
Stoch PDE: Anal Comp (2024) 12:898–931
https://doi.org/10.1007/s40072-023-00297-7

Global well-posedness of the two-dimensional stochastic
viscous nonlinear wave equations

Ruoyuan Liu1,2

Received: 17 November 2021 / Revised: 30 March 2023 / Accepted: 31 March 2023 /
Published online: 27 April 2023
© The Author(s) 2023

Abstract
We study well-posedness of viscous nonlinear wave equations (vNLW) on the two-
dimensional torus with a stochastic forcing. In particular, we prove pathwise global
well-posedness of the stochastic defocusing vNLWwith an additive stochastic forcing
Dαξ , where α < 1

2 and ξ denotes the space–time white noise.
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1 Introduction

1.1 Viscous nonlinear wave equations

In this paper, we consider the following nonlinear wave equation (NLW) on the two-
dimensional torus T2 = (R/Z)2, augmented by viscous effects:{

∂2t u + (1 − �)u + D∂t u + |u|p−1u = Dαξ

(u, ∂t u)|t=0 = (u0, u1),
(1.1)

where p > 1, D = |∇| = √−�, α < 1
2 , and ξ denotes the (Gaussian) space–time

white noise onR+ ×T
2. Our main goal in this paper is to prove pathwise global well-

posedness of (1.1) in C(R+; Hs(T2)) for some α ≤ αp and s ≥ sp, where Hs(T2) is
the L2-based Sobolev space on T

2 with regularity s (see Sect. 2 for more details).
In [21], Kuan–Čanić proposed the following viscous NLW on R

2:

∂2t u − �u + 2μD∂t u = F(u), (1.2)

where μ > 0 and F(u) is a general external forcing. This equation typically shows
up in fluid–structure interaction problems, such as the interaction between a stretched
membrane and a viscous fluid. The viscosity term 2μD∂t u in (1.2) comes from the
Dirichlet–Neumann operator typically arising in fluid–structure interaction problems
in three dimensions. See [21, 23] for the derivation of (1.2). It is easy to see that,
when μ ≥ 1, the Eq. (1.2) is purely parabolic (see [23, 26]). On the other hand, when
0 < μ < 1, the viscous NLW (1.2) exhibits an interesting mixture of dispersive
effects and parabolic smoothing. Since the precise value of 0 < μ < 1 does not
play an important role, we simply set μ = 1

2 . In addition, we consider a defocusing
power-type nonlinearity of the form

F(u) = −|u|p−1u,

for positive real numbers p > 1. This power-type nonlinearity has been studied
extensively for nonlinear dispersive equations (see, for example, [40]). With μ = 1

2
and F(u) = −|u|p−1u, the general formof vNLW (1.2) becomes the following version
of vNLW:

∂2t u − �u + D∂t u + |u|p−1u = 0 (1.3)

We now consider the analytical aspects of vNLW (1.3). Note that as in the case of
the usual NLW:

∂2t u − �u + |u|p−1u = 0,
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the viscous NLW (1.3) on R
2 enjoys the following scaling symmetry: u(t, x) �→

uλ(t, x) := λ
2

p−1 u(λt, λx). Namely, if u is a solution to (1.3), then uλ is also a solution
to (1.3) for any λ > 0 with rescaled initial data. This scaling symmetry induces the
scaling critical Sobolev regularity sscaling on R

2 given by

sscaling = 1 − 2

p − 1

such that under this scaling symmetry, the homogeneous Sobolev norm onR2 remains
invariant. While there is no scaling symmetry on T

2, the scaling critical regularity
sscaling still plays an important role in studying nonlinear partial differential equations
in the periodic setting, especially for dispersive equations.Namely, in both periodic and
non-periodic settings, a dispersive equation is usually well-posed in Hs for s > sscaling
and is usually ill-posed in Hs for s < sscaling. On the one hand, there is a good local
well-posedness theory for dispersive equations above the scaling regularities (see [3,
31, 38] for the references therein). Moreover, we show in this paper that vNLW (1.3)
is locally well-posed in Hs(T2) for all s ≥ scrit (with a strict inequality when p = 3),
where scrit is defined by

scrit := max(sscaling, 0) = max

(
1 − 2

p − 1
, 0

)
, (1.4)

for a given p > 1. See “Appendix A”. Here, the second regularity restriction 0 is
required tomake sense of powers ofu.On theother hand,manydispersive equations are
known to be ill-posed below the scaling critical regularity. Among these ill-posedness
results, many of them are in the form of norm inflation (see [6, 8–10, 13, 20, 31, 33,
36, 37, 41]), which is a stronger notion of ill-posedness. In [21], Kuan–Čanić proved
norm inflation for vNLW (1.3) in Hs(Rd) for 0 < s < sscaling and any odd integers
p ≥ 3. Moreover, they pointed out that the viscous term has the potential to slow
down the growth of the Hs norm, i.e. to slow down the speed of the norm inflation.
For details, see [21]. Also, it is of interest to see if norm inflation for vNLW holds in
negative Sobolev spaces. See [12].

Let us now turn our attention to the viscous NLWwith a stochastic forcing. In [22],
Kuan–Čanić studied the stochastic viscous wave equation with a multiplicative noise
on Rd , d = 1, 2:

∂2t u − �u + D∂t u = f (u)ξ,

where f is Lipschitz and ξ is the (Gaussian) space–time white noise on R+ × R
2.

In [26], Oh and the author studied (the renormalized version of) SvNLW (1.1) with
α = 1

2 . When α = 1
2 , the solution is not a function but is only a distribution and

thus a renormalization on the nonlinearity is required to give a proper meaning to the
dynamics (which in particular forces us to consider |u|p−1u only for p ∈ 2N + 1 or
uk for an integer k ≥ 2). See [26] for details. In the cubic case, we proved pathwise
global well-posedness. For an odd integer p ≥ 5, we also used an invariant measure
argument to prove almost sure global well-posedness with suitable random initial
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data.1 In this paper, our goal is to investigate further well-posedness of SvNLW (1.1)
with an additive forcing Dαξ and, in particular, prove pathwise global well-posedness
for any p > 1, where the range of α < 1

2 depends on the degree p > 1 of the
nonlinearity.

1.2 SvNLWwith an additive stochastic forcing

We say that u is a solution to SvNLW (1.1) if u satisfies the following Duhamel
formulation of (1.1):

u(t) = V (t)(u0, u1) −
∫ t

0
S(t − t ′)

(|u|p−1u
)
(t ′)dt ′ + �. (1.5)

Here, V (t) is the linear propagator defined by

V (t)(u0, u1) = e− D
2 t

(
cos(t[[D]]) + D

2[[D]] sin(t[[D]])
)
u0

+e− D
2 t
sin(t[[D]])

[[D]] u1 (1.6)

and S(t) is defined by

S(t) = e− D
2 t
sin(t[[D]])

[[D]] , (1.7)

where

[[D]] =
√
1 − 3

4�,

and � denotes the stochastic convolution defined by

� := �α =
∫ t

0
S(t − t ′)Dαξ(dt ′). (1.8)

A standard argument shows that � belongs to C(R+;W 1
2−α−ε,∞(T2)) almost surely,

where ε > 0 can be arbitrarily small; see Lemma 2.5 below. In particular, when α < 1
2 ,

� is a well-defined function on R+ × T
2.

We first state a local well-posedness result for SvNLW (1.1).

Theorem 1.1 Let p > 1 and α < 1
2 . Define q, r , and σ as follows.

(i) When 1 < p < 2, set q = 2+ δ, r = 4+2δ
1+δ

, and σ = 0, for some sufficiently small
δ > 0.

1 Strictly speaking, almost sure global well-posedness holds for the noise
√
2D

1
2 ξ , which makes the Gibbs

measure for the standard NLW invariant under the SvNLW dynamics. For pathwise global well-posedness,

a precise coefficient in front of the noise D
1
2 ξ does not play any role.
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(ii) When p ≥ 2, set q = p + δ, r = 2p, and σ = 1 − 1
p+δ

− 1
p for some arbitrary

δ > 0.

Let s ≥ σ . Then, SvNLW (1.1) is pathwise locally well-posed in Hs(T2). More pre-
cisely, given any (u0, u1) ∈ Hs(T2), there exists T = Tω(u0, u1) (which is positive
almost surely) and a unique solution u to (1.1) with (u, ∂t u)|t=0 = (u0, u1) in the
class

� + C([0, T ]; Hσ (T2)) ∩ Lq([0, T ]; Lr (T2)).

We present the proof of Theorem 1.1 in Sect. 3. The proof of Theorem 1.1 is based
on the following first order expansion [5, 11, 28]:

u = v + �, (1.9)

where the residual term v satisfies the following equation:

{
∂2t v + (1 − �)v + D∂tv + |v + �|p−1(v + �) = 0

(v, ∂tv)|t=0 = (u0, u1).
(1.10)

See Proposition 3.1 for the pathwise local well-posedness result at the level of the
residual term v using the homogeneous Strichartz estimates for the viscous wave
equation (Lemma 2.8).

The main idea of the proof of pathwise local well-posedness of SvNLW (1.1)
comes from [23]. Note that the nonlinearity |u|p−1u in SvNLW (1.1) is not necessarily
algebraic for general p > 1, which creates a difficulty for obtaining the difference
estimate when applying the contraction argument. To deal with this issue, we apply the
idea from Oh–Okamoto–Pocovnicu [32] using the fundamental theorem of calculus.

Remark 1.2 (i) Using the same argument, the proof of Theorem 1.1 works for both
the defocusing case (with the nonlinearity |u|p−1u) and the focusing case (with
the nonlinearity −|u|p−1u, i.e. with the negative sign).
The proof of Theorem 1.1 also works for SvNLW with nonlinearity uk , where
k ≥ 2 is an integer. In fact, a simple argument based on Sobolev’s inequality
can be applied to prove local well-posedness of SvNLW with nonlinearity uk in
the class � + C([0, T ];Hs(T2)) for s ≥ 1. See, for example, Proposition 3.1
in [26].

