) := t ∧ inf

{
s ≥ 0 : ‖�(ω)‖2HV ,s ≥ M + ‖�0(ω)‖2H

}

is well defined and such that (� ·∧τM
t

, τM
t ) is an H-valued local strong solution of the

Eq. (1.1).

Remark 3.42 This contains the statement of Theorem 3.15.

Proof We have justified the existence in Theorem 3.40, and the uniqueness is imme-
diate from Theorem 3.34 as the proof uses only general properties of stopping times
associated to solutions (and Theorem 3.29 was shown for the unbounded �0). As for
the properties shown in Theorem 3.38 for�0 ∈ L∞(�; H), it is sufficient to show that
(� ·∧τM

t
, τM

t ) is a local strong solution as once again (3.53) would follow (as  > τM
t

P-a.s. for every M, t). We take the same approach as in Theorem 3.40, defining for
each k the stopping time

τ
k,M
t (ω) := t ∧ inf

{
s ≥ 0 : ‖�k(ω)‖2HV ,s ≥ M + ‖�0(ω)1{k≤‖�0(ω)‖H<k+1}‖2H

}

which is such that (�k
·∧τ

k,M
t

, τ
k,M
t ) is a local strong solution for �01{k≤‖�0‖H<k+1}

by Theorem 3.38. Noting that

�s∧τM
t

(ω) =
∞∑
k=1

�k
s∧τ

k,M
t

(ω)1{k≤‖�0(ω)‖H<k+1}

τM
t (ω) =

∞∑
k=1

τ
k,M
t (ω)1{k≤‖�0(ω)‖H<k+1}

then the arguments of Theorem 3.40 immediately apply to show that (� ·∧τM
t

, τM
t ) is

a local strong solution as required.

4 U-Valued solutions

We now extend the framework of Sect. 3 to cover the existence, uniqueness and max-
imality results for an SPDE (1.1) satisfying both the assumptions of Sect. 3.1 and a

123



1234 Stoch PDE: Anal Comp (2024) 12:1201–1264

new set of assumptions relative to a fourth Hilbert Space to be introduced. The need to
extend this framework is motivated by application, see Sect. 5.1. There it is explicitly
demonstrated that the SALTNavier–Stokes Equation inVelocity Form does not satisfy
the assumptions of Sect. 3.1 for the optimal spaces, but in the associated paper [25]
we show that the assumptions of this Section (given in Sect. 4.1) are satisfied in order
to deduce the existence of a solution in the optimal spaces. Supplementing this is Sect.
5.2 in which we show that Sect. 3 is sufficient to deduce the existence of a solution
to the SALT Navier–Stokes Equation in Vorticity Form in the optimal spaces, hence
why we distinguish between the criteria of Sects. 3 and 4.

Our method of proof was just lightly touched upon in the introduction, so before
giving the assumptions we expand on that description here. We wish to again apply
the Convergence of Random Cauchy Sequences lemma (Lemma 6.3) to deduce the
existence of a local strong solution, and continue to prove maximality as seen in
Sect. 3. The Cauchy sequence here will not be a Galerkin Approximation, but rather
a sequence of solutions of the full Eq. (1.1) which we know to exist from Theorem
3.15. The purpose of this section is to find solutions for �0 ∈ U as opposed to H ,
so the approximating sequence is given by the solutions to (1.1) corresponding to the
initial conditions (Pn�0) where Pn�0 ∈ H and Pn�0 −→ �0 inU as n → ∞. The
most delicate issue of the matter is for what type of solutions we should take in our
approximation, as the H -valued ones only exist up until a blow up of the HV norm as
specified in (3.16). We need to work with solutions existing up until a blow up in the
UH norm to take first hitting times in this norm as done for (3.22). The fix is to extend
the H -valued solutions into an intermediary notion of solution (which we call aU/H
solution, Definition 4.11) at the cost of some regularity, but retaining the property that
these processes exist in V .

4.1 Assumptions

Suppose now that X is a separable Hilbert Space with continuous embeddingU ↪−→ X .
We ask that there is a continuous bilinear form 〈·, ·〉X×H : X × H → R such that for
φ ∈ U and ψ ∈ H ,

〈φ,ψ〉X×H = 〈φ,ψ〉U . (4.1)

Moreover it is now necessary that the system (an) forms an orthogonal basis of U .
We state the remaining assumptions now for arbitrary elements φ,ψ ∈ H and t ∈
[0,∞), and continue to use the c, K , K̃ , κ notation of Sect. 3.1. The operators A
and G must now be extended to the larger spaces, and are such that for any T > 0,
A : [0, T ] × H → X and G : [0, T ] × H → L 2(U;U ) are measurable.

Assumption 4.1

‖A(t,φ)‖2X +
∞∑
i=1

‖Gi (t,φ)‖2U ≤ ct K (φ)
[
1 + ‖φ‖2H

]
, (4.2)

‖A(t,φ) − A(t,ψ)‖2X ≤ ct K̃2(φ,ψ)‖φ − ψ‖2H (4.3)

123



Stoch PDE: Anal Comp (2024) 12:1201–1264 1235

Assumption 4.2

2〈A(t,φ) − A(t,ψ),φ − ψ〉X +
∞∑
i=1

‖Gi (t,φ) − Gi (t,ψ)‖2X ≤ ct K̃2(φ,ψ)‖φ − ψ‖2X ,

(4.4)
∞∑
i=1

〈Gi (t,φ) − Gi (t,ψ), φ − ψ〉2X ≤ ct K̃2(φ,ψ)‖φ − ψ‖4X
(4.5)

Assumption 4.3 With the stricter requirement that φ ∈ V then

2〈A(t,φ),φ〉U +
∞∑
i=1

‖Gi (t,φ)‖2U ≤ ct K (φ) − κ‖φ‖2H , (4.6)

∞∑
i=1

〈Gi (t,φ),φ〉2U ≤ ct K (φ). (4.7)

Remark 4.4 This is a stronger assumption than Assumption 3.7.

As in Sect. 3.1 we briefly address the purpose of these assumptions.

• The significance of the property (4.1) was discussed in the introduction, but to
recapitulate this is necessary in applying the Itô Formula to deduce results pertain-
ing to theU inner product for solutions of H regularity only satisfying an identity
in X . In particular it is needed for the analysis of Propositions 4.15 and 4.16 in
order to once more apply the Convergence of Random Cauchy Sequences lemma
(Lemma 6.3).

• The system (an) is now required to form an orthogonal basis ofU for the property
that given any φ ∈ U , ‖(I − Pn)φ‖U −→ 0 as n → ∞. This is applied to show
that the sequence of projected initial conditions converge to the original �0 in U ,
necessary in Proposition 4.15 and Theorem 4.18. In Sect. 3 we had that �0 ∈ H
so this characteristic came from (3.3).

• Assumption 4.1 provides the growth constraint (4.2) which ensures that the inte-
grals in (4.8) are well defined. We also impose a local Lipschitz type condition on
A in (4.3) which we use to show the convergence of the approximating sequence
of time intergrals to the appropriate limit (Theorem 4.18).

• Assumption 4.2 is used to show the uniqueness of solutions (Theorem 4.10).
• Assumption 4.3 is used to show the uniform rate of convergence of the approxi-
mating solutions to their initial conditions (Proposition 4.16).

4.2 Definitions andmain results

Similarly to Sect. 3.2 we now state the relevant definitions and main results of this
section.

123



1236 Stoch PDE: Anal Comp (2024) 12:1201–1264

Definition 4.5 (U -valued local strong solution) Let �0 : � → U be F0-measurable.
A pair (�, τ ) where τ is a P-a.s. positive stopping time and � is a process such that
for P − a.e. ω, � ·(ω) ∈ C ([0, T ];U ) and � ·(ω)1·≤τ(ω) ∈ L2 ([0, T ]; H) for all
T > 0 with � ·1·≤τ progressively measurable in H , is said to be a U -valued local
strong solution of the Eq. (1.1) if the identity

� t = �0 +
∫ t∧τ

0
A(s,�s)ds +

∫ t∧τ

0
G(s,�s)dWs (4.8)

holds P-a.s. in X for all t ≥ 0.

Remark 4.6 The Remarks 3.10, 3.11 hold in the analagous way here. The same jus-
tification of [27] Sects. 2.2 and 2.4 shows that

∫ t∧τ

0 A(s,�s)ds is well defined in X
and

∫ ·∧τ

0 G(s,�s)dWs as a local martingale in U , referring to Assumption (4.2).

Definition 4.7 (U -valued maximal strong solution) A pair (�,) such that there
exists a sequence of stopping times (θ j ) which are P-a.s. monotone increasing and
convergent to , whereby (� ·∧θ j , θ j ) is a U -valued local strong solution of the Eq.
(1.1) for each j , is said to be a U -valued maximal strong solution of the Eq. (1.1) if
for any other pair (�, �) with this property then  ≤ � P-a.s. implies  = � P-a.s..

