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Abstract
In the present paper, we study the fractional incompressible Stochastic Navier–Stokes
equation on R

2, formally defined as

∂tv = − 1
2 (−�)θv − λv · ∇v + ∇ p + ∇⊥(−�)

θ−1
2 ξ, ∇ · v = 0 , (0.1)

where θ ∈ (0, 1], ξ is the space-time white noise on R+ × R
2 and λ is the coupling

constant. For any value of θ the previous equation is ill-posed due to the singularity
of the noise, and is critical for θ = 1 and supercritical for θ ∈ (0, 1). For θ = 1, we
prove that the weak coupling regime for the equation, i.e. regularisation at scale N
and coupling constant λ = λ̂/

√
log N , is meaningful in that the sequence {vN }N of

regularised solutions is tight and the nonlinearity does not vanish as N → ∞. Instead,
for θ ∈ (0, 1) we show that the large scale behaviour of v is trivial, as the nonlinearity
vanishes and v is simply converges to the solution of (0.1) with λ = 0.

Keywords SPDEs · Critical systems · Navier-Stokes · Infinite-dimensional operators

1 Introduction

The incompressible Navier–Stokes equation is a partial differential equation (PDE)
describing the motion of an incompressible fluid subject to an external forcing. It is
given by

∂tv = 1
2�v − λ̂v · ∇v + ∇ p − f , ∇ · v = 0 , (1.1)
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where v = v(t, x) is the velocity of the fluid at (t, x) ∈ R+ × R
d , ˆλ ∈ R is the

coupling constantwhich tunes the strength of the nonlinearity, p is the pressure, f the
forcing and the second equation is the incompressibility condition. For f a random
noise (which will be the case throughout the paper), we will refer to the above as to
the Stochastic Navier–Stokes (SNS) equation.

The SNS equation has been studied under a variety of assumptions on f . Most of
the literature focuses on the case of trace-class noise, for which existence, uniqueness
of solutions and ergodicity were proved (see e.g. [7, 10, 12, 21, 29] and the references
therein). The case of even rougher noises, e.g. space-time white noise and its deriva-
tives, which is relevant in the description of motion of turbulent fluids [27], was first
considered in d = 2 in [6], and later, thanks to the theory of Regularity Structures
[20] and the paracontrolled calculus approach [14], in dimension three [32] (see also
[22] for a global existence result in this latter case).

In the present work, we focus on dimension d = 2 and consider the fractional
stochastic Navier–Stokes equation driven by a conservative noise, which formally
reads

∂tv = − 1
2 (−�)θv − λ̂v · ∇v + ∇ p + ∇⊥(−�)

θ−1
2 ξ , ∇ · v = 0 . (1.2)

Here, θ is a strictly positive parameter, (−�)θ is the usual fractional Laplacian
[see (1.18) below for the definition of its Fourier transform], ∇⊥ def= (∂2,−∂1) and
ξ is a space-time white noise on R+ × R

2, i.e. a Gaussian process whose covariance
is given by

E[ξ(ϕ)ξ(ψ)] = 〈ϕ,ψ〉L2(R+×R
2) , ∀ϕ,ψ ∈ L2(R+ × R

2) . (1.3)

The choice of the forcing f = ∇⊥(−�)
θ−1
2 ξ in (1.2) ensures that, at least formally, the

spatial white noise on R
2, i.e. the Gaussian process whose covariance is that in (1.3)

but with R2-valued square-integrable ϕ, ψ , is invariant for the dynamics.
A rigorous analysis of (1.2) has so far only been carried out for θ > 1, which in

the language of Hairer [20, Ch. 8], corresponds to the so-called subcritical regime—
in [15], the authors proved existence of stationary solutions while uniqueness was
established in [19]. The goal of the present paper is instead to study the large-scale
behaviour of the fractional SNS in the critical and supercritical cases, i.e. θ = 1 and
θ ∈ (0, 1) respectively, for which not only the classical stochastic calculus tools but
also the pathwise theories of Regularity Structures [20] and paracontrolled calculus
[14] are not applicable.1

Tomotivate our results, let us first consider the vorticity formulation of (1.2). Setting
ω

def= ∇⊥ · v, ω solves

∂tω = − 1
2 (−�)θω − λ̂, (K ∗ ω) · ∇ω + (−�)

θ+1
2 ξ , (1.4)

1 Another way to explore the interplay between critical and supercritical would be to look at (1.2) with
θ = 1 in dimension d ≥ 2. An analysis similar to the one in the present paper seems to be possible but it is
left for future work.
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where K is the Biot–Savart kernel on R2 given by

K (x)
def= 1

ι

∫
R
2

y⊥

|y|2 e
−ιy·x dy , (1.5)

for y⊥ def= (y2,−y1). Note that the velocity v can be fully recovered from the vorticity
ω via v = K ∗ ω, so that (1.2) and (1.4) are indeed equivalent.

Due to the roughness of the noise, as written (1.4) is purely formal for any value of
θ ∈ (0, 1]. Therefore, in order to work with a well-defined object, we first regularise
the equation. Let �1 be a smooth spatial mollifier, the superscript 1 representing the
scale of the regularisation, and consider the regularised vorticity equation

∂tω
1 = − 1

2 (−�)θω1 − λ̂∇⊥ · �1 ∗
(
(K ∗ (�1 ∗ ω1)) · ∇(�1 ∗ ω1)

)
+ (−�)

1+θ
2 ξ .