(ii) As it is written in Theorem 1.1, we point out that the regularity of initial data
can be lowered to the subcritical case, i.e. s ≥ scrit (with a strict inequality when
p = 3), where scrit is the critical regularity as defined in (1.4) (note that scrit ≤ σ

with σ defined in Theorem 1.1). See Theorem A.6 and Remark A.7 for details.
(iii) One can also directly prove local well-posedness of (1.1) for u ∈ Lq([0, T ];

Lr (T2)) for some appropriate q, r ≥ 2. Specifically, in theDuhamel formulation
(1.5), the linear term V (t)(u0, u1) can be estimated by the Strichartz estimate
(Lemma 2.8), the nonlinear perturbation term

∫ t
0 S(t − t ′)(|u|p−1u)(t ′)dt ′ can

be estimated by the Schauder estimate (Lemma 2.7) along with Young’s con-
volution inequality, and the stochastic convolution � can also be bounded in
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Lq([0, T ]; Lr (T2)) (Lemma 2.5). This approach yields a stronger uniqueness
result since the solution does not depend on any specific structure such as (1.9).
Nevertheless, this paper is meant to be a continuation of the work in [26], and so
we choose to study (1.1) from a dispersive point of view. Due to the assumption
that the initial data lies in the Sobolev space Hs(T2) for some s ≥ 0, it is more
natural to construct the solution in C([0, T ]; Hs(T2)) for T > 0. The Strichartz
spaces Lq([0, T ]; Lr (T2)) can be viewed as “helper” spaces that allow us to
show local well-posedness for rough initial data (i.e. with s ≥ 0 as small as
possible).

We now turn our attention to pathwise global well-posedness of SvNLW (1.1), and
we restrict our attention to the defocusing case. Our pathwise global well-posedness
result reads as follows.

Theorem 1.3 Let p > 1 and α < min( 12 ,
2

p−1 − 1
2 ). Let σ = max(0, 1 − 1

p+δ
− 1

p )

for some arbitrary δ > 0 and let s ≥ σ . Then, SvNLW (1.1) is pathwise globally
well-posed in Hs(T2). More precisely, given any (u0, u1) ∈ Hs(Ts), there exists a
unique global-in-time solution u to (1.1) with (u, ∂t u)|t=0 = (u0, u1) in the class

� + C(R+; Hσ (T2)).

In Theorem 1.3, the uniqueness holds in the following sense. For any t0 ∈ R+,
there exists a time interval I (t0) � t0 such that the solution u to (1.1) is unique in

� + C(I (t0); Hσ (T2)) ∩ Lq(I (t0); Lr (T2)),

where q, r ≥ 2 are as in Theorem 1.1.
As stated in Theorem 1.3, when 1 < p ≤ 3, we have the condition α < 1

2 ; when
p > 3, we have the condition α < 2

p−1 − 1
2 . As p → ∞, the condition for α becomes

α ≤ − 1
2 . Note that when 1 < p < 5, we can prove pathwise global well-posedness

of SvNLW (1.1) with the space–time white noise (i.e. α = 0).
We prove Theorem 1.3 by studying (1.10) for the residual term v in Sect. 4. From

the proof of Theorem 1.1, we see that pathwise global well-posedness follows once
we control the H1-norm of 
v(t) := (v(t), ∂tv(t)). For this purpose, we study the
evolution of the energy

E(
v) = 1

2

∫
T2

(v2 + |∇v|2)dx + 1

2

∫
T2

(∂tv)2dx + 1

p + 1

∫
T2

|v|p+1dx, (1.11)

which is conserved under the (deterministic) usual NLW:

∂2t u + (1 − �)u + |u|p−1u = 0.

Note that for our problem, we proceed with the first order expansion (1.9), where
the residual term v = � − u only satisfies (1.10). In this case, the energy E(
v) is
not conserved under the Eq. (1.10) because of the perturbative term |v + �|p−1(v +
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�) − |v|p−1v. For our problem, we first follow the globalization argument by Burq–
Tzvetkov [7] and establish an exponential growth bound on E(
v), which works in the
sub-cubic case 1 < p ≤ 3. For the super-cubic case p > 3, this argument no longer
works due to the high homogeneity of the non-linearity. When 3 < p ≤ 5, we use
an integration by parts trick introduced by Oh–Pocovnicu [34]. In the super-quintic
case p > 5, we use a trick involving the Taylor expansion, where the idea comes from
Latocca [24].

One important prerequisite for studying the evolution of the energy E(
v) is that
the local-in-time solution 
v lies in H1(T2), which is not guaranteed by the pathwise
local well-posedness result (Theorem 1.1) as it is written. Nonetheless, due to the
dissipative nature of the equation, we show that 
v(t) indeed belongs to H1(T2) for
any t > 0 by using the Schauder estimate (Lemma 2.7) along with Theorem 1.1. See
Sect. 4 for details.

We conclude our introduction by stating several remarks.

Remark 1.4 (i) We point out that Theorem 1.1 and 1.3 also hold if we have−� instead
of 1 − � in (1.1) by using an essentially identical proof.

(ii) In Oh [26] and the author studied SvNLW (1.1) with α = 1
2 . In this case, due to

α = 1
2 , the stochastic term � defined in (1.8) turns out to be merely a distribution,

so that we studied a renormalized version of (1.1) and proved pathwise global
well-posedness in the cubic case. Because of the singular nature of the stochastic
convolution in this setting, the standard Gronwall argument does not work, and so
we used a Yudovich-type argument to bound the corresponding energy.
In the same paper, we also proved almost sure global well-posedness of (1.1) with
p ∈ 2N+ 1 and with random initial data, using the formal invariance of the Gibbs
measure. However, the argument only works for α = 1

2 , so it does not apply to
our problem with α < 1

2 in this paper. Instead, in this paper, we establish pathwise
global well-posedness of SvNLW (1.1).

(iii) We can also consider the vNLW with randomized initial data:

{
∂2t u + (1 − �)u + D∂t u + |u|p−1u = 0

(u, ∂t u)|t=0 = (uω
0 , uω

1 ).
(1.12)

Here, the randomization (uω
0 , uω

1 ) of the initial data (u0, u1) is defined by

(uω
0 , uω

1 ) :=
( ∑

n∈Z2

gn,0(ω)û0(n)ein·x ,
∑
n∈Z2

gn,1(ω)û1(n)ein·x
)

, (1.13)

where for j = 0, 1, û j (−n) = û j (n) for all n ∈ Z
2 and {gn, j }n∈Z2 is a

sequence of mean zero complex-valued random variables such that g−n, j = gn, j

for all n ∈ Z
2. Moreover, we assume that g0, j is real-valued for j = 0, 1,

{g0, j ,�gn, j ,�gn, j }n∈I, j=0,1 are independent with I = (Z+ × {0}) ∪ (Z × Z+),
and there exists a constant c > 0 such that on the probability distributions μn, j of
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gn, j , we have ∫
eγ ·xdμn, j (x) ≤ ec|γ |2 , j = 0, 1 (1.14)

for all γ ∈ R
2 when n ∈ Z

2\{0} and all γ ∈ R when n = 0. Note that (1.14) is
satisfied for standard complex-valued Gaussian random variables, standard Bernoulli
random variables, and any random variables with compactly supported distributions.

The randomization (1.13) allows us to consider almost sure global well-posedness
of (1.12) for (u0, u1) living in negative Sobolev spaces. For almost sure local well-
posedness, we consider the following first order expansion similar to (1.9):

u = v + z,

where z is the solution of the linear viscous wave equation with initial data (uω
0 , uω

1 ):

z(t) = zω(t) := V (t)(uω
0 , uω

1 )

with V (t) defined as in (1.6). By using the Schauder estimate (Lemma 2.7), we can
establish similar (but stronger) probabilistic Strichartz estimates for z and 〈∇〉−1∂t z as
in [34, 35]. This enables us to prove almost sure local well-posedness of (1.12) using
a similar argument as for proving Theorem 1.1, as long as (u0, u1) ∈ Hs(T2) with
s > − 1

p . On the other hand, the proof for almost sure global well-posedness of (1.12)
is much simpler than that for Theorem 1.3, since z(t) is smooth for t > 0 thanks to
the parabolic smoothing. We omit details since this is not the main focus in this paper.

2 Preliminary lemmas

In this section, we discuss some notations and lemmas that are necessary for proving
our well-posedness results.

We use A � B to denote A ≤ CB for some constant C > 0, and we write A ∼ B
if A � B and B � A. Also, we use a+ (and a−) to denote a + ε (and a − ε,
respectively) for arbitrarily small ε > 0. In addition, we use short-hand notations to
work with space–time function spaces. For example, CT Hs

x = C([0, T ]; Hs(Td)).

2.1 Sobolev spaces and Besov spaces

Let s ∈ R. We denote Hs(Td) as the L2-based Sobolev space with the norm:

‖u‖Hs (Td ) = ‖〈n〉s û(n)‖
2n(Z
d ),

where û(n) is the Fourier coefficient of u and 〈·〉 = (1+|· |) 1
2 . We then defineHs(Td)

as

Hs(Td) = Hs(Td) × Hs−1(Td).
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Also, we denote Ws,p(Td) as the L p-based Sobolev space with the norm:

‖u‖Ws,p(Td ) = ∥∥F−1(〈n〉s û(n))
∥∥
L p(Td )

,

where F−1 denotes the inverse Fourier transform on T
d . When p = 2, we have

Hs(Td) = Ws,2(Td).
Let ϕ : R → [0, 1] be a bump function such that ϕ ∈ Cc([− 8

5 ,
8
5 ]) and ϕ ≡ 1 on

[− 5
4 ,

5
4 ]. For ξ ∈ R

d , we define ϕ0(ξ) = ϕ(|ξ |) and

ϕ j (ξ) = ϕ
( |ξ |
2 j

) − ϕ
( |ξ |
2 j−1

)
for j ∈ Z+. Note that ∑

j∈Z≥0

ϕ j (ξ) = 1 (2.1)

for any ξ ∈ R
d . For j ∈ Z≥0, we define the Littlewood-Paley projector P j as

P j u = F−1(ϕ j û).