Definition 4.8 A U -valued maximal strong solution (�,) of the Eq. (1.1) is said to
be unique if for any other such solution (�, �), then  = � P-a.s. and

P ({ω ∈ � : � t (ω) = �t (ω) ∀t ∈ [0,)}) = 1.

The following is the main result of the section, and holds true if the assumptions of
Sects. 3.1 and 4.1 are met.

Theorem 4.9 For any given F0-measurable �0 : � → U, there exists a unique U-
valued maximal strong solution (�,) of the Eq. (1.1). Moreover at P − a.e. ω for
which (ω) < ∞, we have that

sup
r∈[0,(ω))

‖�r (ω)‖2U +
∫ (ω)

0
‖�r (ω)‖2Hdr = ∞. (4.9)

The remainder of Sect. 4 follows the path portrayed here.
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Suppose that �0 ∈ L∞(�;U )

Consider the sequence of H -valued maximal strong solu-
tions of Eq. (1.1) corresponding to the initial conditions
(Pn�0), which we know to exist from Theorem 3.15.

Extend these solutions (at the cost of regularity) to a maximal time
characterised as in (4.9). In particular they exist up until first hit-
ting times taken in the norm of L∞([0, T ];U ) ∩ L2([0, T ]; H).

Show a Cauchy Property in the norm of
L2

(
�; L∞([0, T ];U ) ∩ L2([0, T ]; H)

)
up until the first hitting times

Prove a uniform rate of convergence of
the processes to their initial conditions

Apply the Convergence of Random
Cauchy Sequences lemma (Lemma 6.3)
to deduce the existence of a limiting pro-
cess and stopping time, which is shown
to be a U -valued local strong solution

Consider an arbitrary �0, reliev-
ing the L∞(�;U ) constraint

Establish uniqueness of U -
valued local strong solutions

Verify the existence and uniqueness of U -valued max-
imal strong solutions for the bounded initial condi-
tion, and characterise the maximal time as in (4.9)

Partition the arbitrary �0 into countably many intervals within each
of which it is bounded, combining them to prove Theorem 4.9

4.3 Uniqueness

Before showing the existence of such solutions, we immediately show uniqueness and
do so for any given initial condition �0 ∈ U .

Theorem 4.10 Suppose that (�1, τ1) and (�2, τ2) are two U-valued local strong
solutions of the Eq. (1.1) for a given initial condition �0. Then

P
({

ω ∈ � : �1
t∧τ1(ω)∧τ2(ω)(ω) = �2

t∧τ1(ω)∧τ2(ω)(ω) ∀t ∈ [0,∞)
})

= 1.

Proof We shall sparemost of the details in this argument as it follows in the exact same
way as Theorem 3.29. We apply the Itô Formula to the same difference process but

this time in X , making the same definitions of �̃
1
and �̃

2
and employing Assumption

4.2. In this iteration we define γR with �̃
1,R

and �̃
2,R

as before. We then reach the
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analogy of (3.44) which is

E sup
r∈[θ j ,θk ]

‖�̃R
r ‖2X ≤ ĉE

(
‖�̃R

θ j
‖2X +

∫ θk

θ j

K̃2(�̃
1,R
s , �̃

2,R
s )‖�̃R

s ‖2Xds
)

from which the proof is concluded in the same fashion.

4.4 Maximality of solutions for an H-Valued initial condition

We introduce now an intermediary notion of solution, to help us pass from the H -
valued solutions shown to exist in Theorem 3.40 to the U -valued ones defined in
Definition 4.5.

Definition 4.11 (U/H local strong solution) Let �0 : � → H be F0-measurable. A
pair (�, τ ) where τ is a P-a.s. positive stopping time and � is a process such that
for P − a.e. ω, � ·(ω) ∈ C ([0, T ];U ) and � ·(ω)1·≤τ(ω) ∈ L2 ([0, T ]; H) for all
T > 0 with � ·1·≤τ progressively measurable in H , and � t (ω)1t≤τ(ω) ∈ V almost
everywhere on � × [0,∞), is said to be a U/H local strong solution of the Eq. (1.1)
if the identity

� t = �0 +
∫ t∧τ

0
A(s,�s)ds +

∫ t∧τ

0
G(s,�s)dWs

holds P-a.s. in X for all t ≥ 0.

Remark 4.12 Trivially any H -valued local strong solution is a U/H one.

The idea behind introducing this notion of solution is to extend the H -valued
maximal strong solutions to the maximal time characterised by (4.9). This comes with
the corresponding loss of regularity in the solution, but by requiring that the process
is in V almost surely we can apply the Assumption 3.6 in the context of our energy
methods oncemore. This is whywe do not immediately pass to theU -valued solutions
for the H -valued initial condition, and indeed requiring this initial condition to be in
H not just U is what facilitates this requirement of belonging to V .

Theorem 4.13 For any given F0-measurable �0 : � → H, there exists a unique
U/H maximal strong solution (�,) of the Eq. (1.1). Moreover at P − a.e. ω for
which (ω) < ∞, we have that

sup
r∈[0,(ω))

‖�r (ω)‖2U +
∫ (ω)

0
‖�r (ω)‖2Hdr = ∞.

Furthermore for any M > 1, t > 0 the stopping time

τM
t (ω) := t∧inf

{
s ≥ 0 : sup

r∈[0,s]
‖�r (ω)‖2U +

∫ s

0
‖�r (ω)‖2Hdr ≥ M + ‖�0(ω)‖2U

}

(4.10)
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is well defined and such that (� ·∧τM
t

, τM
t ) is a U/H local strong solution of the Eq.

(1.1).

Remark 4.14 The existence and uniqueness definitions are precisely those of 3.12 and
3.34 but simply for the U/H solution as defined in Definition 4.11 instead.

Proof We do not wish to spend too much time on the concepts already covered which
is whywe immediately state this theoremwithout needlessly redefining what wemean
by a uniqueU/H maximal strong solution.We reach this result via the same path taken
to get the equivalent result for the unique H -valued maximal strong solution, starting
again from a bounded �0 in H and using that we have already a U/H local strong
solution for this initial condition fromRemark 4.12.We prove the analogy of Theorem
3.38 here in the same way, just using the norm bounds from the stopping times in the
larger Hilbert Spaces which is sufficient to construct � in X [as opposed to U in
(3.49)]. Beyond this symmetry the only difference here is the additional requirement
that our candidate local strong solution (�, ρM

t ) is such that �·1·≤ρM
t

belongs to V
almost surely over the product space. Note that

�·1·≤θ j∧ρM
t

= �·∧θ j∧ρM
t
1·≤θ j∧ρM

t

= �·∧θ j1·≤θ j∧ρM
t

= � ·≤θ j∧ρM
t
1·≤θ j∧ρM

t

P-a.s. for every j , using (3.52). Thus �·1·≤θ j∧ρM
t
belongs to V almost surely as this

is inherited from the local strong solution (�, θ j ∧ ρM
t ), so we must also have the

same for �·1·≤ρM
t
from the convergence θ j ∧ ρM

t → ρM
t P-a.s.. We can then pass to

the unbounded initial condition exactly as in Sect. 3.7.

4.5 Existencemethod for a bounded initial condition

We fix an initial condition �0 ∈ L∞(�;U ) and consider the sequence of random
variables (�n

0) := (Pn�0). From the continuity Pn : U → H (as indeed the range H
is really just the finite dimensional Vn equipped with the equivalent H inner product)
ensures that each �n

0 is H -measurable. So from Theorem 4.13, for each n there exists
a uniqueU/H maximal strong solution (�n,n) such that for any M > 1 and t > 0,
(�n

·∧τ
M,t
n

, τ
M,t
n ) is a U/H local strong solution where

τM,t
n (ω) := t ∧ inf

{
s ≥ 0 : ‖�n(ω)‖2UH ,s ≥ M + ‖�n

0(ω)‖2U
}

. (4.11)

This set up is of course reminiscent of that in Sect. 3.3 and we again have the bounds
(3.27) and (3.28).

Proposition 4.15 For any m, n ∈ N with m < n, define the process �m,n by

�m,n
r (ω) := �n

r (ω) − �m
r (ω).
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Then

lim
m→∞ sup

n≥m

[
E‖�m,n‖2

UH ,τ
M,t
m ∧τ

M,t
n

]
= 0.

Proof As alluded to we look to go by the same method of proof as the corresponding
Proposition 3.24. The real difference between the proofs lies in the loss of regularity
we have for the U/H solutions, as the identity is no longer satisfied in U but only in
X . On this occasion we must appeal to Proposition 6.5; that is we have the equality

‖�m,n

r∧τ
M,t
m ∧τ

M,t
n

‖2U = ‖�m,n
0 ‖2U + 2

∫ r∧τ
M,t
m ∧τ

M,t
n

0
〈A(s,�n

s ) − A(s,�m
s ),�m,n

s 〉X×Hds

+
∫ r∧τ

M,t
m ∧τ

M,t
n

0

∞∑
i=1

‖Gi (s,�n
s ) − Gi (s,�m

s )‖2Uds

+ 2
∫ r∧τ

M,t
m ∧τ

M,t
n

0
〈Gi (s,�n

s ) − Gi (s,�m
s ),�m,n

s 〉UdWi
s

P-a.s. for any r ≥ 0. From the defining V regularity of the U/H solutions we do
indeed have that A(s,�n

s (ω)) − A(s,�m
s (ω)) belongs to U for almost every (s, ω).