(1.6)
Since we are interested in the large-scale behaviour of (1.4), we rescale ω1 according
to

ωN (t, x)
def= N 2ω1(t N 2θ , xN ) , (1.7)

so that ωN solves

∂tω
N = − 1

2 (−�)θωN − λ̂N 2θ−2N N [ωN ] + (−�)
1+θ
2 ξ , (1.8)

and the nonlinearity N N is defined according to

N N [ω] def= ∇⊥ · �N ∗
(
(K ∗ (�N ∗ ω)) · ∇(�N ∗ ω)

)

= ÷�N ∗
(
(K ∗ (�N ∗ ω))(�N ∗ ω)

)
. (1.9)

where �N (·) def= N 2�(N 2·) and we used ∇ · v = 0.
Note that as an effect of the scaling (1.7), the coupling constant λ̂ gains an N -

dependent factor which is order 1 in the critical regime θ = 1, while, for large N , it
vanishes polynomially in the supercritical regime θ ∈ (0, 1). The goal of the present
paper is twofold. For θ ∈ (0, 1), we will show that the nonlinearity simply goes to
0 and that the equation trivialises, in the sense that ωN converges to the solution of
the original fractional stochastic heat equation obtained by setting λ̂ = 0 in (1.8). At
criticality, i.e. θ = 1, instead the situation is more subtle. Logarithmic corrections to
scaling have been conjectured in a number of strictly related problems, most notably
[31] found them in the context of tracer particles in non-ideal fluids and [25] showed
that the viscosity for a two-dimensional lattice gas model diverges faster than log log t
for large times, and conjectured that the correct behaviour should be

√
log t . More

recently, other critical phenomena have been proven to display
√
log t-divergencies,

e.g. a diffusion in the curl of the two–dimensional Gaussian Free Field [5], which
is a prototype for a tracer particle evolving in an incompressible turbulent flow, or
SPDEs as the Anisotropic KPZ equation [3]. In view of these latter results, and more
specifically the last one [2] (and later [4]) tamed these divergencies by choosing the
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coupling constant in front of the non-linearity in such a way that it vanishes with N at
a suitable logarithmic order. We will do the same here and show that such a scaling,
which we will refer to as the weak coupling scaling, is indeed meaningful since on the
one hand subsequential limits for ωN exist and on the other the nonlinear term does
not vanish but is uniformly order 1 as N goes to infinity.

To have a feeling of how to choose the order of the coupling constant, we can
heuristically argue as follows. Let X be the solution of (1.8) with λ̂ = 0 and θ = 1, i.e.

X solves the linear stochastic heat equation with noise (−�)
1+θ
2 ξ . Upon writing (1.8)

in its mild formulation and performing a Picard iteration starting from X , the first term
we encounter is

Y N
t = λ̂

∫ t

0
e(t−s)�N N [Xs] ds

where et� is the usual heat semigroup. Testing both sides by a given smooth test
function ϕ, a lengthy but explicit elementary computation shows that

Var(Y N (ϕ)) ∼ϕ λ̂2 log N as N → ∞.

This suggests that, in order to stand any chance to obtain a well-defined limit, the
coupling constant should be chosen to go to 0 as (log N )−1/2 and this is exactly what
we do below in (1.11).

Before delving into the details, let us state assumptions, scalings and results more
precisely. To unify notations, for N ∈ N let ωN be the solution of

∂tω
N = − 1

2 (−�)θωN − λN , θN
N [ωN ] + (−�)

1+θ
2 ξ , ω(0, ·) = ω0(·) (1.10)

where ω0 is the initial condition, the value of λN , θ depends on both N and θ via

λN , θ
def=

⎧⎨
⎩

λ̂√
log N

, for θ = 1

λ̂N 2θ−2 , for θ ∈ (0, 1),
(1.11)

N N is defined according to (1.9) with �N satisfying the following assumption.

Assumption 1.1 For all N ∈ N, �N is a radially symmetric smooth function such
that ‖�N‖L1(R2) = 1 and whose Fourier transform �̂N is compactly supported on
{k : 1/N < |k| < N }. Furthermore, there exists a constant c� > 0 such that

|�̂N (k)| ≥ c�, ∀k ∈ {k : 2/N < |k| < N/2} . (1.12)

We also define �N
y (·) def= �N (· − y).

Remark 1.2 Assumption 1.1 guarantees that for every N ,N N [ω] is smooth even ifω is
merely a distribution. In particular, �̂N is assumed to be vanishing in a neighbourhood
of 0 in order to avoid problems arising from the singularity of the Fourier transform
of the Biot-Savart kernel K in (1.5) on R

2 at the origin.
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Our first result concerns existence, markovianity and stationarity of the regularised
vorticity Eq. (1.10) for fixed N and any value of θ ∈ (0, 1].
Theorem 1.3 Let θ ∈ (0, 1]. For any T > 0 and N ∈ N fixed, (1.10) admits a weak
solution ωN in C([0, T ],S ′(R2)), which is a strong Markov process and has as
invariant measure the Gaussian field μ whose covariance is

E[μ(ϕ)μ(ψ)] def= 〈ϕ,ψ〉Ḣ1(R2) , ϕ, ψ ∈ Ḣ1(R2) . (1.13)

[For the definition of the space Ḣ s(R2), s ∈ R, see (1.19) below.]

The field μ in the previous theorem can be thought of as (−�)1/2η for η a space
white noise on R2. The statement is shown in Sect. 2 and Theorem 2.10. The strategy
we exploit is inspired by that first appeared in [11] in the context of the KPZ equation
onR. It consists of approximatingωN with the sequence of periodic solutions to (1.10)
on a large torus of size M for which invariance can be easily established.

From now on we will only work with a stationary solution to (1.10). In the next
theorem, we study the critical case of θ = 1 and prove that, if λN ,1 is chosen according
to (1.11), then the sequence {ωN }N is tight and that the subsequential limits of the
non-linearity do not vanish.