Due to (2.1), we have

u =
∞∑
j=0

P j u. (2.2)

We also recall the definition of Besov spaces Bs
p,q(T

d) equipped with the norm:

‖u‖Bs
p,q (Td ) = ∥∥2s j‖P j u‖L p

x (Td )

∥∥


q
j (Z≥0)

.

Note that Hs(Td) = Bs
2,2(T

d).
We then recall the definition of paraproducts introduced by Bony [4]. For details,

see [1, 16]. For given functions u and v on T
d of regularities s1 and s2, respectively.

By (2.2), we can write the product uv as

uv = u < u + u = v + u > v

:=
∑
j<k−2

P j uPkv +
∑

| j−k|≤2

P j uPkv +
∑

k< j−2

P j uPkv.

The term u < v (and the term u > v) is called the paraproduct of v by u (and the
paraproduct of u by v, respectively), and it is well defined as a distribution of regularity
min(s2, s1+s2) (andmin(s1, s1+s2), respectively). The termu = v is called the resonant
product of u and v, and it is well defined in general only if s1 + s2 > 0.

With these definitions in hand, we recall some basic properties of Besov spaces.
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Lemma 2.1 (i) Let s1, s2 ∈ R and 1 ≤ p, p1, p2, q ≤ ∞which satisfies 1
p = 1

p1
+ 1

p2
.

Then, we have

‖u < v‖Bs2
p,q (Td )

� ‖u‖L p1 (Td )‖v‖Bs2
p2,q (Td )

. (2.3)

When s1 + s2 > 0, we have

‖u = v‖
B
s1+s2
p,q (Td )

� ‖u‖Bs1
p1,q (Td )

‖v‖Bs2
p2,q (Td )

. (2.4)

(ii) Let s1 < s2 and 1 ≤ p, q ≤ ∞. Then, we have

‖u‖Bs1
p,q (Td )

� ‖u‖Ws2,p(Td ). (2.5)

In particular, when q = ∞, we have

‖u‖Bs1
p,∞(Td )

� ‖u‖Ws1,p(Td ). (2.6)

See [1, 30] for the proofs of (2.3) and (2.4) in the Rd setting, which can be easily
extended to the T

d setting. The embedding (2.5) follows from the L p boundedness
of P j and the 
q -summability of

{
2(s1−s2) j

}
j∈Z≥0

, and the embedding (2.6) follows
easily from the L p boundedness of P j .

Using (2.3) and (2.4), we get the following product estimate.

Corollary 2.2 Let s > 0, 1 ≤ p, q ≤ ∞ and 1 ≤ p1, p2, q1, q2 ≤ ∞ satisfying

1

p1
+ 1

q1
= 1

p2
+ 1

q2
= 1

p
.

Then,

‖uv‖Bs
p,q (Td ) � ‖u‖Bs

p1,q (Td )‖v‖Lq1 (Td ) + ‖u‖L p2 (Td )‖v‖Bs
q2,q (Td ).

Next, we recall the following chain rule estimates.

Lemma 2.3 Let u be a smooth function on T
d , s ∈ (0, 1), r ≥ 2. Let F denote the

function F(u) = |u|r−1u or F(u) = |u|r .
(i) Let 1 < p, p1 < ∞ and 1 < p2 ≤ ∞ satisfying 1

p = 1
p1

+ 1
p2
. Then, we have

‖F(u)‖Ws,p(Td ) � ‖u‖Ws,p1 (Td )

∥∥|u|r−1
∥∥
L p2 (Td )

. (2.7)

(ii) Let 1 ≤ p, q ≤ ∞ and 1 ≤ p1, p2 ≤ ∞ satisfying 1
p = 1

p1
+ 1

p2
. Then, we have

‖F(u)‖Bs
p,q (Td ) � ‖u‖Bs

p1,q (Td )

∥∥|u|r−1
∥∥
L p2 (Td )

. (2.8)
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The estimate (2.7) follows immediately from the fractional chain rule onTd in [14].
For the proof of (2.8), see, for example, Lemma 3.5 in [24] in the Rd setting, which
can be easily extended to the Td setting.

Lastly, we recall the following Gagliardo-Nirenberg interpolation inequality.

Lemma 2.4 Let p1, p2 ∈ (1,∞) and s1, s2 > 0. Let p > 1 and θ ∈ (0, 1) satisfying

− s1
d

+ 1

p
= (1 − θ)

(
1

p1
− s2

d

)
+ θ

p2
and s1 ≤ (1 − θ)s2.

Then, for u ∈ Ws2,p1(Td) ∩ L p2(Td), we have

‖u‖Ws1,p(Td ) � ‖u‖1−θ

Ws2,p1 (Td )
‖u‖θ

L p2 (Td )
.

This inequality follows from a direct application of Sobolev’s inequality onTd (see
[2]) and then interpolation.

2.2 On the stochastic term

In this subsection, we discuss the regularity properties of the stochastic term� defined
in (1.8). Given N ∈ N, we denote�N = πN� as the truncated stochastic convolution,
where πN is the frequency cutoff onto the spatial frequencies {|n| ≤ N }. Then, we
have the following regularity result for �.

Lemma 2.5 For any ε > 0 and T > 0, �N converges to � in C([0, T ];W 1−2α−ε,∞
(T2)) almost surely. In particular, we have

� ∈ C([0, T ];W 1
2−α−ε,∞(T2))

almost surely.

The proof of Lemma 2.5 follows from a straightforward modification of the proof
in [18, Lemma 3.1], and so we omit details. See also [17, Proposition 2.1].

Remark 2.6 One can use an integration by parts to write

�̂(t, n) = −
∫ t

0
Bn(t

′) d

ds

∣∣∣
s=t ′

(
e− |n|

2 (t−s) sin((t − s)[[n]])
[[n]] |n|α

)
dt ′

almost surely, which allows us to compute that

∂t �̂(t, n) =
∫ t

0

(
− |n|

2[[n]]e
− |n|

2 (t−t ′) sin((t − t ′)[[n]])

+ e− |n|
2 (t−t ′) cos((t − t ′)[[n]])

)
|n|αdBn(t

′)
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almost surely. Using a similar argument as in [18, Lemma 3.1] or [17, Proposition 2.1],

we have ∂t� ∈ C([0, T ];W− 1
2−α−,∞(T2)) almost surely. This will be useful in the

proof of pathwise global well-posedness of SvNLW (1.1) in Sect. 4.2.

2.3 Linear estimates

In this subsection, we show some relevant linear estimates and the Strichartz estimates
that are used to prove our well-posedness results.

Let

P(t) = e− D
2 t

be the Poisson kernel with a parameter t
2 , which appears in the viscous wave linear

propagator V (t) defined in (1.6). We first recall the following Schauder-type estimate
for the Poisson kernel P(t). For a proof, see Lemma 2.3 in [26].

Lemma 2.7 Let 1 ≤ p ≤ q ≤ ∞ and β ≥ 0. Then, we have

‖Dβ P(t)φ‖Lq (Td ) � t−β−d( 1
p − 1

q )‖φ‖L p(Td )

for any 0 < t ≤ 1.

Next, we turn our attention to the Strichartz estimates for the homogeneous linear
viscous wave equation on T

d . We recall that the linear propagator V (t) is defined in
(1.6).

Lemma 2.8 Given s ≥ 0, suppose that 2 < q ≤ ∞, 2 ≤ r ≤ ∞ satisfy the following
scaling condition:

1

q
+ d

r
= d

2
− s. (2.9)

Then, we have

‖V (t)(φ0, φ1)‖C([0,T ];Hs−1(Td )) � ‖(φ0, φ1)‖Hs (Td ) (2.10)

and

‖V (t)(φ0, φ1)‖Lq ([0,T ];Lrx (Td )) � ‖(φ0, φ1)‖Hs (Td ) (2.11)

for all 0 < T ≤ 1.

Proof The bound (2.10) can be immediately seen from the definition of theHs-norm

and the fact that e− |n|
2 t ≤ 1, | cos(t[[n]])| ≤ 1, and | sin(t[[n]])| ≤ 1.
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To prove (2.11), we use the T T ∗ method. We first consider the case when s = 0.
Let

V1(t) = e− D
2 t cos(t[[D]]), V2(t) = e− D

2 t
D

2[[D]] sin(t[[D]]),

so that

V (t)(φ0, φ1) = V1(t)φ0 + V2(t)φ0 + S(t)φ1.