Thus

∫ r∧τ
M,t
m ∧τ

M,t
n

0
〈A(s,�n

s ) − A(s,�m
s ),�m,n

s 〉X×Hds

=
∫ r∧τ

M,t
m ∧τ

M,t
n

0
〈A(s,�n

s ) − A(s,�m
s ),�m,n

s 〉Uds

P-a.s. from (4.1), putting us in a position to apply Assumption 3.6. Again with the
notation (6.7) and for arbitrary stopping times 0 ≤ θ j ≤ θk ≤ t P-a.s. and any
θ j ≤ r ≤ t P-a.s., we deduce that

‖�̃m,n
r ‖2U + κ

∫ r

θ j

‖�̃n
s − �̃

m
s ‖2Hds ≤ ‖�n

θ j
− �m

θ j
‖2U

+
∫ r

θ j

cK̃2(�̃
m
s , �̃

n
s )‖�̃n

s − �̃
m
s ‖2Uds

+ 2
∫ r

0
〈Gi (s, �̃n

s ) − Gi (s, �̃
m
s ), �̃

m,n
s 〉UdWi

s

P-a.s. from (3.10). Using once more the bound (3.27) and (3.11), we scale to remove
the κ , take the supremum over r ∈ [θ j , θk] followed by the expectation and apply the
Burkholder-Davis-Gundy Inequality to deduce

E‖�̃m,n‖2UH ,θ j ,θk
≤ cE‖�̃m,n

θ j
‖2U + cE

∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃m,n

s ‖2Uds

123



Stoch PDE: Anal Comp (2024) 12:1201–1264 1241

+ cE

(∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃n

s − �̃
m
s ‖4U

) 1
2

.

We can conclude the proof via an identical procedure to Proposition 3.24, deducing
this time that ‖(I − Pm)�0‖2U is a (P − a.s.) monotone decresasing sequence in
m convergent to zero from the fact that the (Pm) are orthogonal projections onto an
orthogonal basis of U .

Proposition 4.16 We have that

lim
S→0

sup
n∈N

P

({
‖�n‖2

UH ,τ
M,t
n ∧S

≥ M − 1 + ‖�n
0‖2U

})
= 0.

Proof Just as in the corresponding Proposition 3.25 we argue that it is sufficient to
show the property (3.33). With the same approach but this time using Assumption 4.3,
note that

E

[
sup

r∈[0,τM,t
n ∧S]

‖�n
r ‖2U + κ

∫ τ
M,t
n ∧S

0
‖�n

r ‖2Hdr − ‖�n
0‖2U

]

≤ cE
∫ S

0
K (�̃

n
r )dr + cE

(∫ S

0
K (�̃

n
r )dr

) 1
2

≤ c
∫ S

0
1dr + c

(∫ S

0
1dr

) 1
2

≤ cS + cS
1
2 .

In particular we have both that

E

[
sup

r∈[0,τM,t
n ∧S]

‖�n
r ‖2U − ‖�n

0‖2U
]

≤ cS + cS
1
2

and

E

[ ∫ τ
M,t
n ∧S

0
‖�n

r ‖2Hdr
]

≤ cS + cS
1
2

where we allow our generic c to depend on κ , so

E

[
‖�n‖2

UH ,τ
M,t
n ∧S

− ‖�n
0‖2U

]
≤ cS + cS

1
2

and the result follows.

Theorem 4.17 There exists a stopping time τ
M,t∞ , a subsequence (�nl ) and a process

� · = � ·∧τ
M,t∞ whereby � ·1·≤τ

M,t∞ is progressively measurable in H and such that:
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• P

({
0 < τ

M,t∞ ≤ τ
M,t
nl

)}
= 1;

• For P − a.e. ω, �(ω) ∈ C ([0, T ];U ) and � ·(ω)1·≤τ
M,t∞ (ω)

∈ L2 ([0, T ]; H) for
all T > 0;

• ForP−a.e. ω,�nl (ω) → �(ω) in L∞
(
[0, τM,t∞ (ω)];U

)
∩L2

(
[0, τM,t∞ (ω)]; H

)
,

i.e.
‖�nl (ω) − �(ω)‖2

UH ,τ
M,t∞ (ω)

−→ 0;
• �nl → � holds in the sense that

E‖�nl − �‖2
UH ,τ

M,t∞
−→ 0.

Proof The proof is identical to that of Theorem 3.26, the only difference being that
instead of resorting to Proposition 3.21 to show the second bullet point we have the
required uniform boundedness immediately from (3.27), and the continuity comes for

free from the convergence of continuous processes in L∞
(
[0, τM,t∞ (ω)];U

)
.

Theorem 4.18 The pair (�, τ
M,t∞ ) specified in Theorem4.17 is aU-valued local strong

solution of the Eq. (1.1) as defined in 4.5.

Proof We of course take a similar approach to Theorem 3.28, though with (4.3) we
now don’t need to use a weak convergence result as done in the previous theorem. To
this end we consider the limit limnl→∞ �

nl
s∧τ

M,t∞
taken as aP-a.s. limit in X , with the

idea to show that

lim
nl→∞ �

nl
0 = �0 (4.12)

lim
nl→∞

∫ s∧τ
M,t∞

0
A(r ,�nl

r )dr =
∫ s∧τ

M,t∞

0
A(r ,�r )dr (4.13)

lim
nl→∞

∫ s∧τ
M,t∞

0
G(r ,�nl

r )dWr =
∫ s∧τ

M,t∞

0
G(r ,�r )dWr . (4.14)

If we prove the above (at least just for a further subsequence) then (4.8) would be
justified and we would be done. Firstly (4.12) follows from the fact that the Pnl are
orthogonal projections onto an orthogonal basis in U . In the vein of showing (4.13),
we consider the term

E

∥∥∥∥∥
∫ s∧τ

M,t∞

0
A(r ,�nl

r )dr −
∫ s∧τ

M,t∞

0
A(r ,�r )dr

∥∥∥∥∥
X

(4.15)

and have that

(4.15) ≤ E

∫ s∧τ
M,t∞

0

∥∥A(r ,�nl
r ) − A(r , �r )

∥∥
X dr
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≤ E

∫ s∧τ
M,t∞

0
cr
[
K (�nl

r , �r ) + ‖�nl
r ‖H + ‖�r‖H

] ‖�nl
r − �r‖Hdr

≤ c

(
E

∫ s∧τ
M,t∞

0
K (�nl

r , �r ) + ‖�nl
r ‖2H + ‖�r‖2Hdr

) 1
2
(
E

∫ s∧τ
M,t∞

0
‖�nl

r − �r‖2Hdr
) 1

2

having employed the assumption (4.3), from which we use the boundedness (3.27) to
conclude that (4.13) holds along a subsequence (�m j ) as in Theorem 3.28. We can in
fact show (4.14) by taking the convergence first inU (which implies that in X ), which
is contained in the argument to show (3.40) and the proof is complete.

4.6 Maximality for a U-Valued initial condition

We conclude this section by giving the now very brief proof of Theorem (4.9).

Proof of 4.9 With the the uniqueness and existence results of Theorems 4.10, 4.18 in
place, the procedure is identical to that carried out in Sects. 3.6 and 3.7 for the spaces
H ,U , X corresponding to V , H ,U .

5 Applications

In this section we give two applications of these results, both for the SALT Navier–
Stokes Equation with one in velocity form and one in vorticity form. Whilst similar in
nature these different forms make clear why we distinguished between the H -valued
and U -valued solutions, and the insufficiency to consider just H -valued solutions in
general. We only sketch the framework of application here, referring to [25] for the
complete details; Sect. 5.1 in the present manuscript is a summary of Sect. 2.2 of [25],
whilst Sect. 5.2 outlines the results of Sect. 3.2 in [25]. We emphasise again that the
well-posedness results of [25] are obtained from a direct application of Theorems 3.15
and 4.9 in the present manuscript.

5.1 SALT Navier–Stokes in velocity form

Our object of study is the equation

ut − u0 +
∫ t

0
Lus us ds −

∫ t

0
�us ds +

∫ t

0
Bus ◦ dWs + ∇ρt = 0 (5.1)

supplemented with the divergence-free (incompressibility) and zero-average condi-
tions on the three dimensional torus T3. The equation is presented here in velocity
form where u represents the fluid velocity, ρ the pressure, L is the mapping corre-
sponding to the nonlinear term,W is a cylindrical BrownianMotion as throughout the
paper and B is the relevant transport operator defined with respect to a collection of
functions (ξi ) which physically represent spatial correlations. These (ξi ) can be deter-
mined at coarse-grain resolutions from finely resolved numerical simulations, and
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mathematically are derived as eigenvectors of a velocity-velocity correlation matrix
(see [5, 6, 11]). The corresponding stochastic Euler equation was derived in [53] and
the viscous term plays no additional role in the stochastic derivation (without loss of
generality we set the viscosity coefficient to be 1).