Theorem 1.4 For N ∈ N, let ωN be the stationary solution of (1.10) with θ = 1,
λN ,1 defined according to (1.11) for λ̂ > 0, �N satisfying Assumption 1.1 and initial
condition ω0 = μ, for μ the Gaussian field with covariance as in (1.13). For ϕ ∈
S (R2) and t ≥ 0, set

BN
t (ϕ)

def= λN ,1

∫ t

0
N N

t [ωN
s ](ϕ) ds . (1.14)

Then, for any T > 0, the law of the couple (ωN ,BN ) is tight in C([0, T ],S ′(R2)).
Moreover, letting (ω,B) be any limit point, we have that there exists a constant C > 1
such that for all ϕ ∈ S (R2) and κ > 0

C−1 λ̂2

κ2 ‖ϕ‖2
Ḣ2(R2)

≤
∫ ∞

0
e−κtE

[∣∣∣Bt (ϕ)

∣∣∣2
]
dt ≤ C

λ̂2

κ2 ‖ϕ‖2
Ḣ2(R2)

. (1.15)

The proof of the previous statement will occupy Sects. 3.2 and 3.4 and is based
on techniques similar to those used in [2], which though works on a torus of fixed
size instead of R2. For both tightness and the upper bound in (1.15), we exploit the
so-called Itô trick introduced in [15] (see Theorem 3.3 and Remark 3.4), while the
lower bound is achieved via a variational problem and suitable operator bounds on the
generator of ωN (see Proposition 3.6 and Lemma 3.7).

Remark 1.5 The previous theorem suggests that, in weak coupling scaling, the
Eq. (1.10) is diffusive at large scales, since the non-linearity does not produce fluctua-
tions bigger than those of the stochastic heat equation (compare e.g. with Cannizzaro
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et al. [3] where instead the fluctuations of the non-linearity are shown to be logarithmi-
cally wider). In a forthcoming paper, following the approach developed in [4], which
is though quite involved (and this is why we refrain to carry out the proof here), we
will show that ωN indeed converges in law and that the limit is indeed a stochastic
heat equation with renormalised λ̂-dependent coefficients.

At last, we consider the supercritical regime θ ∈ (0, 1). As previously anticipated,
in this case the nonlinearity simply converges to 0 so that ωN trivialises.

Theorem 1.6 For N ∈ N and θ ∈ (0, 1), let ωN be the stationary solution of (1.10)
with λN , θ defined according to (1.11) for λ̂ > 0, �N satisfying Assumption 1.1 and
initial condition ω0 = μ, for μ the Gaussian field with covariance as in (1.13). Then,
the sequence {ωN }N converges as N → ∞ to the unique solution of the fractional
stochastic heat equation

∂tω = − 1
2 (−�)θω + (−�)

1+θ
2 ξ , ω0 = μ . (1.16)

Remark 1.7 All the results in Theorems 1.4 and 1.6 can be translated from the vorticity
Eq. (1.8) to the corresponding Navier–Stokes via the equality vN = K ∗ ωN . In
particular, for θ < 1, {vN }N converges in law to K ∗ ω for ω solution to (1.16), while
for θ = 1, the sequence is tight and the non-linearity does not vanish.

The proof of Theorem 1.6 is given in Theorem 3.3 and Sect. 3.3. A similar type of
statement can be shown to hold also for other fractional equations in the supercritical
regime, e.g. the fractional Anisotropic KPZ equation with θ < 1, considered in [24],
and, a scaling argument similar to that performed above suggests that such a triviality
statement could be proven for the one dimensional fractional KPZ equation with
θ < 1/2 in [15, 18].

Notations and function spaces

For M ∈ N let T2
M be the two dimensional torus of side length 2πM and Z

2
M

def=
(Z0/M)2 whereZ0

def= Z\{0}. Denote by {ek}k∈Z2
M
the usual Fourier basis, i.e. ek(x)

def=
1
2π e

ιk·x , and for ϕ ∈ L2(T2
M ) let the Fourier transform of ϕ be

FM (ϕ)(k) = ϕ̂(k) = ϕk
def=

∫
T
2
M

ϕ(x)e−k(x) dx ,

so that, in particular, for all x ∈ T
2
M we have

ϕ(x) = 1

M2

∑
k∈Z2

M

ϕ̂(k)ek(x) . (1.17)

When the space considered is clear, the subscript M may be omitted. The previous
definitions straightforwardly translate to R2 by replacing the integral over the torus to
the full space, the Riemann-sum to an integral and taking k ∈ R

2.
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For θ ∈ R and T = T
2
M or R2, we define the fractional Laplacian (−�)θ applied

to a test function ϕ via its Fourier transform, i.e.

F ((−�)θϕ)(z) = |z|2θF (ϕ)(z) , (1.18)

z ∈ T for θ ≥ 0, and z ∈ T \{0} otherwise.
Wedenote byS (R2), the classical space of Schwartz functions, i.e. infinitely differ-

entiable functions whose derivatives of all orders decay at faster than any polynomial.
Similarly to Gubinelli and Turra [19, Section 7], for s ∈ R, we say ϕ : (R2)n → R

is in the homogeneous Sobolev space (Ḣ s(R2))⊗n (understood as a tensor product of
Hilbert spaces), if there exists a tempered distribution ϕ̃ ∈ S ′((R2)n) such that

〈ϕ,ψ〉(Ḣ s (R2))⊗n = 〈ϕ̃, ψ〉(Ḣ s (R2))⊗n for all ψ ∈ S ((R2)n) .

and

‖ϕ̃‖2
(Ḣ s (R2))⊗n

def=
∫

(R2)n

(
n∏

i=1

|ki |2s
)

| ˆ̃ϕ(k1:n)|2 dk1:n < ∞ (1.19)

where we introduced the notation k1:n
def= (k1, . . . , kn). Clearly, for s ≥ 0, ϕ̃ can be

taken to be ϕ itself. The same conventions apply to Ḣ s(T2
M ), but in the definition of

the norm the integral is replaced by a Riemann-sum [as in (1.17)].
For s = 1, which will play an important role in what follows, we point out that the

norm on (Ḣ1(R2))⊗n can be equivalently written as

‖ϕ‖2
(Ḣ1(R2))⊗n

def=
∫

(R2)n
|∇ϕ(x1:n)|2 dx1:n .