Let L : L2(Td) → Lq
T L

r
x (T

d) be the linear operator given by Lφ = V1(t)φ. Note
that L∗ is the linear operator given by

L∗ f =
∫ T

0
V1(t

′) f (t ′)dt ′

for any space–time Schwartz function f . By Minkowski’s integral inequality, the
Schauder estimate (Lemma 2.7) twice, the scaling condition (2.9), and the Hardy-
Littlewood-Sobolev inequality, we have

‖LL∗ f ‖Lq
T L

r
x

≤
∥∥∥∥

∫ T

0

∥∥e− D
2 (t+t ′) cos(t[[D]]) cos(t ′[[D]]) f (t ′)∥∥Lrx

dt ′
∥∥∥∥
Lq
T

�
∥∥∥∥

∫ T

0

1

|t − t ′|2( 12− 1
r )

∥∥e− D
4 (t+t ′) cos(t[[D]]) cos(t ′[[D]]) f (t ′)∥∥L2

x
dt ′

∥∥∥∥
Lq
T

�
∥∥∥∥

∫ T

0

1

|t − t ′|2( 1
r ′ − 1

r )
‖ f (t ′)‖Lr ′x dt

′
∥∥∥∥
Lq
T

=
∥∥∥∥

∫ ∞

0

1

|t − t ′|2/q ‖1[0,T ] f (t ′)‖Lr ′x dt
′
∥∥∥∥
Lq
T

� ‖ f ‖
Lq′
T L

r ′
x
.

Thus, by a standard duality argument, we obtain

‖V1(t)φ0‖Lq
T L

r
x (T

d ) � ‖φ0‖L2(Td ).

By using similar arguments, we obtain

‖V2(t)φ0‖Lq
T L

r
x (T

d ) � ‖φ0‖L2 , ‖S(t)φ1‖Lq
T L

r
x

� ‖φ0‖H−1(Td ),

so that we have

‖V (t)(φ0, φ1)‖Lq
T L

r
x (T

d ) � ‖(φ0, φ1)‖H0(Td ). (2.12)

When s > 0, by Sobolev’s inequality, the scaling condition (2.9), and (2.12), we
obtain
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‖V (t)(φ0, φ1)‖Lq
T L

r
x

� ‖V (t)(〈∇〉sφ0, 〈∇〉sφ1)‖
Lq
T L

1/( sd + 1
r )

x

= ‖V (t)(〈∇〉sφ0, 〈∇〉sφ1)‖
Lq
T L

d/( d2 − 1
q )

x

� ‖(〈∇〉sφ0, 〈∇〉sφ1)‖H0

= ‖(φ0, φ1)‖Hs ,

as desired. ��
Remark 2.9 (i) Compared to the Strichartz estimates for the usual linear wave equa-

tions [15, 17, 19, 25], the Strichartz estimates for the homogeneous linear viscous
wave equation on Td hold for a larger class of pairs (q, r), thanks to the parabolic
smoothing effect.

(ii) In Kuan–Čanić [21] proved the Strichartz estimates for the homogeneous linear
viscous wave equation on Rd . They used the method from Keel–Tao [19], so that
their result requires (q, r) to be σ -admissible for some σ > 0, i.e. (q, r , σ ) �=
(2,∞, 1) and

2

q
+ 2σ

r
≤ σ.

We point out that the T T ∗ method we use in the proof also works on Rd and does
not have this σ -admissible restriction on q and r . However, our proof works only
for s ≥ 0.

We complete this subsection by establishing the following inhomogeneous linear
estimates.

Lemma 2.10 Let p ≥ 2 and let S(t) be as in (1.7). Then, given δ > 0, we have

∥∥∥∥
∫ t

0
S(t − t ′)F(t ′)dt ′

∥∥∥∥
L p+δ([0,T ];L2p

x (T2))

� ‖F‖L1([0,T ];L2(T2)) (2.13)

for any 0 < T ≤ 1.

Proof We let

s = 1 − 1

p + δ
− 2

2p
= 1 − 1

p + δ
− 1

p
,

so that (p + δ, 2p, s) satisfies the scaling condition in Lemma 2.8. By Minkowski’s
integral inequality and Lemma 2.8, we obtain

∥∥∥∥
∫ t

0
S(t − t ′)F(t ′)dt ′

∥∥∥∥
L p+δ
T L2p

x

�
∫ T

0
‖1[0,t](t ′)S(t − t ′)F(t ′)‖

L p+δ
T L2p

x
dt ′

�
∫ T

0
‖F(t ′)‖Hs−1

x
dt ′
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≤ ‖F‖L1
T L

2
x
,

so that (2.13) follows. ��
Lemma 2.11 Let S(t) be as in (1.7). Then, given s ≤ 1, we have

∥∥∥∥
∫ t

0
S(t − t ′)F(t ′)dt ′

∥∥∥∥
C([0,T ];Hs

x (T2))

� ‖F‖L1([0,T ];L2
x (T

2)), (2.14)

∥∥∥∥∂t

∫ t

0
S(t − t ′)F(t ′)dt ′

∥∥∥∥
C([0,T ];Hs−1

x (T2))

� ‖F‖L1([0,T ];L2
x (T

2)) (2.15)

for any 0 < T ≤ 1.

Proof The estimate (2.14) follows from (1.7) and Minkowski’s integral inequality.
The estimate (2.15) follows similarlly by noting that

∂t

∫ t

0
S(t − t ′)F(t ′)dt ′ =

∫ t

0
∂t S(t − t ′)F(t ′)dt ′,

where

∂t S(t) = e− D
2 t

(
cos(t[[D]]) − D

2[[D]] sin(t[[D]])
)

.

��

3 Local well-posedness of SvNLW

In this section, we prove Theorem 1.1, pathwise local well-posedness for SvNLW
(1.1). As mentioned in Sect. 1.2, we consider the following vNLW:

{
∂2t v + (1 − �)v + D∂tv + F(v + �) = 0

(v, ∂tv)|t=0 = (u0, u1)
(3.1)

for given initial data (u0, u1) ∈ Hs(T2), F(u) = |u|p−1u, and � is the stochastic
convolution defined in (1.8). By Lemma 2.5, we can fix a good ω ∈ � such that

� = �(ω) ∈ C([0, T ];W 1
2−α−ε,∞(T2)) for α < 1

2 and sufficiently small ε > 0,
so that (3.1) becomes a deterministic equation. Then, we have the following pathwise
local well-posedness of (3.1).

Proposition 3.1 Let p > 1 and α < 1
2 . Define q, r , and σ as follows.

(i) When 1 < p < 2, set q = 2 + δ, r = 4+2δ
1+δ

, and σ = 0, for some sufficiently
small δ > 0.
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(ii) When p ≥ 2, set q = p + δ, r = 2p, and σ = 1− 1
p+δ

− 1
p , for some arbitrary

δ > 0.

Let s ≥ σ . Then, (3.1) is pathwise locally well-posed inHs(T2). More precisely, given
any (u0, u1) ∈ Hs(T2), there exists 0 < T = Tω(u0, u1) ≤ 1 and a unique solution

v = (v, ∂tv) to (3.1) in the class

(v, ∂tv) ∈ C([0, T ];Hσ (T2)) and v ∈ Lq([0, T ]; Lr (T2)).

Note that Theorem 1.1 follows immediately from Proposition 3.1. The main idea
of the proof of Proposition 3.1 comes from [23].

Proof We first consider the case when p ≥ 2. We write (3.1) in the Duhamel formu-
lation:

v(t) = �(v) := V (t)(u0, u1) −
∫ t

0
S(t − t ′)F(v + �)(t ′)dt ′, (3.2)

where V (t) and S(t) are as defined in (1.6) and (1.7), respectively. Let 
�(v) =
(�(v), ∂t�(v)) and 
v = (v, ∂tv). Given 0 < T ≤ 1, we define the space X (T )

as

X σ (T ) = X σ
1 (T ) × X σ

2 (T ),

where

X σ
1 (T ) := C([0, T ]; Hσ (T2)) ∩ L p+δ([0, T ]; L2p(T2)),

X σ
2 (T ) := C([0, T ]; Hσ−1(T2)).

Here, δ > 0 is arbitrary and σ = 1 − 1
p+δ

− 1
p . Note that this choice of σ along with

the L p+δ
T L2p

x norm satisfies the scaling condition in Lemma 2.8. Our goal is to show
that 
� is a contraction on a ball in X σ (T ) for some 0 < T ≤ 1.

By (3.2), Lemma 2.8, (1.6), Lemmas 2.10 and 2.11, and Sobolev’s inequality with
the fact that |T2| = 1, we have

‖
�(v)‖X σ (T ) � ‖(u0, u1)‖Hσ + ∥∥|v + �|p∥∥L1
T L

2
x

� ‖(u0, u1)‖Hs + T θ
(
‖v‖p

L p+δ
T L2p

x
+ ‖�‖p

L p+δ
T L2p

x

)
� ‖(u0, u1)‖Hs + T θ

(
‖
v‖p

X σ (T )
+ ‖�‖p

CT W
1
2−α−ε,∞
x

) (3.3)

for some θ > 0 and sufficiently small ε > 0.
For the difference estimate, we use the idea from Oh–Okamoto–Pocovnicu [32].

Noticing that F ′(u) = p|u|p−1, we use (3.2), Lemmas 2.8, 2.10 and 2.11, the funda-
mental theorem of calculus, Minkowski’s integral inequality, Hölder’s inequality, and
Sobolev’s inequality to obtain
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‖
�(v) − 
�(w)‖X σ (T ) � ‖F(v + �) − F(w + �)‖L1
T L

2
x

=
∥∥∥∥

∫ 1

0
F ′(w + � + τ(v − w))(v − w)dτ

∥∥∥∥
L1
T L

2
x

�
∫ 1

0
‖w + � + τ(v − w)‖p−1

L p
T L

2p
x

‖v − w‖
L p
T L

2p
x
dτ

� T θ
(
‖v‖p−1

L p+δ
T L2p

x
+ ‖w‖p−1

L p+δ
T L2p

x
+ ‖�‖p−1

L p+δ
T L2p

x

)
‖v − w‖

L p+δ
T L2p

x

� T θ
(
‖
v‖p−1

X σ (T )
+ ‖ 
w‖p−1

X σ (T )
+ ‖�‖p−1

CT W
1
2 −α−ε,∞
x

)
‖
v − 
w‖X σ (T )

(3.4)

for some θ > 0 and sufficiently small ε > 0.
Thus, by choosing T = Tω(‖(u0, u1)‖Hs ) > 0 small enough, we obtain that 
� is

a contraction on the ball BR ⊂ X σ (T ) of radius R ∼ 1 + ‖(u0, u1)‖Hs . Note that at
this point, the uniqueness of the solution v only holds in the ball BR , but we can use
a standard continuity argument to extend the uniqueness of v to the entire X σ (T ).