We detail now the operators involved alongside the function spaceswhich define the
equation. The operator L is defined for sufficiently regular functions φ,ψ : T3 → R

3

by

Lφψ :=
3∑
j=1

φ j∂ jψ

where φ j : T3 → R is the j th coordinate mapping of φ and ∂ jψ is defined by its kth

coordinate mapping (∂ jψ)k = ∂ jψ
k . The operator B is defined as a linear operator

on U by its action on the basis vectors B(ei , ·) := Bi (·) by

Bi = Lξi + Tξi

for L as above and

Tφψ :=
3∑
j=1

ψ j∇φ j .

A complete discussion of how B is then defined on U is given in [27] Sect. 2.2.
We embed the divergence-free and zero-average conditions into the relevant function
spaces and simply define our solutions as belonging to these spaces. To be explicit, by
a divergence-free function we mean a φ ∈ W 1,2(T3;R3) such that

3∑
j=1

∂ jφ
j = 0

and by zero-average we ask for a ψ ∈ L2(T3;R3) with the property

∫
T3

ψ dλ = 0

for λ the Lebesguemeasure onT3.We introduce the space L2
σ (T3;R3) as the subspace

of L2(T3;R3) consisting of zero-average functions which are ’weakly divergence-
free’; see [51] Definition 2.1 for the precise construction. For general m ∈ N we then
define Wm,2

σ (T3;R3) as Wm,2(T3;R3) ∩ L2
σ (T3;R3).

As is standard in the treatment of the incompressible Navier–Stokes Equation we
consider a projected version to eliminate the pressure term and facilitate us working
in the above spaces. To this end we introduce the standard Leray Projector P defined
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as the orthogonal projection in L2(T3;R3) onto L2
σ (T3;R3), and assume that the (ξi )

are such that ξi ∈ W 1,2
σ (T3;R3) ∩ W 3,∞(T3;R3) and satisfy the bound

∞∑
i=1

‖ξi‖2W 3,∞ < ∞. (5.2)

Our new equation is then

ut − u0 +
∫ t

0
PLus us ds +

∫ t

0
Ausds − 1

2

∞∑
i=1

∫ t

0
PB2

i usds

+
∞∑
i=1

∫ t

0
PBiusdW

i
s = 0 (5.3)

where A := −P� is known as the Stokes Operator, indicating once more that all
details are given in [25]. We shall use the Stokes operator to define inner products
with which we equip our function spaces. Recall from [51] Theorem 2.24 for example
that there exists a collection of functions (ak), ak ∈ W 1,2

σ (T3;R3) ∩ C∞(T3;R3)

such that the (ak) are eigenfunctions of A, are an orthonormal basis in L2
σ (T3;R3)

and an orthogonal basis in W 1,2
σ (T3;R3) considered as Hilbert Spaces with standard

L2(T3;R3), W 1,2(T3;R3) inner products. The corresponding eigenvalues (λk) are
strictly positive and approach infinity as k → ∞. Thus any φ ∈ W 1,2

σ (T3;R3) admits
the representation

φ =
∞∑
k=1

φkak

so for m ∈ N we can define Am/2 by

Am/2 : φ �→
∞∑
k=1

λ
m/2
k φkak

which is a well defined element of L2
σ (T3;R3) on any φ such that

∞∑
k=1

λmk φ2
k < ∞. (5.4)

For φ,ψ with the property (5.4) then the bilinear form

〈φ,ψ〉m := 〈Am/2φ, Am/2ψ〉

is well defined and equivalent to the standard Wm,2(T3;R3) inner product. We equip
L2

σ (T3;R3) with the usual inner product and Wm,2(T3;R3) with the 〈·, ·〉m inner
product.Proof of 4.9
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Definition 5.1 Apair (u, τ )where τ is aP-a.s.positive stopping time andu is a process
such that for P − a.e. ω, u·(ω) ∈ C

([0, T ];W 1,2
σ (T3;R3)

)
and u·(ω)1·≤τ(ω) ∈

L2
([0, T ];W 2,2

σ (T3;R3)
)
for all T > 0 with u·1·≤τ progressively measurable in

W 2,2
σ (T3;R3), is said to be a local strong solution of the Eq. (5.3) if the identity

ut = u0−
∫ t∧τ

0
PLus us ds−

∫ t∧τ

0
Aus ds+1

2

∫ t∧τ

0

∞∑
i=1

PB2
i usds−

∫ t∧τ

0
PBusdWs

(5.5)
holds P-a.s. in L2

σ (T3;R3) for all t ≥ 0.

Definition 5.2 A pair (u,) such that there exists a sequence of stopping times (θ j )

which are P-a.s. monotone increasing and convergent to , whereby (u·∧θ j , θ j ) is a
local strong solution of the Eq. (5.3) for each j , is said to be a maximal strong solution
of the Eq. (5.3) if for any other pair (v, �) with this property then  ≤ � P-a.s.
implies  = � P-a.s..

Definition 5.3 A maximal strong solution (u,) of the Eq. (5.3) is said to be unique
if for any other such solution (v, �), then  = � P-a.s. and for all t ∈ [0,),

P ({ω ∈ � : ut (ω) = vt (ω)}) = 1.

For the spaces

V := W 3,2
σ (T3;R3), H := W 2,2

σ (T3;R3),

U := W 1,2
σ (T3;R3), X := L2

σ (T3;R3).

and operators

A := − (PL + A) + 1

2

∞∑
i=1

PB2
i

G := −PB

it is shown in [25] (Theorem 2.5) that we can apply Theorem 4.9 to conclude Theorem
5.4.

Theorem 5.4 For any given F0- measurable u0 : � → W 1,2
σ (T3;R3), there exists a

unique maximal strong solution (u,) of the Eq. (5.3). Moreover at P − a.e. ω for
which (ω) < ∞, we have that

sup
r∈[0,(ω))

‖ur (ω)‖21 +
∫ (ω)

0
‖ur (ω)‖22dr = ∞.

It is necessary to address explicitly why Theorem 5.4 could not be achieved by a
more simple application of Theorem 3.15 with the spaces V := W 2,2

σ (T3;R3), H :=
W 1,2

σ (T3;R3) and U := L2
σ (T3;R3). The issue arises from the necessary control

123



Stoch PDE: Anal Comp (2024) 12:1201–1264 1247

of the nonlinear term in showing (3.8): for H = W 2,2
σ (T3;R3) we have the algebra

property of the Sobolev Space which affords us a bound

‖PLφnφn‖2 ≤ c‖φn‖2‖φn‖3

using the equivalence of the ‖·‖2 and the standard W 2,2(T3;R3) one. In the
W 1,2(T3;R3) norm we do not have the same luxury and so this nonlinear term cannot
be bounded just in terms of the W 1,2 and W 2,2 norms as would be required.

5.2 SALT Navier–Stokes in vorticity form

If we consider (5.1) in the alternative vorticity form, then we can show the optimal
existence result with an application of Theorem 3.15 hence explicitly justifying the
need to keep Sects. 3 and 4 distinct. The equation is

wt − w0 + ∫ t
0 L (us, ws) ds − ∫ t

0 �ws ds − 1
2

∑∞
i=1

∫ t
0 L

2
i ws ds

+∑∞
i=1

∫ t
0 LiwsdWi

s = 0 (5.6)

which is again supplemented with the divergence free condition on u, w and the
boundary conditions

u · n = 0, w = 0

on a smooth bounded domain O ⊂ R
3 with n the outward unit normal. These are the

so called Navier Boundary Conditions which are well summarised in [34]. Technical
issues surrounding the noise term prevent us from working on a bounded domain in
the velocity form (in particular, the fact that the Leray Projector does not preserve the
zero trace property), though these issues aren’t present for the vorticity form which is
a key motivator for our analysis in this setting. Here w represents the fluid vorticity,
u continues to denote the velocity and the new operators are defined for sufficiently
regular functions φ,ψ : O → R

3 by

L (φ,ψ) := Lφψ − Lψφ

Liφ := L (ξi , φ).

We can prescribe u for a given w via a Biot-Savart Operator [16] to close (5.6) as an
equation in w. We shall work with the spaces L2

σ (O;R3), Wm,2
σ (O;R3) which are

defined similarly to those on the torus but now to incorporate the zero-normal and
zero-trace conditions, with the technicalities again deferred to [25].

Definition 5.5 A pair (w, τ) where τ is a P-a.s. positive stopping time and w is a
process such that forP−a.e. ω,w·(ω) ∈ C

([0, T ];W 1,2
σ (O;R3)

)
andw·(ω)1·≤τ(ω) ∈

L2
([0, T ];W 2,2

σ (O;R3)
)
for all T > 0 with w·1·≤τ progressively measurable in
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W 2,2
σ (O;R3), is said to be a local strong solution of the Eq. (5.3) if the identity

wt − w0 +
∫ t∧τ

0
L (us, ws) ds −

∫ t∧τ

0
�ws ds

− 1

2

∞∑
i=1

∫ t∧τ

0
L 2

i ws ds +
∞∑
i=1

∫ t∧τ

0
LiwsdW

i
s = 0

holds P-a.s. in L2
σ (O;R3) for all t ≥ 0.