1.1 Preliminaries onWiener space analysis

Let (�,F ,P) be a complete probability space and H be a separable Hilbert space
with scalar product 〈·, ·〉. A stochastic processμ is called isonormal Gaussian process
(see [28, Definition 1.1.1]) if {μ(h) : h ∈ H} is a family of centred jointly Gaussian
random variables with correlation E(μ(h)μ(g)) = 〈h, g〉. Given an isonormal Gaus-
sian process μ on H and n ∈ N, we define the n-th homogeneous Wiener chaos Hn

as the closed linear subspace of L2(μ) = L2(�) generated by the random variables
Hn(μ(h)), for h ∈ H of norm 1, where Hn is the n-th Hermite polynomial. Form �= n,
Hn and Hm are orthogonal and, by Nualart [28, Theorem 1.1.1], L2(μ) = ⊕nHn .

The isonormal Gaussian process μ we will be mainly working with is such that
H = Ḣ1(T ), T being either the 2-dimensional torus T2

M or R2, and has covariance

E[μ(ϕ)μ(ψ)] def= 〈ϕ,ψ〉Ḣ1(T ) , ϕ, ψ ∈ Ḣ1(T ) . (1.20)

Notice that the space Ḣ1(T ) introduced in the previous section, can be viewed, in
light of the Fourier transform representation, as a weighted L2 space and therefore the
results in [28, Chapter 1] can be applied also in the present context. In particular, there
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exists an isomorphism I between the Fock space �L2 def= ⊕n≥0�L2
n and L2(μ), where

�L2
n is the closure of (Ḣ1(T ))⊗n with respect to the norm in (1.19)2. For n ∈ N, the

projection In of the isomorphism above toHn is itself an isomorphism between �L2
n

and Hn and is given by

In(⊗nh)
def= n!Hn(μ(h)) , for all h ∈ Ḣ1(T ) such that ‖h‖Ḣ1(T ) = 1.

By Nualart [28, Theorem 1.1.2], for every F ∈ L2(μ) there exists unique sequence
of symmetric functions { fn}n≥0 ∈ �L2 such that F = ∑∞

n=0 In( fn) and

E[F2] =
∞∑
n=0

n!‖ fn‖2�L2
n
. (1.21)

Since the Hilbert space on which μ is defined is Ḣ1(T ), let us spell out how [28,
Proposition 1.1.3] translates. Let f ∈ �L2

n and g ∈ �L2
m , then

In( f )Im(g) =
n∧m∑
p=0

p!
(
n

p

)(
m

p

)
Im+n−2p( f ⊗p g) (1.22)

where

f ⊗p g(x1:m+n−2p)
def=

∫
T p

〈∇y1:p f (x1:n−p, y1:p),∇y1:p g(xn−p+1:m+n−2p, y1:p)〉 dy1:p
(1.23)

and 〈·, ·〉 denotes the usual scalar product in R
p, the gradient ∇y1:p is only applied to

the variables y1:p and, as in (1.19), x1:n = (x1, . . . , xn).
We say that F : S ′(T ) → R is a cylinder function if there exist ϕ1, . . . , ϕn ∈

S (T ) and a smooth function f : Rn → R whose partial derivatives grow at most
polynomially at infinity such that F[u] = f (u(ϕ1), . . . , u(ϕn)). A random variable
F ∈ L2(μ) is said to be smooth if it is a cylinder function on S ′(T ) endowed with
the measure μ, i.e. there exist ϕ1, . . . , ϕn ∈ H and f : Rn → R as above such that
F = f (μ(ϕ1), . . . , μ(ϕn)). The Malliavin derivative of a smooth random variable
F = f (μ(ϕ1), . . . , μ(ϕn)) is the H -valued random variable given by

DF
def=

n∑
i=1

∂i f (μ(ϕ1), . . . , μ(ϕn))ϕi , (1.24)

andwewill denote by Dx F the evaluation of DF at x and by DkF its Fourier transform
at k. A commonly used tool in Wiener space analysis is Gaussian integration by parts
[28, Lemma 1.2.2] which states that for any two smooth random variables F,G ∈
2 Equivalently, �L2n is the space of functions in Ḣ1(T n)which are symmetric with respect to permutations
of variables
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L2(μ) we have

E[G〈DF, h〉H ] = E[−F〈DG, h〉H + FGμ(h)] . (1.25)

When on the torus, we will mostly work with the Fourier transform of μ which is a
family of complex valued Gaussian random variables. Even though, strictly speaking,
the results above do not cover this case, in [2, Section 2] it was shown that one can
naturally extend Ḣ0(T2,R) = L2(T2,R) to L2(T2,C). Such extension can also be
performed in the present context, and we are therefore allowed to exploit (1.25) also
in case of complex-valued h.