For the case when 1 < p < 2, we may have p + δ < 2, so that Lemma 2.8 may
not work for the L p+δ

T L2p
x norm. Instead, we consider the Lq

T L
r
x norm with q = 2+ δ

and r = 4+2δ
1+δ

, where δ > 0 is small enough so that r is close enough to 4. We also set
σ = 0, so that that this choice of σ along with this Lq

T L
r
x norm satisfies the scaling

condition in Lemma 2.8. Note that we also need to modify the definition of X σ
1 (T )

using this Lq
T L

r
x norm. We then modify (3.3) as follows. By (3.2), Lemma 2.8, (1.6),

Lemmas 2.10 and 2.11, and Sobolev’s inequality, we have

‖
�(v)‖X 0(T ) � ‖(u0, u1)‖H0 + ∥∥|v + �|p∥∥L1
T L

2
x

� ‖(u0, u1)‖Hs + T θ
(
‖v‖p

L2+δ
T L2p

x
+ ‖�‖p

L p+δ
T L2p

x

)
� ‖(u0, u1)‖Hs + T θ

(
‖
v‖p

X 0(T )
+ ‖�‖p

CT W
1
2−α−ε,∞
x

)

for some θ > 0. Here, we can ensure that 2p ≤ r = 4+2δ
1+δ

for any 1 < p < 2 by
choosing δ = δ(p) > 0 small enough. A similar modification can be applied to (3.4)
to obtain a difference estimate, which then allows us to close the contraction argument.

��
Remark 3.2 We point out that the local well-posedness result of vNLW (3.1) can be
improved using the inhomogeneous Strichartz estimates. In particular, we can show
that (3.1) is locally well-posed in Hs(T2) as long as s ≥ scrit (with a strict inequality
when p = 3), where scrit is the critical regularity as defined in (1.4). For details, see
Theorem A.6 and Remark A.7.
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4 Global well-posedness of SvNLW

In this section, we aim to prove Theorem 1.3, i.e. pathwise global well-posedness
of SvNLW (1.1). As mentioned in Sect. 1.2, we prove Theorem 1.3 by studying the
Eq. (1.10) for v with (v, ∂tv)|t=0 = (u0, u1), for given initial data (u0, u1) ∈ Hs(T2)

of (1.1).
Fix an arbitrary T ≥ 1. In view of Proposition 3.1, in order to show well-

posedness of (3.1) on [0, T ], it suffices to show that the Hσ -norm of the solution

v(t) = (v(t), ∂tv(t)) to (3.1) remains finite on [0, T ], where σ is as defined in Propo-
sition 3.1. This will allow us to iteratively apply the pathwise local well-posedness
result in Proposition 3.1.

In fact, we show that the solution 
v(t) belongs to H1(T2). Let 0 < t ≤ 1. From
Lemma 2.7, we have

‖V (t)(u0, u1)‖H1 � (1 + t−1+σ )‖(u0, u1)‖Hσ . (4.1)

Then, let 0 < T0 ≤ 1 be the local existence time as in the proof of Proposition 3.1.
Thus, given s ≥ σ, by (3.2), (4.1), Lemma 2.11, Hölder’s inequality, and Sobolev’s
inequality, we have that for 0 < t ≤ T0,

‖
v(t)‖H1 � (1 + t−1+σ )‖(u0, u1)‖Hσ + ‖(v + �)p‖L1
T0
L2
x

� (1 + t−1+σ )‖(u0, u1)‖Hs + T θ
0

(
‖v‖p

Lq
T0
Lrx

+ ‖�‖p

CT0W
1
2−α−ε,∞
x

)
,
(4.2)

where δ > 0, ε > 0 are sufficiently small, θ > 0, and q, r are as defined in the
statement of Proposition 3.1. Here, due to Lemma 2.5, we can fix a good ω ∈ � such

that� = �(ω) ∈ C([0, T0];W 1
2−α−ε,∞(T2)) for α < 1

2 and sufficiently small ε > 0,
so that we know from (4.2) that ‖
v(t)‖H1 < ∞. A standard argument then shows that

v ∈ C((0, T0];H1(T2)). Thus, our main goal is to control the H1-norm of 
v(t) on
[0, T ] by bounding the energy E(
v) defined in (1.11).

For the following computation, we need to work with the smooth solution
(vN , ∂tvN ) to the truncated equation with initial data (πNv0, πNv1), where πN is
the frequency truncation onto the frequencies {|n| ≤ N }. After establishing an upper
bound for E(
v(t)) with the implicit constant independent of N , we can take N → ∞
by using Proposition 3.1 (specifically, the continuous dependence of a solution on the
initial data). Here, we omit details and work with (v, ∂tv) instead for simplicity. See,
for example, [34] for a standard argument.

4.1 Case 1 < p ≤ 3

In this case, we follow the globalization argument by Burq–Tzvetkov [7]. For sim-
plicity of notation, we set E(t) = E(
v(t)).
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Given T > 0, we fix 0 < t ≤ T . By (1.11) and (1.10), we have

∂t E(t) =
∫
T2

∂tv
(
∂2t v + (1 − �)v + |v|p−1v

)
dx

≤ −
∫
T2

∂tv
(|v + �|p−1(v + �) − |v|p−1v

)
dx .

(4.3)

Let F(u) = |u|p−1u, so that we can compute F ′(u) = p|u|p−1. Thus, by the funda-
mental theorem of calculus, we have

|v + �|p−1(v + �) − |v|p−1v = F(v + �) − F(v)

= �

∫ 1

0
F ′(v + τ�)dτ

� |�||v|p−1 + |�|p.
(4.4)

Combining (4.3) and (4.4) and then applying the Cauchy-Schwartz inequality, we
obtain

∂t E(t) � ‖�‖L∞
x

∫
T2

|∂tv||v|p−1dx +
∫
T2

|∂tv||�|pdx

≤ ‖�‖L∞
x

( ∫
T2

(∂tv)2dx

) 1
2
( ∫

T2
|v|2(p−1)dx

) 1
2

+ ‖�‖2pL∞
x

( ∫
T2

(∂tv)2dx

) 1
2

≤ C(�)E(t),

(4.5)

as long as 2(p − 1) ≤ p + 1, or equivalently, p ≤ 3. By Gronwall’s inequality on
(4.5), we get

E(t) � eC(�)t

for any 0 < t ≤ T .

4.2 Case 3 < p ≤ 5

In this case, we follow the idea introduced by Oh–Pocovnicu [34]. See also [27, 29,
39] for similar arguments. In this setting, we let α < 2

p−1 − 1
2 , the reason of which

will become clear in the following steps.
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By (1.11), (1.10), and Taylor’s theorem, we have

∂t E(t) =
∫
T2

∂tv
(
∂2t v + (1 − �)v + |v|p−1v

)
dx

= −
∫
T2

∂tv
(|v + �|p−1(v + �) − |v|p−1v

)
dx −

∫
T2

(
D

1
2 ∂tv

)2
dx

≤ −p
∫
T2

∂tv · |v|p−1�dx − p(p − 1)

2

∫
T2

∂tv · |v + θ�|p−3(v + θ�)�2dx

=: A1 + A2, (4.6)

where θ ∈ (0, 1). To estimate A2, by the Cauchy-Schwartz inequality and Cauchy’s
inequality, we have

|A2| �
∫
T2

|∂tv|(|v|p−2�2 + � p)dx
�

(∫
T2

(∂tv)2dx

)1/2(
‖�‖4L∞

x

∫
T2

|v|2(p−2)dx + ‖�‖2p
L2p
x

)1/2

� (1 + ‖�‖4L∞
x

)E(t) + ‖�‖p

L2p
x

, (4.7)

where in the last inequality, we need 2(p− 2) ≤ p+ 1, which is equivalent to p ≤ 5.
To estimate A1, for 0 < t1 ≤ t2 ≤ T , by integration by parts and Young’s inequality,
we have∫ t2

t1
A1dt

′ = −
∫ t2

t1

∫
T2

∂t (|v|p−1v)�dxdt ′

= −
∫
T2

|v(t2)|p−1v(t2)�(t2)dx +
∫
T2

|v(t1)|p−1v(t1)�(t1)dx

+
∫ t2

t1

∫
T2

|v|p−1v(∂t�)dxdt ′

� ε‖v(t2)‖p+1

L p+1
x

+ 1

ε
‖�(t2)‖p+1

L p+1
x

+ ‖v(t1)‖p+1

L p+1
x

+ ‖�(t1)‖p+1

L p+1
x

+
∫ t2

t1

∫
T2

|v|p−1v(∂t�)dxdt ′, (4.8)

where 0 < ε < 1. We see in Remark 2.6 that ∂t� ∈ C([0, T ];W− 1
2−α−,∞(T2)). By

duality, Hölder’s inequality, Lemma 2.3 (i), and Lemma 2.4, we obtain

∫ t2

t1

∫
T2

|v|p−1v(∂t�)dxdt ′

=
∫ t2

t1

∫
T2

〈∇〉 1
2+α+(|v|p−1v)〈∇〉− 1

2−α−(∂t�)dxdt ′

�
∫ t2

t1
‖v‖p−1

L p+1
x

∥∥〈∇〉 1
2+α+v(t ′)

∥∥
L

p+1
2

x

∥∥〈∇〉− 1
2−α−(∂t�)(t ′)

∥∥
L∞
x
dt ′

123



918 Stoch PDE: Anal Comp (2024) 12:898–931

� ‖∂t�‖
CT W

− 1
2−α−,∞

x

∫ t2

t1
E(t ′)

p−1
p+1 ‖〈∇〉v‖

2
p−1

L2
x

‖v‖
p−3
p−1

L p+1
x

dt ′

� ‖∂t�‖
CT W

− 1
2−α−,∞

x

∫ t2

t1
E(t ′)dt ′, (4.9)

where we require that

1

2
+ α+ = 2

p − 1
,

which is equivalent to α < 2
p−1 − 1

2 . By combining (4.6), (4.7), (4.8), and (4.9), we
have

E(t2) ≤ (1 + C1(�))

∫ t2

t1
E(t ′)dt ′ + C2(�, v(t1)).