Definition 5.6 A pair (w,) such that there exists a sequence of stopping times (θ j )

which are P-a.s. monotone increasing and convergent to , whereby (w·∧θ j , θ j ) is a
local strong solution of the Eq. (5.6) for each j , is said to be a maximal strong solution
of the Eq. (5.6) if for any other pair (η, �) with this property then  ≤ � P-a.s.
implies  = � P-a.s..

Definition 5.7 A maximal strong solution (w,) of the Eq. (5.6) is said to be unique
if for any other such solution (η, �), then  = � P-a.s. and for all t ∈ [0,),

P ({ω ∈ � : wt (ω) = ηt (ω)}) = 1.

For the spaces V := W 2,2
σ (O;R3), H := W 1,2

σ (O;R3) and U := L2
σ (O;R3) it is

shown in [25] (Theorem 3.6) that we can apply Theorem 3.15 to conclude Theorem
5.8.

Theorem 5.8 For any given F0-measurable w0 : � → W 1,2
σ (O;R3), there exists a

unique maximal strong solution (w,) of the Eq. (5.6). Moreover at P − a.e. ω for
which (ω) < ∞, we have that

sup
r∈[0,(ω))

‖wr (ω)‖21 +
∫ (ω)

0
‖wr (ω)‖22dr = ∞.
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Appendix

Appendix I: Proofs from Sect. 3

Proof of 3.18 It is clear that for any R > ‖�n
0‖2L∞(�,H) and the stopping time

τ tn,R(ω) := t ∧ inf

{
s ≥ 0 : sup

r∈[0,s]
‖�n,R

r (ω)‖2H ≥ R

}

that (�n,R, τ tn,R) is a local strong solution of (3.18). We would therefore be done if

there exists an R > ‖�n
0‖2L∞(�,H) such that τ

M,t
n,R ≤ τ tn,R P-a.s.. Due to the norm

equivalence on Vn , there exists some constant cn such that the stopping time

τ̃ tn,R(ω) := t ∧ inf

{
s ≥ 0 : sup

r∈[0,s]
‖�n,R

r (ω)‖2U ≥ cn R

}

satisfies τ̃ tn,R ≤ τ tn,R P-a.s.. Thus if we choose

R > max

{
‖�n

0‖2L∞(�,H),
M + ‖�n

0‖2L∞(�,U )

cn

}

then for any s ∈ [0, τM,t
n,R (ω)] we have that

sup
r∈[0,s]

‖�n,R
r (ω)‖2U ≤ sup

r∈[0,s]
‖�n,R

r (ω)‖2U +
∫ s

0
‖�n,R

r (ω)‖2Hdr

≤ M + ‖�n
0(ω)‖2U

≤ cn R

and hence τ
M,t
n,R ≤ τ̃ tn,R ≤ τ tn,R P-a.s., which implies the result.

Proof of 3.21 By equipping Vn with the H inner product we can apply the Itô Formula
for ‖·‖2H to see that for any 0 ≤ r ≤ t , the identity

‖�n
r∧τ

M,t
n

‖2H = ‖�n
0‖2H + 2

∫ r∧τ
M,t
n

0
〈PnA(s,�n

s ),�
n
s 〉Hds

+
∫ r∧τ

M,t
n

0

∞∑
i=1

‖PnGi (s,�n
s )‖2Hds
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+ 2
∞∑
i=1

∫ r∧τ
M,t
n

0
〈PnGi (s,�n

s ),�
n
s 〉HdWi

s

holds P-a.s.. Adopting the notation (3.26) to simplify proceedings prompts a shift
from the above to

‖�̃n
r ‖2H = ‖�n

0‖2H + 2
∫ r

0
〈PnA(s,�n

s ),�
n
s 〉H1s≤τ

M,t
n

ds

+
∫ r

0

∞∑
i=1

‖PnGi (s,�n
s )‖2H1s≤τ

M,t
n

ds

+ 2
∞∑
i=1

∫ r

0
〈PnGi (s, �̃

n
s ), �̃

n
s 〉HdWi

s .

Note that we have left the indicator function outside of the time integral terms as
we have no linearity assumption to take it through the ‖PnGi (s,�n

s )‖2H term: more
precisely, it may be the case that PnGi (s, 0) �= 0. To do this for the stochastic integral
we are just relying on the linearity of the inner product. Let 0 ≤ θ j < θk ≤ t be two
arbitrary stopping times. By substituting in θ j to the above, and then subtracting this
from the identity for any θ j ≤ r ≤ t P-a.s., then we also have the equality

‖�̃n
r ‖2H = ‖�̃n

θ j
‖2H + 2

∫ r

θ j

(
〈PnA(s,�n

s ),�
n
s 〉H +

∞∑
i=1

‖PnGi (s,�n
s )‖2H

)
1s≤τ

M,t
n

ds

+ 2
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ), �̃

n
s 〉HdWi

s

P-a.s.. Applying (3.8) to the process �n , we deduce the inequality

‖�̃n
r ‖2H ≤ ‖�̃n

θ j
‖2H +

∫ r

θ j

(
cs K̃2(�̃

n
s )
[
1 + ‖�̃n

s ‖2H
]

− κ‖�̃n
s ‖2V

)
ds

+ 2
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ), �̃

n
s 〉HdWi

s

having now assimilated the indicator function through the norms into the �̃
n
[and

recalling the notation of K̃2 introduced in (3.4)]. We shall continue to use c to rep-
resent a generic constant, which may well depend on the constants involved in our
assumptions, as well as on �0 and the choices of M and t . The constant will not
depend on n, r or ω. Using the boundedness of cs on [0, t] and (3.28), then we reduce
the above to the inequality

‖�̃n
r ‖2H + κ

∫ r

θ j

‖�̃n
s ‖2V ds ≤ ‖�̃n

θ j
‖2H + c

∫ r

θ j

(1 + ‖�̃n
s ‖2H )2ds
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+ 2
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ), �̃

n
s 〉HdWi

s .

We can freely bound the stochastic integral by its absolute value, and as r ∈ [θ j , t]
was arbitrary we may take the supremum over all r ∈ [θ j , θk], deducing that

sup
r∈[θ j ,θk ]

‖�̃n
r ‖2H + κ

∫ θk

θ j

‖�̃n
s ‖2V ds ≤ c‖�̃n

θ j
‖2H + c

∫ θk

θ j

1 + ‖�̃n
s ‖4Hds

+ c sup
r∈[θ j ,θk ]

∣∣∣∣∣
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ), �̃

n
s 〉HdWi

s

∣∣∣∣∣

having also used the simple manipulation (1 + ‖�̃n
s ‖2H )2 ≤ c(1 + ‖�̃n

s ‖4H ). This can
be scaled and rewritten as

‖�̃n‖2HV ,θ j ,θk
≤ c‖�̃n

θ j
‖2H + c

∫ θk

θ j

1 + ‖�̃n
s ‖4Hds

+ c sup
r∈[θ j ,θk ]

∣∣∣∣∣
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ), �̃

n
s 〉HdWi

s

∣∣∣∣∣ .

We are justified in taking the expectation here for theP-a.s. inequality as the process
is a genuine square integrable semimartingale, and again that this stochastic integral
is a true square integrable martingale. There is no issue considering the supremum in
a random time interval: we could simply absorb the randomness into the integrand
through an indicator function and the result would be clear. Moreover

E‖�̃n‖2HV ,θ j ,θk
≤ cE‖�̃n

θ j
‖2H + cE

∫ θk

θ j

1 + ‖�̃n
s ‖4Hds

+ cE sup
r∈[θ j ,θk ]

∣∣∣∣∣
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ), �̃

n
s 〉dWi

s

∣∣∣∣∣
and we apply the Burkholder-Davis-Gundy Inequality (recalling this once more from
[27] Theorem 1.6.9) in conjunction with (3.9) to further deduce that

E‖�̃n‖2HV ,θ j ,θk
≤ cE‖�̃n

θ j
‖2H

+ cE
∫ θk

θ j

1 + ‖�̃n
s ‖4Hds + cE

(∫ θk

θ j

cs K̃2(�̃
n
s )
[
1 + ‖�̃n

s ‖4H
]
ds

) 1
2

and subsequently

E‖�̃n‖2HV ,θ j ,θk
≤ cE‖�̃n

θ j
‖2H
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+ cE
∫ θk

θ j

(1 + ‖�̃n
s ‖2H )2ds + cE

(∫ θk

θ j

(
1 + ‖�̃n

s ‖2H
) [

1 + ‖�̃n
s ‖4H

]
ds

) 1
2

.