2 Invariant measures of the regularised equation and the
supercritical regime

The goal of this section is to construct a stationary solution to the regularised critical
Navier–Stokes equation on R

2. We will first consider the analogous equation on the
torus of fixed size, where invariance is easier to obtain. Subsequently, via a compact-
ness argument, we will scale the size of the torus to infinity and characterise the limit
of the corresponding solutions via a martingale problem.

2.1 The regularised vorticity equation onT2
M

For θ ∈ (0, 1], we consider the periodic version on T
2
M of (1.10) given by

∂tω
N ,M = − 1

2 (−�)θωN ,M − λN , θN
N ,M [ωN ,M ] + (−�)

θ+1
2 ξM , ωN ,M (0, ·) = ωM

0 ,

(2.1)
where ωM

0 is the initial condition, ξM is a space-time white noise on R × T
2
M and

N N ,M is the non-linearity defined in (1.9). In Fourier variables, (2.1) becomes

d ω̂
N ,M
k = − 1

2 |k|2θ ω̂N ,M
k − λN , θN

N ,M
k [ωN ,M ] + |k|θ+1 dBk(t) , k ∈ Z

2
M

where the complex-valued Brownian motions Bk are defined via Bk(t)
def= ∫ t

0
ˆξM
k ( ds),

ˆξM
k being the k-th Fourier mode of ξM , and the Fourier transform of the non-linearity
N N ,M takes the form

N N ,M
k [ωN ,M ] = 1

M2

∑
�+m=k

K N
�,mω

N ,M
� ωN ,M

m , (2.2)

for

K N
�,m

def= 1

2π
�̂N

�,m
(�⊥ · (� + m))(m · (� + m))

|�|2|m|2 , with �̂N
�,m

def= �̂N
� �̂N

m �̂N
�+m

(2.3)
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[see Appendix A for the derivation of K N
�,m from (1.9)] and the variables � and m

appearing in the previous equations range over Z2
M .

As a first step in our analysis, we determine basic properties of the solution of (2.1).

Proposition 2.1 Let M, N ∈ N and θ ∈ (0, 1]. Then, for every deterministic ini-
tial condition ω

N ,M
0 ∈ Ḣ−2(T2

M ), (2.1) has a unique strong solution ωN ,M ∈
C(R+, Ḣ−2(T2

M )). Further, ωN ,M is a strong Markov process.

Proof The regularisation of the non-linearity is chosen in such a way that the first
N Fourier modes of ωN ,M are decoupled from {ωN ,M

k }|k|≥N . Now, the latter is an
Ornstein–Uhlenbeck process which is well-known to belong to C(R+, Ḣ−2(T2

M )).
The former instead solves a non-linear SPDE that preserves the Ḣ−1 norm as shown
in Lemma 2.2 below. The conclusion can therefore be reached arguing as in [15,
Section 7] (see also [2, Proposition 3.4]). ��
Lemma 2.2 Let T = T

2
M or R

2. Then for any distribution μ ∈ S ′(T ) such that
∇ · (K ∗ (μ ∗ �N )) = 0 we have

〈N N [μ], μ〉Ḣ−1(T ) = 0 .

Proof Let ψN = K ∗ (μ ∗ �N ) so that ∇ · ψN = 0. Since N is fixed throughout the
proof, we will omit the superscript of ψ . Notice first that

〈N N [μ], μ〉Ḣ−1(T ) = 〈∇⊥ · (ψ · ∇ψ),μ〉Ḣ−1(T ) = 〈∇⊥ · (ψ · ∇ψ),∇⊥ · ψ〉Ḣ−1(T )

= 〈ψ · ∇ψ, (−�) · ψ〉Ḣ−1(T ) = 〈ψ · ∇ψ,ψ〉L2(T ) .

The result now follows since the first term in the last scalar product at the right hand
side is nothing but the Navier–Stokes non-linearity [see (1.2)] for which the equality is
well-known. (Alternatively, one can perform a simple integration by parts and exploit
the divergence free assumption ∇ · ψ = 0.) ��

Even though the generator L N ,M of the Markov process ωN ,M , is a complicated
operator, its action on cylinder functions F can be easily obtained by applying Itô’s
formula and singling out the drift term. By doing so, we deduce that for any such F ,
L N ,MF can be written asL N ,MF = L M

θ F +A N ,MF , whereL M
θ andA N ,M are

given by

L M
θ F(ω)

def= 1

2

n∑
i=1

ω(−(−�)θϕi )∂i f + 1

2

n∑
i, j=1

〈ϕi , ϕ j 〉Ḣ θ+1(T2
M ) ∂2i, j f ,

A N ,MF(ω)
def= −λN , θ

n∑
i=1

N N ,M [ω](ϕi ) ∂i f , (2.4)

and we abbreviated ∂i f = ∂i f (ω(ϕ1), . . . , ω(ϕn)). We are now ready to prove the
following proposition.
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Proposition 2.3 Let μM be the Gaussian spatial noise on T
2
M with covariance given

by (1.20). Then, for every θ ∈ (0, 1],μM is an invariant measure of the solution ωN ,M

of (2.1).