By Gronwall’s inequality, we get

E(t) � eC(�)t

for any 0 < t ≤ T .

4.3 Case p > 5

In this case, we follow the idea byLatocca [24]. In this setting,we also letα < 2
p−1− 1

2 .
We need the following lemma to close the energy estimates in the Gronwall argu-

ment. We define βp := � p−3
2 �, F(u) := |u|p−1u, and sp := p−3

p−1 .

Lemma 4.1 For any 0 < t ≤ T and every integer 1 ≤ k ≤ βp, we have

∣∣∣∣
∫
T2

F (k−1)(v(t))�(t)k−1∂t�(t)dx

∣∣∣∣
� g

(‖�‖L∞([0,T ];X), ‖〈∇〉−1∂t�‖L∞([0,T ];Y )

)
(1 + E(t)),

where g is a polynomial with positive coefficients, and

X := L∞(T2) ∩ B
1−sp
p+1
2 ,1

(T2) and Y := L∞(T2) ∩ B
sp
∞,1(T

2).

Note that given α < 2
p−1 − 1

2 , by Lemma 2.5, Remark 2.6, and Lemma 2.1 (ii), we
have

g
(‖�‖L∞([0,T ];X), ‖〈∇〉−1∂t�‖L∞([0,T ];Y )

)
< ∞

almost surely.
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Let us first assume Lemma 4.1 and work on the energy bound. As in the case when
p > 3, we can compute that for 0 < t ≤ T ,

∂t E(t) ≤ −
∫
T2

∂tv(F(v + �) − F(v))dx . (4.10)

For our convenience we compute that for k ∈ Z+,

F (k)(u) =
{
Cp,k |u|p−k−1u for k even,

Cp,k |u|p−k for k odd.

By Taylor’s formula at the point v(t, x) with integral remainder up to the order βp =
� p−3

2 �, we have

F(v + �) − F(v) =
βp∑
k=1

1

k! F
(k)(v)�k +

∫ v+�

v

F (βp+1)(τ )

βp! (v + � − τ)βpdτ.

Let 0 < t1 ≤ t2 ≤ T . By integrating (4.10) from t1 to t2, we can write

E(t2) ≤ E(t1) +
βp∑
k=1

Ck Ik + CpR, (4.11)

where

Ik := −
∫ t2

t1

∫
T2

∂tvF
(k)(v)�kdxdt ′ for 1 ≤ k ≤ βp,

R := −
∫ t2

t1

∫
T2

∫ v+�

v

∂tvF
(βp+1)(τ )(v + � − τ)βp dτdxdt ′.

We first estimate R. Note that for τ ∈ [v, v + �], we have

|F (βp+1)(τ )| � |v|p−βp−1 + |�|p−βp−1.

Thus, by Hölder’s inequality and Young’s inequality, we have

R �
∫ t2

t1

∫
T2

∂tv(|v|p−βp−1|�|βp+1 + |�|p)dxdt ′

�
∫ t2

t1
‖∂tv(t ′)‖L2

x
‖v(t ′)‖p−βp−1

L p+1
x

‖�(t ′)‖βp+1

L
rp (βp+1)
x

dt ′

+
∫ t2

t1
‖∂tv(t ′)‖2L2

x
dt ′ + ‖�‖2p

L2p
T L2p

x

≤ ‖�‖2p
L2p
T L2p

x
+

(
1 + ‖�‖βp+1

L∞
T L

rp (βp+1)
x

)
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×
∫ t2

t1
max

{
E(t ′), E(t ′)

1
2+ p−βp−1

p+1

}
dt ′, (4.12)

where rp satisfies 1
2 + p−βp−1

p+1 + 1
rp

= 1. Since βp = � p−3
2 � ≥ p−3

2 , we have
p−βp−1
p+1 ≤ 1

2 , so that

R � ‖�‖2p
L2p
T L2p

x
+

(
1 + ‖�‖βp+1

L∞
T L

rp (βp+1)
x

)∫ t2

t1
(1 + E(t ′))dt ′.

We now estimate Ik . By Fubini’s theorem and integration by parts in time, we have

|Ik | =
∣∣∣∣ −

∫
T2

∫ t2

t1
∂t (F

(k−1)(v))�kdt ′dx
∣∣∣∣

≤
∣∣∣∣
∫
T2

F (k−1)(v(t2))�
k(t2)dx

∣∣∣∣ +
∣∣∣∣
∫
T2

F (k−1)(v(t1))�
k(t1)dx

∣∣∣∣
+

∣∣∣∣k
∫
T2

∫ t2

t1
F (k−1)(v(t ′))�(t ′)k−1∂t�(t ′)dt ′dx

∣∣∣∣
�

∫
T2

|v(t2)|p−k+1|�(t2)|k + |v(t1)|p−k+1|�(t1)|kdx

+
∣∣∣∣
∫ t2

t1

∫
T2

F (k−1)(v(t ′))�(t ′)k−1∂t�(t ′)dxdt ′
∣∣∣∣

= Jk + Kk . (4.13)

To handle Jk , by Hölder’s inequality and Young’s inequality, we obtain

Jk ≤ E(t2)
p−k+1
p+1 ‖�(t2)‖k

L p+1
x

+ E(t1)
p−k+1
p+1 ‖�(t1)‖k

L p+1
x

≤ εE(t2) + C1E(t1) + C2‖�‖p+1

L∞
T L p+1

x
,

(4.14)

where 0 < ε < 1. To deal with Kk , by Lemma 4.1,

Kk � g
(‖�‖L∞([0,T ];X), ‖〈∇〉−1∂t�‖L∞([0,T ];Y )

)(
1 +

∫ t2

t1
E(t ′)dt ′

)
. (4.15)

By combining (4.11), (4.12), (4.13), (4.14), (4.15), we obtain

E(t2) �
(
1 + ‖�‖βp+1

L∞
T L

rp (βp+1)
x

+ g
(‖�‖L∞([0,T ];X), ‖〈∇〉−1∂t�‖L∞([0,T ];Y )

))

×
(
1 +

∫ t2

t1
E(t ′)dt ′

)
+ ‖�‖2p

L2p
T L2p

x
+ ‖�‖p+1

L∞
T L p+1

x
+ E(t1).

We can then use Gronwall’s inequality to get the desired bound.
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We now provide the proof of Lemma 4.1.

Proof of Lemma 4.1 Recall that sp = p−3
p−1 . We first consider the case when k ≥ 2. By

the Fourier–Plancherel theorem, we have

∣∣∣∣
∫
T2

F (k−1)(v(t))�(t)k−1∂t�(t)dx

∣∣∣∣
=

∣∣∣∣
1∑

j ′=−1

∑
j≥0

∫
T2

P j (F
(k−1)(v(t))�(t)k−1)P j+ j ′(∂t�(t))dx

∣∣∣∣
�

∑
j>2

∫
T2

|P j (F
(k−1)(v(t))�(t)k−1)||P j (∂t�(t))|dx

+
2∑
j=0

∫
T2

|P j (F
(k−1)(v(t))�(t)k−1)||P j (∂t�(t))|dx

=: I1 + I2. (4.16)

Let rk := (k−1)(p+1)
k . To estimate I2, by Hölder’s inequality, Bernstein’s inequality,

and Young’s inequality, we have

I2 � ‖�(t)‖k−1
L
rk
x

‖v(t)‖p−k+1

L p+1
x

2∑
j=0

‖P j∂t�(t)‖L∞
x

� ‖�(t)‖k−1
L
rk
x

‖〈∇〉−1∂t�(t)‖L∞
x
E(t)

p−k+1
p+1

� E(t) + ‖�‖rk
L∞
T L

rk
x

‖〈∇〉−1∂t�‖
p+1
k

L∞
T L∞

x
.

It remains to estimate I1. By Hölder’s inequality, Bernstein’s inequality, and then
Hölder’s inequality for series,

I1 �
∑
j>2

2 j(1−sp)‖P j (F
(k−1)(v(t))�(t)k−1)‖L1

x
2 jsp‖P j (〈∇〉−1∂t�(t))‖L∞

x

≤ ‖F (k−1)(v(t))�(t)k−1‖
B
1−sp
1,∞

‖〈∇〉−1∂t�‖Bsp
∞,1

.

Then, by Corollary 2.2, we have

‖F (k−1)(v(t))�(t)k−1‖
B
1−sp
1,∞

� ‖F (k−1)(v(t))‖
B
1−sp
p+1

p+2−k ,∞
‖�(t)k−1‖

L
p+1
k−1

+‖|v(t)|p−k+1‖
L

p+1
p−k+1

‖�(t)k−1‖
B
1−sp
pk ,∞

� ‖F (k−1)(v(t))‖
B
1−sp
p+1

p+2−k ,∞
‖�(t)‖k−1

L p+1
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+E(t)
p−k+1
p+1 ‖�(t)k−1‖

B
1−sp
pk ,∞

, (4.17)

where pk satisfies 1
pk

+ p−k+1
p+1 = 1. By Lemma 2.3 (ii), we have

‖�(t)k−1‖
B
1−sp
pk ,∞

� ‖�(t)‖
B
1−sp
pk ,∞

‖�(t)‖k−2
L∞

≤ ‖�(t)‖
B
1−sp
p+1
2 ,∞

‖�(t)‖k−2
L∞ .