(6.1)

Now we observe
(
1 + ‖�̃n

s ‖2H
) [

1 + ‖�̃n
s ‖4H

]
≤ c

(
1 + ‖�̃n

s ‖2H‖�̃n
s ‖4H

)
and

(∫ θk

θ j

1 + ‖�̃n
s ‖2H‖�̃n

s ‖4Hds
) 1

2

≤ t
1
2 +

(∫ θk

θ j

‖�̃n
s ‖2H‖�̃n

s ‖4Hds
) 1

2

so using that our generic c may depend on t we reduce (6.1) to

E‖�̃n‖2HV ,θ j ,θk
≤ cE‖�̃n

θ j
‖2H + c

+ cE
∫ θk

θ j

‖�̃n
s ‖4Hds + cE

(∫ θk

θ j

‖�̃n
s ‖2H‖�̃n

s ‖4Hds
) 1

2

. (6.2)

Now we have that

c

(∫ θk

θ j

‖�̃n
s ‖2H‖�̃n

s ‖4Hds
) 1

2

≤ c

(
sup

s∈[θ j ,θk ]
‖�̃n

s ‖2H
∫ θk

θ j

‖�̃n
s ‖4Hds

) 1
2

= c

(
sup

s∈[θ j ,θk ]
‖�̃n

s ‖2H
) 1

2
(∫ θk

θ j

‖�̃n
s ‖4Hds

) 1
2

≤ 1

2
sup

r∈[θ j ,θk ]
‖�̃n

r ‖2H + c2

2

∫ θk

θ j

‖�̃n
s ‖4Hds (6.3)

via an applicationofYoung’s Inequality. Taking the expectation and then the supremum
term over to the left hand side whilst absorbing the integral term into what we already
have, we reduce (6.2) to

E‖�̃n‖2HV ,θ j ,θk
≤ cE‖�n

θ j
‖2H + c + cE

∫ θk

θ j

‖�̃n
s ‖4Hds. (6.4)

having scaled once more, and rewrite this as

E‖�̃n‖2HV ,θ j ,θk
≤ ĉE

(
‖�n

θ j
‖2H + 1 +

∫ θk

θ j

‖�̃n
s ‖4Hds

)
. (6.5)

for some particular ĉ which we shall reference. Now we may apply the Stochastic
Grónwall lemma (Lemma 6.2) for the processes

φ = ‖�̃n‖2H , ψ = ‖�̃n‖2V , η = ‖�̃n‖2H
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noting that the bound (6.13) comes from (3.27). The application of this result conclude
the proof.

Proof of 3.23 We show the inequalities independently, starting with A through

A = 2〈Pn
[
A(s,φ) − A(s,ψ)

] + [Pn − Pm]A(s,ψ),φ − ψ〉U

+
∞∑
i=1

‖Pn
[
Gi (s,φ) − Gi (s,ψ)

] + [Pn − Pm]Gi (s,ψ)‖2U

≤ 2〈Pn
[
A(s,φ) − A(s,ψ)

]
,φ − ψ〉U +

∞∑
i=1

‖Pn
[
Gi (s,φ) − Gi (s,ψ)

]‖2U

+ 2〈[Pn − Pm]A(s,ψ),φ − ψ〉U +
∞∑
i=1

‖[Pn − Pm]Gi (s,ψ)‖2U

+ 2
∞∑
i=1

‖Pn
[
Gi (s,φ) − Gi (s,ψ)

]‖U‖[Pn − Pm]Gi (s,ψ)‖U

≤ 2〈A(s,φ) − A(s,ψ),φ − ψ〉U +
∞∑
i=1

‖Gi (s,φ) − Gi (s,ψ)‖2U

+ 2〈A(s,ψ), [I − Pm]φ − ψ〉U +
∞∑
i=1

‖Pn [I − Pm]Gi (s,ψ)‖2U

+ 2
∞∑
i=1

‖Gi (s,φ) − Gi (s,ψ)‖U‖Pn [I − Pm]Gi (s,ψ)‖U

=: α + β + γ (6.6)

having used that Pn is an orthogonal projection on U and PnPm = Pm . We look to
show the appropriate bounds on α, β and γ . For α we simply apply (3.10). Moving
on to β, we use again that Pn is an orthogonal projection and the property (3.3) to see
that

β ≤ 2

μm
‖A(s,ψ)‖U‖φ − ψ‖H +

∞∑
i=1

1

μ2
m

‖Gi (s,ψ)‖2H .

Through Young’s Inequality with a constant c dependent on κ , we can bound this
further by

c

μ2
m

(
‖A(s,ψ)‖2U +

∞∑
i=1

‖Gi (s,ψ)‖2H
)

+ κ

2
‖φ − ψ‖2H
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to which we apply (3.5) to the bracketed term. As for γ , we have that

γ ≤
∞∑
i=1

(‖Gi (s,φ)‖U + ‖Gi (s,ψ)‖U ) ‖[I − Pm]Gi (s,ψ)‖U

≤ c
∞∑
i=1

(‖Gi (s,φ)‖H + ‖Gi (s,ψ)‖H ) ‖[I − Pm]Gi (s,ψ)‖U

≤ c

μm

∞∑
i=1

(‖Gi (s,φ)‖H + ‖Gi (s,ψ)‖H ) ‖Gi (s,ψ)‖H

≤ c

μm

∞∑
i=1

(
‖Gi (s,φ)‖2H + ‖Gi (s,ψ)‖2H

)

which we handle through (3.5) once more. Altogether then, with notation λm :=
min{μm, μ2

m}, we have that

A ≤ ct K̃2(φ,ψ)‖φ − ψ‖2U − κ‖φ − ψ‖2H + c

λm

(
cs K (φ)

[
1 + ‖φ‖2V

])

+ κ

2
‖φ − ψ‖2H + c

λm

(
cs K (φ)

[
1 + ‖φ‖2V

]
+ cs K (ψ)

[
1 + ‖ψ‖2V

])

≤ ct K̃2(φ,ψ)‖φ − ψ‖2U − κ

2
‖φ − ψ‖2H + cs

λm
K (φ,ψ)

[
1 + ‖φ‖2V + ‖ψ‖2V

]

as required. It remains to show the bound on B, whichwe approach in a similarmanner:

B =
∞∑
i=1

〈Pn
[
Gi (s,φ) − Gi (s,ψ)

] + [Pn − Pm]Gi (s,ψ),φ − ψ〉2U

≤ 2
∞∑
i=1

(
〈Gi (s,φ) − Gi (s,ψ),φ − ψ〉2U + 〈[I − Pm]Gi (s,ψ),φ − ψ〉2U

)
.

The first term here is precisely what we have in (3.11). For the second, we have that

〈[I − Pm]Gi (s,ψ),φ − ψ〉2U ≤ 1

μ2
m

‖Gi (s,ψ)‖2H‖φ − ψ‖2U
≤ cs

μ2
m
K (φ,ψ)

[
1 + ‖ψ‖2V

]

as required. We note that this is a coarse bound, though sufficient for our purposes.

Proof of 3.24 The proof uses very similar methods to those used in Proposition 3.21,
this time relying on Lemma 3.23 instead of Assumption 3.5. For any 0 ≤ r ≤ t , �m,n

satisfies the identity

�
m,n

r∧τ
M,t
m ∧τ

M,t
n

= �
m,n
0 +

∫ r∧τ
M,t
m ∧τ

M,t
n

0
PnA(s,�n

s ) − PmA(s,�m
s )ds
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+
∞∑
i=1

∫ r∧τ
M,t
m ∧τ

M,t
n

0
PnGi (s,�n

s ) − PmGi (s,�m
s )dWi

s

P-a.s. in Vn , noting that the difference process�
m,n

·∧τ
M,t
m ∧τ

M,t
n

is again a genuine square

integrable semimartingale in U . We thus apply the Itô Formula to this difference
process, reaching the equality

‖�m,n

r∧τ
M,t
m ∧τ

M,t
n

‖2U = ‖�m,n
0 ‖2U + 2

∫ r∧τ
M,t
m ∧τ

M,t
n

0
〈PnA(s, �n

s ) − PmA(s,�m
s ),�m,n

s 〉Uds

+
∫ r∧τ

M,t
m ∧τ

M,t
n

0

∞∑
i=1

‖PnGi (s,�
n
s ) − PmGi (s,�

m
s )‖2Uds

+ 2
∞∑
i=1

∫ r∧τ
M,t
m ∧τ

M,t
n

0
〈PnGi (s, �

n
s ) − PmGi (s,�

m
s ),�m,n

s 〉UdWi
s

to which we introduce notation similar to (3.26), that is

�̃
m
· := �m· 1·≤τ

M,t
m ∧τ

M,t
n

, �̃
n
· := �n· 1·≤τ

M,t
m ∧τ

M,t
n

, �̃
m,n := �̃

n − �̃
m

(6.7)

and thus rewrite our equality as

‖�̃m,n
r ‖2U = ‖�m,n

0 ‖2U + 2
∫ r

0
〈PnA(s,�n

s ) − PmA(s, �m
s ),�m,n

s 〉U1s≤τ
M,t
m ∧τ

M,t
n

ds

+
∫ r

0

∞∑
i=1

‖PnGi (s, �
n
s ) − PmGi (s,�

m
s )‖2U1s≤τ

M,t
m ∧τ

m,t
n

ds

+ 2
∞∑
i=1

∫ r

0
〈PnGi (s, �̃

n
s ) − PmGi (s, �̃

m
s ), �̃

m,n
s 〉UdWi

s .