Proof The proof of this statement follows the steps ofGubinelli and Jara [15, Section 7]
but we provide it here for completeness. By Echeverrìa’s criterion [8], it suffices to
show that for any cylinder function F = f (μM (ϕ1), . . . , μ

M (ϕn)) with f at least
twice continuously differentiable, we have E[L N ,MF(μM )] = 0, where E is the
expectation taken with respect to the law of μM . Since, throughout the proof M is
fixed, we will omit it as a superscript to lighten the notation. We will use the Fourier
representation of the operatorsL M

θ andA N ,M , which can be deduced by (2.4) simply
taking F depending on (finitely many) Fourier modes of μ and is

L M
θ F(μ) = 1

2M2

∑
k

|k|2θ
(
−μ−k Dk + |k|2D−k Dk

)
F(μ) , (2.5)

A N ,MF(μ) = −λN , θ

M4

∑
i, j

K N
i, jμiμ j D−i− j F(μ) . (2.6)

Let us first show that E[L M
θ F(μ)] = 0. Let k ∈ Z

2
M . Exploiting |k|2ek = (−�)ek

and applying Gaussian integration by parts (1.25) with h = ek , G = 1 and F = DkF ,
we obtain

E[|k|2D−k Dk F(μ)] = E[〈D(DkF(μ)), ek〉Ḣ1 ] = E[μM−k Dk F(μ)]

which immediately implies E[Lθ F(μ)] = 0. We now turn to E[A N ,MF(μ)]. Let
i, j ∈ Z

2
M such that i + j �= 0. We apply once more Gaussian integration by parts,

this time choosing G = μiμ j and h = ei+ j , so that we have

E[μiμ j D−i− j F(μ)] = − 1

|i + j |2E[μiμ j 〈DF(μ), ei+ j 〉Ḣ1(T2
M )]

= − 1

|i + j |2E[−F(μ)〈D(μiμ j ), ei+ j 〉Ḣ1(T2
M ) + μiμ jμ−i− j F(μ)]

= E[−F(μ)D−i− j (μiμ j )] − E

[(
1

|i + j |2 μiμ jμ−i− j

)
F(μ)

]

Now, D−i− j (μiμ j ) �= 0 if and only if either i or j are 0 in which case K N
i, j in (2.3)

is 0. Hence, the first summand above does not contribute to E[A N ,MF(μ)] and we
obtain

E[A N ,MF(μ)] = E

⎡
⎣
⎛
⎝−λN , θ

M4

∑
i, j

K N
i, j

|i + j |2μiμ jμ−i− j

⎞
⎠ F(μ)

⎤
⎦

= E

[
〈N N ,M [μ], μ〉Ḣ−1(T2

M )F(μ)
]

= 0

where the last equality follows by Lemma 2.2 so that the proof is concluded. ��
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Remark 2.4 At this point onemightwonderwhywe do not apply Echeverria’s criterion
[8] or its generalisation to unbounded domains [1], for the equation on the full space
directly. Unfortunately, this is not possible. As noted in [13, Remark 3.1-(2)], the
second of the references above imposes conditions which are too strong and are not
applicable in the present setting.

From now on, we will only work with the stationary solution of (2.1), i.e. the initial
condition will always be taken to be

ω
N ,M
0

def= μM (2.7)

where μM is as in Proposition 2.3.
In the following statements, we aim at obtaining estimates on the solution ωN ,M

to (2.1)which are uniform in both N andM . A crucial tool is the so-called Itô trick, first
introduced in [15]. To the reader’s convenience, we now recall its statement, adapted
to the present context.

Lemma 2.5 (Itô-Trick) Let θ ∈ (0, 1]. Let L N ,M be the generator of the Markov
process ωN ,M, solution to (1.10) started from the invariant measure μM in (2.7), and
L M

θ and A N ,M be defined according to (2.4). Let T > 0 and F a cylinder function
onS ′(T2

M ). Then, for every p ≥ 2, there exists a constant C > 0 depending only on
p such that

E

[
sup
t≤T

∣∣∣
∫ t

0
L M

θ F(ωN ,M
s ) ds

∣∣∣p
]1/p

≤ CT
1
2E [E (F)]1/2 , (2.8)

where the energy E (F) is given by

E (F)(μM )
def= 1

M2

∑
k∈Z2

M

|k|2+2θ |DkF(μM )|2 =
∫
T
2
M

|(−�x )
1+θ
2 Dx F(μM )|2 dx ,

(2.9)
the Laplacian above clearly acting on the x variable. Here and throughout, E denotes
the expectation with respect to the law of the process {ωN ,M

t }t∈[0,T ], while E that with
respect to the invariant measure μM.

Proof See Appendix B. ��
The Itô trick allows to upper-bound moments of the supremum of the integral in

time of certain functionals of ωN ,M in terms of the first moment of the energy E with
respect to the law of ωN ,M at fixed time. The advantage lies in the fact that while
the quantity we want to bound depends on the solution of the equation at different
times, whose distribution is unknown, the bound only sees the solution at a fixed time,
whose distribution instead is explicit and Gaussian so that direct computations via,
e.g., Wick’s formula are possible. In the following proposition, we show how the Itô
trick can be used to determine suitable estimates on the non-linearity.
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Proposition 2.6 Let θ ∈ (0, 1], T > 0 be fixed and p ≥ 2. For M, N ∈ N, letN N ,M

be defined according to (2.2) and λN , θ be as in (1.11). Then, there exists a constant
C = C(p) > 0, independent of M, N ∈ N such that for all ϕ ∈ S (T2

M ) and all
t ∈ [0, T ], we have

E
[
sup
s≤t

∣∣∣
∫ s

0
ωN ,M
r (−(−�)θϕ) dr

∣∣∣p
]1/p

≤ Ct
1
2 ‖ϕ‖Ḣ1+θ (T2

M ) , (2.10)

E
[
sup
s≤t

∣∣∣λN , θ

∫ s

0
N N ,M [ωN ,M

r ](ϕ)] dr
∣∣∣p

]1/p
≤ CN θ−1(t ∨ t

1
2 )‖ϕ‖Ḣ2(T2

M ) .