(4.18)

By Lemma 2.3 (ii), Lemma 2.1 (ii), and Lemma 2.4, we have

‖F (k−1)(v(t))‖
B
1−sp
p+1

p+2−k ,∞
� ‖v(t)‖

B
1−sp
p+1
2 ,∞

∥∥|v(t)|p−k
∥∥
L

p+1
p−k

� ‖v(t)‖
W 1−sp ,

p+1
2

E(t)
p−k
p+1

� ‖〈∇〉v(t)‖1−β

L2 ‖v(t)‖β

L p+1E(t)
p−k
p+1 ,

where β ∈ [0, sp] satisfies 2
p+1 = 1−sp

2 + β
p+1 , and so β = p−3

p−1 = sp. Thus, we
obtain

‖F (k−1)(v(t))‖
B
1−sp
p+1

p+2−k ,∞
� E(t)

1−β
2 + β

p+1+ p−k
p+1 = E(t)

2
p+1+ p−k

p+1

� 1 + E(t). (4.19)

By combining (4.17), (4.18), and (4.19), we obtain the desired bound for I1.
For the case when k = 1, after (4.16), we have the estimate I2 � E(t) +

‖〈∇〉−1∂t�‖p+1
L∞
T L∞

x
. For the term I1, by the estimate in (4.19), we have

I1 � ‖F(v(t))‖
B
1−sp
1,∞

‖〈∇〉−1∂t�‖Bsp
∞,1

� ‖〈∇〉−1∂t�‖Bsp
∞,1

(1 + E(t)),

as desired. ��
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Appendix A: On local well-posedness of subcritical vNLW

In this appendix, we aim to show that the deterministic viscous NLW is locally well-
posed inHs(T2) with s ≥ scrit, where we recall that scrit is defined by

scrit := max

(
1 − 2

p − 1
, 0

)
. (A.1)

More precisely, we prove local well-posedness of the following subcritical vNLW:

{
∂2t u + (1 − �)u + D∂t u ± |u|p−1u = 0

(u, ∂t u)|t=0 = (u0, u1),
(A.2)

where (u0, u1) ∈ Hs(T2) and s ≥ scrit (with a strict inequality when p = 3). To
achieve this,wewill need the inhomogeneousStrichartz estimates for the linear viscous
wave equation on T2.

A.1 The inhomogeneous Strichartz estimates

In this subsection, we prove the Strichartz estimates for the inhomogeneous linear
viscous wave equation onTd . To achieve this, we first establish the following estimate
for the linear operator S(t) defined in (1.7).

Lemma A.1 Let 1 ≤ p ≤ 2 ≤ q ≤ ∞. Then, we have

‖S(t)φ‖Lq (Td ) � t1−d( 1
p− 1

q )‖φ‖L p(Td )

for any 0 < t ≤ 1

Proof By (1.7) and applying the Schauder estimate (Lemma 2.7) twice, we obtain

‖S(t)φ‖Lq (Td ) =
∥∥∥∥e− D

4 t
sin(t[[D]])

[[D]] e− D
4 tφ

∥∥∥∥
Lq (Td )

� t−d( 12− 1
q )

∥∥∥∥ sin(t[[D]])
[[D]] e− D

4 tφ

∥∥∥∥
L2(Td )

≤ t1−d( 12− 1
q )

∥∥e− D
4 tφ

∥∥
L2(Td )

� t1−d( 1
p − 1

q )‖φ‖L p(Td ),

as desired. ��
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We now establish the Strichartz estimates for the inhomogeneous linear viscous
wave equation on T

d . We say that u is a solution to the following inhomogeneous
linear viscous wave equation:

{
∂2t u + (1 − �)u + D∂t u = f

(u, ∂t u)|t=0 = (φ0, φ1),
(A.3)

if u satisfies the following Duhamel formulation:

u(t) = V (t)(φ0, φ1) +
∫ t

0
S(t − t ′) f (t ′)dt ′,

where V (t) and S(t) are as defined in (1.6) and (1.7), respectively.

Lemma A.2 Given s ≥ 0, suppose that 1 < q̃ ≤ 2 < q < ∞, 1 ≤ r̃ ≤ 2 ≤ r ≤ ∞
satisfy the following scaling condition:

1

q
+ d

r
= d

2
− s = 1

q̃
+ d

r̃
− 2. (A.4)

Then, a solution u to the inhomogeneous linear viscous wave Eq. (A.3) satisfies the
following inequality:

‖(u, ∂t u)‖CTHs
x (T

d ) + ‖u‖Lq
T L

r
x (T

d ) � ‖(φ0, φ1)‖Hs (Td ) + ‖ f ‖
Lq̃
T L

r̃
x (T

d )
, (A.5)

for all 0 < T ≤ 1.

Proof By (1.6), we have

∥∥(
V (t)(φ0, φ1), ∂t V (t)(φ0, φ1)

)∥∥
CTHs

x (T
d )

� ‖(φ0, φ1)‖Hs (Td ). (A.6)

By Lemma 2.8, we have

‖V (t)(φ0, φ1)‖Lq
T L

r
x (T

d ) � ‖(φ0, φ1)‖Hs (Td ). (A.7)

We then use Lemma 3.5 in [21] (which is in the Rd setting, but the proof also works
in the Td setting with Lemma A.1 in hand) to obtain

∥∥∥∥
∫ t

0
S(t − t ′) f (t ′)dt ′

∥∥∥∥
Lq
T L

r
x (T

d )

� ‖ f ‖
Lq̃
T L

r̃
x (T

d )
. (A.8)

It remains to show∥∥∥∥
∫ t

0
S(t − t ′) f (t ′)dt ′

∥∥∥∥
CT Hs

x (Td )

� ‖ f ‖
Lq̃
T L

r̃
x (T

d )
(A.9)
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and ∥∥∥∥∂t

∫ t

0
S(t − t ′) f (t ′)dt ′

∥∥∥∥
CT H

s−1
x (Td )

� ‖ f ‖
Lq̃
T L

r̃
x (T

d )
, (A.10)

so that (A.5) follows from (A.6), (A.7), (A.8), (A.9), and (A.10).
To show that the inequality (A.9) holds, we use the Littlewood-Paley decomposition

as in Lemma 3.6 in [21]. In view of the proof of Lemma 3.6 in [21], we know that it
suffices to show (A.9) for all f such that f̂ is supported in {n ∈ Z

d : 2 j−1 ≤ |n| ≤
2 j+1} for all j ∈ Z+ (the case for {n ∈ Z

d : 0 ≤ |n| ≤ 2} follows in a similar manner)
with the underlying constant independent of j . Fix 0 < t < T . By Minkowski’s
integral inequality, Hölder’s inequality in n, Hausdorff-Young inequality, Hölder’s
inequality in t ′ (along with the fact that the number of lattice points inside a ball of
radius R in Rd is O(Rd)), and a change of variable, we have

∥∥∥∥
∫ t

0
S(t − t ′) f (t ′)dt ′

∥∥∥∥
CT Hs

x

�
∫ t

0

( ∑
n∈Z2

|n|2s
∣∣∣∣e− |n|

2 (t−t ′) sin((t − t ′)[[n]])
[[n]] f̂ (t ′, n)

∣∣∣∣
2)1/2

dt ′

� 2( j+1)s
∫ t

0
(t − t ′)e2 j−2(t−t ′)

( ∑
n∈Z2

∣∣ f̂ (t ′, n)
∣∣2)1/2

dt ′

� 2( j+1)s
∫ t

0
(t − t ′)e2 j−2(t−t ′)(2( j+1)d) r̃ ′−2

2̃r ′
∥∥ f̂ (t ′, n)

∥∥

̃r

′
n
dt ′

� 2( j+1)(s+ d
r̃ − d

2 )

(∫ t

0

∣∣∣(t − t ′)e2 j−2(t−t ′)
∣∣∣q̃ ′

dt ′
)1/q̃ ′

‖ f ‖
Lq̃
T L

r̃
x

� 2( j+1)(s+ d
r̃ − d

2 + 1
q̃ −2)‖ f ‖

Lq̃
T L

r̃
x
.

By using the second equality in the scaling condition (A.4), we obtain the desired
inequality with the underlying constant independent of j , and so the inequality (A.9)
follows. The inequality (A.10) follows in a similar manner. ��
Remark A.3 As in the case of the homogeneous Strichartz estimates (Lemma 2.8), the
Strichartz estimates for the inhomogeneous linear viscous wave equation on T

d also
hold for a larger class of pairs (q, r) and (q̃, r̃) compared to the Strichartz estimates
for the usual linear wave equations [15, 17, 19, 25]. Again, this is due to the parabolic
smoothing effect. Note that this is also true on R

d (see [21]).

We complete this subsection by making the following observation. Recall that we
are considering the viscous NLW onT2 with nonlinearity |u|p−1u for p > 1. Suppose
that we can find pairs (q, r) and (q̃, r̃) satisfying the scaling condition (A.4) such that

q > pq̃ and r ≥ p̃r .
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Then, by Hölder’s inequality and the fact that |T2| = 1, we have

∥∥|u|p−1u
∥∥
Lq̃
T L

r̃
x

≤ T
1
q̃ − p

q ‖u‖p
Lq
T L

r
x
.

Note that the power of T is positive when q > pq̃ . The following lemma shows that
there exist such pairs (q, r) and (q̃, r̃).