Identically to 3.21, we fix arbitrary stopping times 0 ≤ θ j < θk ≤ t and have that for
any θ j ≤ r ≤ t P-a.s.,

‖�̃m,n
r ‖2U = ‖�̃m,n

θ j
‖2U + 2

∫ r

θ j

〈PnA(s,�n
s ) − PmA(s, �m

s ),�m,n
s 〉U1s≤τ

M,t
m ∧τ

M,t
n

ds

+
∫ r

θ j

∞∑
i=1

‖PnGi (s, �
n
s ) − PmGi (s,�

m
s )‖2U1s≤τ

M,t
m ∧τ

m,t
n

ds

+ 2
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ) − PmGi (s, �̃

m
s ), �̃

m,n
s 〉UdWi

s .

P-a.s.. Combining the time integrals and applying the bound on A in Lemma 3.23,
we deduce the inequality

‖�̃m,n
r ‖2U ≤ ‖�̃m,n

θ j
‖2U
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+
∫ r

θ j

[
cs K̃2(�̃

m
s , �̃

n
s )‖�̃m,n

s ‖2U − κ

2
‖�̃m,n

s ‖2H + cs
λm

K (�̃
m
s , �̃

n
s )
[
1 + ‖�̃m

s ‖2V + ‖�̃n
s ‖2V

] ]
ds

+ 2
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ) − PmGi (s, �̃

m
s ), �̃

m,n
s 〉UdWi

s .

Using (3.28) and the boundedness of c· on [0, t] then we can reduce the above to

‖�̃m,n
r ‖2U + κ

2

∫ r

θ j

‖�̃m,n
s ‖2Hds ≤ ‖�̃m,n

θ j
‖2U

+ c
∫ r

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃m,n

s ‖2Uds + c

λm

∫ r

θ j

1 + ‖�̃m
s ‖2V + ‖�̃n

s ‖2V ds

+ 2
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ) − PmGi (s, �̃

m
s ), �̃

m,n
s 〉UdWi

s .

Just aswe did in Proposition 3.21wenow scale, take the absolute value of the stochastic
integral and the supremum over r ∈ [θ j , θk], taking our inequality to

‖�̃m,n‖2UH ,θ j ,θk
≤ c‖�̃m,n

θ j
‖2U

+ c
∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃m,n

s ‖2Uds + c

λm

∫ θk

θ j

1 + ‖�̃m
s ‖2V + ‖�̃n

s ‖2V ds

+ 2c sup
r∈[θ j ,θk ]

∣∣∣∣∣
∞∑
i=1

∫ r

θ j

〈PnGi (s, �̃
n
s ) − PmGi (s, �̃

m
s ), �̃

m,n
s 〉UdWi

s

∣∣∣∣∣ .

P-a.s.. All in one step we take the expectation, apply the Burkholder-Davis-Gundy
Inequality and employ the inequality for B in Lemma 3.23 to deduce now

E‖�̃m,n‖2UH ,θ j ,θk
≤ cE‖�̃m,n

θ j
‖2U

+ cE
∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃m,n

s ‖2Uds + c

λm
E

∫ θk

θ j

1 + ‖�̃m
s ‖2V + ‖�̃n

s ‖2V ds

+ 2cE

(∫ θk

θ j

cs K̃2(�̃
m
s , �̃

n
s )‖�̃m,n

s ‖4U + cs
λm

K (�̃
m
s , �̃

n
s )
[
1 + ‖�̃m

s ‖2V
]
ds

) 1
2

and subsequently

E‖�̃m,n‖2UH ,θ j ,θk
≤ cE‖�̃m,n

θ j
‖2U + cE

∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃m,n

s ‖2Uds

+ c

λm
E

∫ θk

θ j

1 + ‖�̃m
s ‖2V + ‖�̃n

s ‖2V ds

+ cE

(∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃n

s − �̃
m
s ‖4U + 1

λm

[
1 + ‖�̃m

s ‖2V
]
ds

) 1
2

.

(6.8)
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We appreciate now that

c

(∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃n

s − �̃
m
s ‖4U + 1

λm

[
1 + ‖�̃m

s ‖2V
]
ds

) 1
2

≤ c

(∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃n

s − �̃
m
s ‖4Uds

) 1
2

+ c

(∫ θk

θ j

1

λm

[
1 + ‖�̃m

s ‖2V
]
ds

) 1
2

(6.9)

and treat these terms individually. Through the same process as (6.3), we see that

c

(∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃n

s − �̃
m
s ‖4Uds

) 1
2

≤ 1

2
sup

r∈[θ j ,θk ]
‖�̃n

r − �̃
m
r ‖2U + c2

2

∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃n

s − �̃
m
s ‖2Uds.

Asm is sufficiently large so that λm ≥ 1, then 1
λm

≤ 1√
λm

. Introducing this bound into
(6.8) along with the deduced restraint on (6.9), we have that

E‖�̃m,n‖2UH ,θ j ,θk
≤ cE‖�̃m,n

θ j
‖2U

+ cE
∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃m,n

s ‖2Uds

+ c√
λm

E

⎡
⎣
∫ θk

θ j

1 + ‖�̃m
s ‖2V + ‖�̃n

s ‖2V ds +
(∫ θk

θ j

1 + ‖�̃m
s ‖2V ds

) 1
2
⎤
⎦ .

(6.10)

Considering the c√
λm

term, we can of course bound these integrals by integrating over
the whole interval [0, t], and we also have

E

(∫ t

0
1 + ‖�̃m

s ‖2V ds
) 1

2 ≤
(
E

∫ t

0
1 + ‖�̃m

s ‖2V ds
) 1

2

.

It is here that we apply the result (3.30), reducing (6.10) to

E‖�̃m,n‖2UH ,θ j ,θk
≤ cE‖�̃m,n

θ j
‖2U + cE

∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃m,n

s ‖2Uds + c√
λm
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which is reminiscent of (6.4), and as such we rewrite it in the form (6.5) as

E‖�̃m,n‖2UH ,θ j ,θk
≤ ĉE

(
‖�̃m,n

θ j
‖2U + 1√

λm
+
∫ θk

θ j

K̃2(�̃
m
s , �̃

n
s )‖�̃m,n

s ‖2Uds
)

.

(6.11)

We are again precisely in the setting of the Stochastic Grónwall lemma (Lemma 6.2),
for the processes

φ = ‖�̃m,n‖2U , ψ = ‖�̃m,n‖2H , η = K̃2(�̃
m
s , �̃

n
s )

where we appreciate that this η satisfies (6.13) from (3.27). Applying Lemma 6.2 we
deduce the existence of a constant C with the same genericity as our usual c such that

E‖�̃m,n‖2UH ,t ≤ C

[
E‖�m,n

0 ‖2U + 1√
λm

]

which implies (3.31). As for (3.32), note that

‖�m,n
0 ‖2U = ‖Pn(I − Pm)�0‖2U ≤ ‖(I − Pm)�0‖2U ≤ 1

λm
‖�0‖2H

from (3.3) which is a (P − a.s.) monotone decreasing sequence in m convergent to
zero. We therefore have

lim
m→∞ sup

n≥m
E‖�̃m,n‖2UH ,0,t ≤ lim

m→∞

[
E
(
‖(I − Pm)�0‖2U

)
+ 1√

λm

]

= 0

from the monotone convergence theorem, and limit of the (λm) being infinite. This
proves (3.32).