(2.11)

Before delving into the proof of the previous proposition, let us briefly comment
on its statement. Notice that, for θ = 1, (2.11) implies that, uniformly in M , the
nonlinearity of (2.1) satisfies the upper bound in (1.15) (upon taking the Laplace
transform). Instead, for θ < 1, (2.11) implies that the nonlinearity of (2.1) is converging
to 0 as N → ∞, which is essentially the content of Theorem 1.6. The full proofs of
these results are postponed to Sects. 3.2 and 3.3 as we want to be able to rigorously
discuss the equation on the full space first.

Getting back to Proposition 2.6, the main tool in the proof is represented by the
following lemma.

Lemma 2.7 For M, N ∈ N, ϕ ∈ S (T2
M ), let Nϕ

def= N N ,M [μM ](ϕ) be the smooth
random variable defined according to (2.2), with μM replacing ωN ,M. Then, Nϕ

belongs to the second homogeneous Wiener chaos H2. Further, for all θ ∈ (0, 1] the
Poisson equation on L2(μM )

(1 − L M
θ )Hϕ = λN , θNϕ (2.12)

has a unique solution Hϕ ∈ H2. Moreover, the energy of Hϕ is given by

E[E (Hϕ)] = 4λ2N , θ

M4

∑
�,m

|�|2+2θ |m|2 (K N
�,m)2

(1 + 1
2 (|�|2θ + |m|2θ ))2 |ϕ−�−m |2 . (2.13)

Proof Note that, by (1.9) the non-linearity tested against ϕ can be written as

Nϕ = N N ,M [μM ](ϕ) = −〈μM (K ∗ �N· ) μM (�N· ) , ∇ϕ ∗ �N· 〉 , (2.14)

the scalar product at the right hand side being the usual L2 pairing. Now, thanks to our
choice of the mollifier � in (1.12), and in particular the fact that its Fourier transform
is 0 in a neighbourhood of the origin, both K ∗ �N· and �N· live inS (T2

M ) so that the
expectation of the right hand side of (2.14) is finite by (1.20). Hence, further using
translation invariance, we have

E[Nϕ] = 〈E[μM (K ∗�N ) μM (�N )],∇ϕ∗�N 〉〉 = 〈K ∗�N , �N 〉Ḣ1(T2
M )〈1,∇ϕ∗�N 〉 ,
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which is zero since, by integration by parts, 〈1,∇ϕ ∗ �N 〉 = 0. Notice that

Nϕ = 1

M2

∑
�,m

K N
�,mϕ−�−m μM

� μM
m = 1

M2

∑
�,m

K N
�,mϕ−�−m : μM

� μM
m :

where : μM
� μM

m : denotes the Wick’s product of the Gaussian random variables μM
�

and μM
m , and the second equality follows by the fact, proved above, that E[Nϕ] = 0.

Hence, Nϕ ∈ H2 and Nϕ = I2(nN ,M
ϕ ), for nN ,M

ϕ such that

n̂N ,M
ϕ (�,m) = K N

�,mϕ−�−m . (2.15)

Let hϕ ∈ �L2
2 and Hϕ = I2(hϕ). Then, Gubinelli and Turra [19, Lemma 2.3] implies

that
(1 − L M

θ )Hϕ = (1 − L M
θ )I2(hϕ) = I2

(
(1 − 1

2 (−�)θ )hϕ

)
.

Equating the right hand side above and λN , θ I2(nN ,M
ϕ ), we immediately deduce that

Hϕ solves (2.12) if and only if the kernel hϕ solves

(
1 − 1

2 (−�)θ
)
hϕ = λN , θn

N ,M
ϕ

which in turn has a unique solution whose Fourier transform is given by

ĥϕ(�,m) = λN , θ

K N
�,m

1 + 1
2 (|�|2θ + |m|2θ )ϕ−�−m , for all �,m ∈ Z

2
M . (2.16)

It remains to compute the energy of Hϕ , for which we notice that by Gubinelli and
Turra [28, Proposition 1.2.7],

Dx Hϕ = Dx I2(hϕ) = 2I1(hϕ(x, ·))

which implies, by linearity of I1 and (2.9),

E (Hϕ) = 4
∫
T
2
M

∣∣∣I1
(
(−�x )

1+θ
2 hϕ(x, ·)

)∣∣∣2 dx .

Consequently, since I1 is an isometry from H1 and �L2
1 = Ḣ1(T2

M ), we get

E[E (Hϕ)] = 4
∫
T
2
M

‖(−�x )
1+θ
2 hϕ(x, ·)‖2

Ḣ1(T2
M )

dx

from which (2.13) simply follows by Plancherel’s identity and (2.16). ��
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Proof of Proposition 2.6 For both (2.10) and (2.11), we will exploit the Itô trick in
Lemma 2.5. Let us begin with the former. Notice that by (2.4), it is immediate to
verify that

L M
θ μM (ϕ) = μM (− 1

2 (−�)θϕ
)

, and E (μM (ϕ)) = ‖ϕ‖2
Ḣ1+θ (T2

M )
.

Hence, the left hand side of (2.10) equals

2E
[
sup
s≤t

∣∣∣
∫ s

0
L M

θ ωN ,M
r (ϕ) dr

∣∣∣p
]1/p

� t
1
2 ‖ϕ‖Ḣ1+θ (T2

M ) , (2.17)

where in the last passage we applied (2.8).
We now turn to (2.11) for which we proceed similarly to Gubinelli and Perkowski

[17, Proposition 3.15]. Let Hϕ be the unique solution to (2.12) determined in Lemma
2.7. Then

E
[
sup
s≤t

∣∣∣
∫ s

0
λN , θN

N [ωN ,M
r ](ϕ) dr

∣∣∣p
] 1

p

= E
[
sup
s≤t

∣∣∣
∫ s

0
(1 − L M

θ )Hϕ[ωN ,M
r ] dr

∣∣∣p
] 1

p

≤ E
[
sup
s≤t

∣∣∣
∫ s

0
Hϕ[ωN ,M

r ] dr
∣∣∣p

] 1
p + E

[
sup
s≤t

∣∣∣
∫ s

0
L M

θ Hϕ[ωN ,M
r ] dr

∣∣∣p
] 1

p
.