Lemma A.4 Let scrit be as defined in (A.1). Given scrit < s < 1, there exist 1 < q̃ ≤
2 < q < ∞, 1 ≤ r̃ ≤ 2 ≤ r ≤ ∞ satisfying the scaling condition (A.4) such that

q > pq̃ and r ≥ p̃r . (A.11)

Proof In view of Lemma 3.3 in [17], given 0 < s < 1, we have

min

(
q

q̃
,
r

r̃

)
≤ 3 − s

1 − s
,

and the equality holds by taking, for example,

(q, r) =
(
3 − s

1 − s
δ,

2

1 − s − 1−s
(3−s)δ

)
and (q̃, r̃) =

(
δ,

2

3 − s − 1
δ

)
, (A.12)

where δ = δ(s) > 1 is sufficiently close to 1. Moreover, we note that 3−s
1−s > p if and

only if s > 1 − 2
p−1 . Thus, as long as scrit < s < 1, there exist pairs (q, r) and (q̃, r̃)

that satisfy (A.11). ��
Remark A.5 In the case when p > 3 and s = scrit = 1 − 2

p−1 > 0, we have

min

(
q

q̃
,
r

r̃

)
≤ 3 − s

1 − s
= p,

so that we can only find pairs (q, r) and (q̃, r̃) that satisfy q = pq̃ and r = p̃r instead
of q > pq̃ and r ≥ p̃r . Such pairs do exist. One can take, for example, (q, r) and
(q̃, r̃) as in (A.12).

In the case when 1 < p ≤ 3 and s = scrit = 0, there does not exist any pair (q̃, r̃)
that satisfies 1 < q̃ ≤ 2, 1 ≤ r̃ ≤ 2, and the scaling condition (A.4) (with d = 2)
simultaneously. In this case, the inhomogeneous Strichartz estimates (Lemma A.2) no
longer applies, so that an alternative approach is needed to deal with this case.

A.2: Local well-posedness of subcritical vNLW

In this subsection, we prove the following theorem for the local well-posedness result
of vNLW (A.2).

Theorem A.6 Let p > 1 and let scrit be as in (A.1). Then, (A.2) is locally well-posed
inHs(T2) for
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(i) p �= 3: s ≥ scrit or (ii) p = 3: s > scrit.

More precisely, given any (u0, u1) ∈ Hs(T2), there exists 0 < T = T (u0, u1) ≤ 1
and a unique solution 
u = (u, ∂t u) to (A.2) in the class

(u, ∂t u) ∈ C([0, T ];Hs(T2)) and u ∈ Lq([0, T ]; Lr (T2)),

for some suitable q, r ≥ 2.

Proof For the proof, we only consider the case s < 1. We first consider the case
s > scrit. We write (A.2) in the Duhamel formulation:

u(t) = �(u) := V (t)(u0, u1) −
∫ t

0
S(t − t ′)F(u)(t ′)dt ′, (A.13)

where F(u) = |u|p−1u, V (t) is as defined in (1.6), and S(t) is as defined in (1.7). Let

�(u) = (�(u), ∂t�(u)) and 
u = (u, ∂t u).

Let (q, r) and (q̃, r̃) be as given in Lemma A.4, which guarantees that q > pq̃ and
r ≥ p̃r . Given 0 < T ≤ 1, we define the space Y(T ) as

Ys(T ) = Ys
1(T ) × Ys

2(T ),

where

Ys
1(T ) := C([0, T ]; Hs(T2)) ∩ Lq([0, T ]; Lr (T2)),

Ys
2(T ) := C([0, T ]; Hs−1(T2)).

Our goal is to show that 
� is a contraction on a ball in Ys(T ) for some 0 < T ≤ 1.
By (A.13), Lemma A.2, and Hölder’s inequality, we have

‖
�(u)‖Ys (T ) � ‖(u0, u1)‖Hs + ∥∥|u|p∥∥
Lq̃
T L

r̃
x

� ‖(u0, u1)‖Hs + T θ‖u‖p
Lq
T L

r
x

� ‖(u0, u1)‖Hs + T θ‖
u‖p
Ys (T )

(A.14)

for some θ > 0.
For the difference estimate, we use the idea from Oh–Okamoto–Pocovnicu [32].

Noticing that F ′(u) = p|u|p−1, we use (A.13), Lemma A.2, the fundamental theorem
of calculus, Minkowski’s integral inequality, and Hölder’s inequality to obtain

‖
�(u) − 
�(v)‖Ys (T ) � ‖F(u) − F(v)‖
Lq̃
T L

r̃
x

=
∥∥∥∥

∫ 1

0
F ′(v + τ(u − v))(u − v)dτ

∥∥∥∥
Lq̃
T L

r̃
x

�
∫ 1

0
‖v + τ(u − v)‖p−1

L pq̃
T L p̃r

x
‖u − v‖

L pq̃
T L p̃r

x
dτ
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� T θ
(
‖u‖p−1

Lq
T L

r
x
+ ‖v‖p−1

Lq
T L

r
x

)
‖u − v‖Lq

T L
r
x

� T θ
(
‖
u‖p−1

Ys (T )
+ ‖
v‖p−1

Ys (T )

)
‖
u − 
v‖Ys (T ).

for some θ > 0.
Thus, by choosing T = T (‖(u0, u1)‖Hs ) > 0 small enough, we obtain that 
� is a

contraction on the ball BR ⊂ Ys(T ) of radius R ∼ 1 + ‖(u0, u1)‖Hs .
In the case when p > 3 and s = scrit = 1− 2

p−1 > 0, we can only find pairs (q, r)
and (q̃, r̃) that satisfy q = pq̃ and r = p̃r (see Remark A.5). In this case, we modify
the argument as follows. By (A.13), Lemma A.2, and Hölder’s inequality, we obtain

‖�(u)‖Lq
T L

r
x

� ‖V (t)(u0, u1)‖Lq
T L

r
x
+ ∥∥|u|p∥∥

Lq̃
T L

r̃
x

� ‖V (t)(u0, u1)‖Lq
T L

r
x
+ ‖u‖p

Lq
T L

r
x

for some θ > 0 and sufficiently small ε > 0. A difference estimate on �(u) − �(v)

also holds by a similar computation. By the dominated convergence theorem, we have
‖u‖p

Lq
T L

r
x

→ 0 as T → 0. Thus, we can choose T = T (u0, u1) > 0 sufficiently small

such that ‖V (t)(u0, u1)‖Lq
T L

r
x

≤ 1
2η � 1, so that we can show that � is a contraction

on the ball of radius η in Lq
T L

r
x . Moreover, (A.14) gives

‖
u‖CTHs
x

= ‖
�(u)‖CTHs
x

� ‖(u0, u1)‖Hs + ‖u‖p
Lq
T L

r
x

< ∞,

so that 
u = (u, ∂t u) ∈ CTHs
x .

Lastly, we consider the case when 1 < p < 3 and s = scrit = 0. Note that
s = 0 along with the L3

T L
3
x norm satisfies the scaling condition (2.9) in Lemma 2.8.

By (A.13), Minkowski’s integral inequality, Lemma 2.8, Sobolev’s inequality, and
Hölder’s inequality, we obtain

‖�(u)‖L3
T L

3
x

� ‖V (t)(u0, u1)‖L3
T L

3
x
+

∫ T

0

∥∥1[0,t](t ′)S(t − t ′)
(|u|p−1u

)
(t ′)

∥∥
L3
T L

3
x
dt ′

� ‖(u0, u1)‖H0 +
∫ T

0

∥∥(|u|p−1u
)
(t ′)

∥∥
H−1
x
dt ′

� ‖(u0, u1)‖H0 + ∥∥|u|p∥∥L1
T L

1+
x

� ‖(u0, u1)‖H0 + T θ‖u‖L3
T L

3
x

for some θ > 0. Also, by (1.6) and (1.7), we easily obtain

‖
�(u)‖CTH0
x

� ‖(u0, u1)‖H0 + T θ‖u‖L3
T L

3
x
.

Similar difference estimates also hold, so that we can conclude using the standard
contraction argument. This finishes the proof. ��
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We finish this appendix by stating several remarks.

Remark A.7 (i) At this point, we do not know how to prove local well-posedness for
the cubic vNLW (with p = 3) in L2(T2), i.e. with s = scrit = 0. It would be of
interest to investigate if spaces of functions of bounded p-variation (i.e.U p- and
V p-spaces) such as those in [3, 32] can be applied to handle the cubic case.

(ii) A slight modification of the proof of Theorem A.6 yields local well-posedness
of SvNLW (1.1) inHs(T2) for all s ≥ scrit (with a strict inequality when p = 3),
which improves the local well-posedness result for SvNLW (1.1) in Theorem
1.1.

(iii) One can compare the local well-posedness result for vNLW (A.2) in Theorem
A.6 with the local well-posedness result for the usual NLW (see Remark 1.4 in
[17]):

∂2t u − �u ± |u|p−1u = 0.

Note that vNLW enjoys a better local well-posedness result than does the usual
NLW, thanks to the parabolic smoothing effect.

(iv) Note that the global well-posedness result of SvNLW (1.1) in Theorem 1.3
easily gives global well-posedness of vNLW (A.2) in the class Hs(T2) for
s ≥ max(0, 1 − 1

p+δ
− 1

p ), where δ > 0 is arbitrary. However, at this point,

we do not know how to prove global well-posedness of vNLW (A.2) in Hs(T2)

for scrit ≤ s < max(0, 1 − 1
p+δ

− 1
p ). The main difficulty for this range of s is

showing 
v(t) ∈ H1(T2) for all small enough t > 0, which is needed to guarantee
the finiteness of the energy E(
v) defined in (1.11).
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