Proof of 3.25 We immediately note that (3.33) implies (3.34) as

P

({
‖�n‖2

UH ,τ
M,t
n ∧S

≥ M − 1 + ‖�n
0‖2U

})

= P

({
‖�n‖2

UH ,τ
M,t
n ∧S

− ‖�n
0‖2U ≥ M − 1

})

≤ 1

M − 1
E

[
‖�n‖2

UH ,τ
M,t
n ∧S

− ‖�n
0‖2U

]

having applied Chebyshev’s Inequality, appreciating that the random variable in the
expectation is non-negative. In order to achieve this we first appreciate that for any
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φ ∈ Vn ,

2〈PnA(s,φ),φ〉U +
∞∑
i=1

‖PnGi (s,φ)‖2U ≤ 2〈A(s,φ),φ〉U +
∞∑
i=1

‖Gi (s,φ)‖2U

≤ cs K (φ)
[
1 + ‖φ‖2H

]

= cs K (φ)
[
1 + ‖φ‖2H

]
− ‖φ‖2H

having first applied (3.12) and then simply absorbing an additional ‖φ‖2H into the
cs K (φ)

[
1 + ‖φ‖2H

]
for the final equality. In the same vein we also have

∞∑
i=1

〈PnGi (s,φ),φ〉2U ≤ cs K (φ)
[
1 + ‖φ‖4H

]

coming from (3.13). In an identical manner to Proposition 3.21 and as seen again
in Proposition 3.24, we apply the Itô Formula for ‖·‖2U , take the supremum up to

τ
M,t
n , take expectation with the Burkholder-Davis-Gundy Inequality, apply the above
inequalities and use the boundedness of the generic cs to arrive at the inequality

E

[
‖�n‖2

UH ,τ
M,t
n ∧S

− ‖�n
0‖2U

]

≤ cE
∫ S

0
K (�̃

n
r )
[
1 + ‖�̃n

r ‖2H
]
dr + cE

(∫ S

0
K (�̃

n
r )
[
1 + ‖�̃n

r ‖4H
]
dr

) 1
2

≤ cE
∫ S

0
1 + ‖�̃n

r ‖2Hdr + cE

(∫ S

0
1dr

) 1
2

+ cE

(∫ S

0
‖�̃n

r ‖4Hdr
) 1

2

≤ c
∫ S

0
1 + Cdr + c

(∫ S

0
1dr

) 1
2

+ c

[
E sup

r∈[0,t]
‖�̃n

r ‖2H
] 1

2 [
E

∫ S

0
‖�̃n

r ‖2Hdr
] 1

2

≤ c
∫ S

0
1 + Cdr + c

(∫ S

0
1dr

) 1
2

+ c [C]
1
2

[∫ S

0
Cdr

] 1
2

using again the notation (3.26) and employing the bound (3.28), and applying (3.30)
with the constant C coming from there. Absorbing this C into our generic c, we have
that

E

[
‖�n‖2

UH ,τ
M,t
n ∧S

− ‖�n
0‖2U

]
≤ cS + cS

1
2 .

This bound is of course independent of n, so (3.33) follows and hence the result.
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Appendix II: Useful results

We state some key theorems used throughout the paper. Firstly is a well-posedness
result for anSPDE in afinite dimensionalHilbert Space (though driven by aCylindrical
Brownian Motion) in the standard case of Lipschitz and linear growth constraints.

Proposition 6.1 Fix a finite-dimensional Hilbert Space H. Suppose the following:

1: For any T > 0, the operators A : [0, T ] × H → H and G : [0, T ] × H →
L 2(U;H) are measurable;

2: There exists a C· : [0,∞) → R bounded on [0, T ] for every T , and constants ci
such that for every φ,ψ ∈ H and t ∈ [0,∞),

‖A (t,φ)‖2H ≤ Ct

[
1 + ‖φ‖2H

]

‖Gi (t,φ)‖2H ≤ Ctci
[
1 + ‖φ‖2H

]
∞∑
i=1

ci < ∞

‖A (t,φ) − A (t,ψ)‖2H +
∞∑
i=1

‖Gi (t,φ) − Gi (t,ψ)‖2H ≤ Ct‖φ − ψ‖2H

3: �0 ∈ L2(�;H).

Then there exists a process � : [0,∞) × � → H such that for P − a.e. ω, �·(ω) ∈
C ([0, T ];H) for every T > 0, � is progressively measurable inH and the identity

�t = �0 +
∫ t

0
A (s,�s)ds +

∫ t

0
G (s,�s)dWs (6.12)

holds P-a.s. inH for every t ≥ 0.

Proof See [27] Theorem 2.8.1.

We shall also make use of the following ’Stochastic Gronwall Lemma’.

Lemma 6.2 (StochasticGrönwall) Fix t > 0 and suppose thatφ,ψ, η are real-valued,
non-negative stochastic processes. Assume, moreover, that there exists constants
c′, ĉ, c̃ (allowed to depend on t) such that for P − a.e. ω,

∫ t

0
ηs(ω)ds ≤ c′ (6.13)

and for all stopping times 0 ≤ θ j < θk ≤ t ,

E sup
r∈[θ j ,θk ]

φr + E

∫ θk

θ j

ψ sds ≤ ĉE

([
φθ j

+ c̃
]

+
∫ θk

θ j

ηsφsds

)
< ∞.
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Then there exists a constant C dependent only on c′, ĉ, c̃, t such that

E sup
r∈[0,t]

φr + E

∫ t

0
ψ sds ≤ C

[
E(φ0) + c̃

]
.

Proof See [24] Lemma 5.3.

The subsequent Lemma is the critical one in [24] which gives the existence of a
limiting process and stopping time from the Galerkin Scheme.

Lemma 6.3 (Convergence of Random Cauchy Sequences) Let H1 ⊂ H2 be Hilbert
Spaces with continuous embedding, and (�n) be a sequence of processes such that
for P − a.e. ω, �n(ω) ∈ C ([0, T ];H2) ∩ L2 ([0, T ];H1) which is a Banach Space
with norm

‖ψ‖X(T ) :=
(

sup
r∈[0,T ]

‖ψr‖2H2
+
∫ T

0
‖ψr‖2H1

dr

) 1
2

.

For some fixed M > 1 and t > 0 define the stopping times

τM,t
n (ω) := t ∧ inf

{
s ≥ 0 : ‖�n(ω)‖2X(s) ≥ M + ‖�n

0(ω)‖2H2

}

and suppose that

lim
m→∞ sup

n≥m
E‖�n − �m‖2

X(τ
M,t
m ∧τ

M,t
n )

= 0

and

lim
S→0

sup
n∈N

P

({
‖�n‖2

X(τ
M,t
n ∧S)

≥ M − 1 + ‖�n
0‖2H2

})
= 0.

Then there exists a stopping time τ
M,t∞ , a subsequence (�nl ) and process� = � ·∧τ

M,t∞
such that:

• P

({
0 < τ

M,t∞ ≤ τ
M,t
nl

)}
= 1;

• For P − a.e. ω, �(ω) ∈ C
(
[0, τM,t∞ (ω)];H2

)
∩ L2

(
[0, τM,t∞ (ω)];H1

)
;

• For P − a.e. ω, �nl (ω) → �(ω) in
(
C
(
[0, τM,t∞ (ω)];H2

)
∩ L2

([0, τM,t∞ (ω)];
H1

)
, ‖·‖X(τ

M,t∞ (ω))

)
.

Proof See [24] Lemma 5.1.

Lemma 6.4 tells us that any local strong solution can be extended up to a strictly
greater stopping time.
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Lemma 6.4 Suppose that (�, τ ) is a local strong solution of (1.1) in the sense of
Definitions 3.9, 4.5, 4.11 and that τ is P-a.s. finite. Then there exists a local strong
solution (�, σ ) such that σ > τ P-a.s. and for all t ∈ [0,∞),

P
({

ω ∈ � : � t∧τ(ω)(ω) = �t∧τ(ω)

}) = 1.

Proof See [24] Lemma 4.1. Though we have to note that it is on this instance only
shown for the Stochastic Navier–Stokes Equation, the arguments are general and
undergo no changes for the solutions as defined in Definitions 3.9, 4.5, 4.11. Indeed
forU/H local strong solutions we note that there is additional structure in the almost
sure V regularity, which does not interfere with the proof.

Proposition 6.5 Let H1 ⊂ H2 ⊂ H3 be a triplet of embedded Hilbert Spaces where
H1 is dense in H2, with the property that there exists a continuous nondegenerate
bilinear form 〈·, ·〉H3×H1 : H3 × H1 → R such that for φ ∈ H2 and ψ ∈ H1,

〈φ,ψ〉H3×H1 = 〈φ,ψ〉H2 .

Suppose that for some T > 0 and stopping time τ ,

1. �0 : � → H2 is F0-measurable;
2. η : � × [0, T ] → H3 is such that for P − a.e. ω, η(ω) ∈ L2([0, T ];H3);
3. B : � × [0, T ] → L 2(U;H2) is progressively measurable and such that for

P − a.e. ω, B(ω) ∈ L2
([0, T ];L 2(U;H2)

)
;

4. � : �×[0, T ] → H1 is such that forP−a.e. ω,� ·(ω)1·≤τ(ω) ∈ L2([0, T ];H1)

and � ·1·≤τ is progressively measurable inH1;
5. The identity

� t = �0 +
∫ t∧τ

0
ηsds +

∫ t∧τ

0
BsdWs (6.14)

holds P-a.s. inH3 for all t ∈ [0, T ].
Then the equality

‖� t‖2H2
‖�0‖2H2

+
∫ t∧τ

0

(
2〈ηs,�s〉H3×H1 + ‖Bs‖2L 2(U;H2)

)
ds

+ 2
∫ t∧τ

0
〈Bs,�s〉H2dWs (6.15)

holds for any t ∈ [0, T ],P-a.s. inR.Moreover forP−a.e. ω,� ·(ω) ∈ C([0, T ];H2).

Proof This is a minor extension of [40] Theorem 4.2.5, which is stated and justified as
Proposition 2.5.5. in [27]. The extension is primarily from the Gelfand Triple to this
setting, and in avoiding the need for moment estimates.
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