(2.18)

We will separately estimate the two summands above. For the second, we apply once
more (2.8), which, together with (2.13), gives

E
[
sup
s≤t

∣∣∣
∫ s

0
L M

θ Hϕ[ωN ,M
r ] dr

∣∣∣p
] 2

p

� t
λ2N , θ

M4

∑
�,m

|�|2+2θ |m|2 (K N
�,m)2|ϕ−�−m |2

(1 + 1
2 (|�|2θ + |m|2θ ))2

� t
1

M2

∑
k

|k|4|ϕk |2
λ2N , θ

M2

∑
�+m=k

(�̂N
�,m)2

|�|2θ
(1 + 1

2 (|�|2θ + |m|2θ ))2

� t
1

M2

∑
k

|k|4|ϕk |2
λ2N , θ

M2

∑
�

(�̂N
� )2

1

1 + 1
2 |�|2θ

≤ t‖ϕ‖2
Ḣ2(T2

M )

λ2N , θ

M2

∑
|�|≤N

1

1 + 1
2 |�|2θ

123



262 Stoch PDE: Anal Comp (2024) 12:247–280

where we bounded |K N
�,m | ≤ �̂N

� |� + m|2/(|�||m|) and applied a simple change of
variables. Now, the remaining sum can be controlled via

λ2N , θ

M2

∑
|�|≤N

1

1 + 1
2 |�|2θ

� λ2N , θ

∫
|x |≤N

dx

1 + 1
2 |x |2θ

�
{

λ2N , θ log N � 1 , if θ = 1,

λ2N , θ N
2−2θ � N 2θ−2 , if θ ∈ (0, 1),

the last inequality being a consequence of (1.11).
Let us turn to the first summand in (2.18). We have

E
[
sup
s≤t

∣∣∣
∫ s

0
Hϕ[ωN ,M

r ] dr
∣∣∣p

] 1
p ≤ E

[( ∫ t

0
|Hϕ[ωN ,M

r ]| dr
)p] 1

p

≤ t1−
1
pE

[ ∫ t

0
|Hϕ[ωN ,M

r ]|p dr
]1/p

= tE[|HN ,M [μM ](ϕ)|p] 1
p

� tE[|Hϕ[μM ]|2] 12 = √
2t‖hϕ‖�L2

2
(2.19)

where, from the first to the second line we used Jensen’s inequality, from the second
to the third Gaussian hypercontractivity [28, Theorem 1.4.1] and the last step is a
consequence of (1.21) and the fact that, as shown in the proof of Lemma 2.7, Hϕ =
I2(hϕ) for hϕ satisfying (2.16). In turn, the norm of hϕ can be estimated via

‖hϕ‖2
�L2

2
= λ2N , θ

M4

∑
�,m∈Z2

M

|�|2|m|2 (K N
�,m)2

(1 + 1
2 (|�|2θ + |m|2θ ))2 |ϕ−�−m |2

�
λ2N , θ

M2

∑
k∈Z2

M

|k|4|ϕk |2 1

M2

∑
�+m=k

(�̂N
� )2

(1 + 1
2 (|�|2θ + |m|2θ ))2

�
λ2N , θ

M2

∑
k∈Z2

M

|k|4|ϕk |2
∫

|x |≤N

dx

(1 + |x |2θ )2

� ‖ϕ‖2
Ḣ2(T2

M )
×

⎧⎪⎨
⎪⎩

λ2N , θ , if θ > 1
2 ,

λ2N , θ log N , if θ = 1
2 ,

λ2N , θ N
2−4θ , if θ < 1

2 ,

and, for any value of θ ∈ (0, 1] the right hand side is bounded above by
N 2θ−2‖ϕ‖2

Ḣ2(T2
M )
. ��
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2.2 The regularised fractional vorticity equation onR2

In this section, we study the regularised fractional vorticity Eq. (1.10) on the full space
R
2. Our goal is to show, on the one hand that, for N ∈ N fixed, it admits a solution

and on the other that such a solution has an invariant measure μ satisfying (1.20) and
therefore complete the proof of Theorem 1.3.

Throughout this section, N ∈ N will be fixed. For T > 0 and θ ∈ (0, 1], we say
that ωN ∈ C([0, T ],S ′(R2)) is a weak solution of (1.10) starting at ω0 ∈ S ′(R2) if
for all ϕ ∈ S (R2)

ωN
t (ϕ) − ω0(ϕ) = 1

2

∫ t

0
ωN
s (−(−�)θϕ) ds + λN , θ

∫ t

0
N N [ωN

s ](ϕ) ds − Mt (ϕ) .

(2.20)
where N N is defined according to (1.9) and M·(·) is a continuous Gaussian process
whose covariance is given by

E[Mt (ϕ)Ms(ψ)] = (t ∧ s)〈ϕ,ψ〉Ḣ1+θ (R2) , ϕ, ψ ∈ Ḣ1+θ (R2) (2.21)

(so that, formally, “Mt (ϕ) = ∫ t
0 ξ( ds, (−�)

1+θ
2 ϕ)” for a space-time white noise ξ on

R+ × R
2). Further, if ω0 is distributed according to μ in (1.20), then we will say that

the solution is stationary.
Let us introduce the operatorL N which is nothing but theR2 counterpart ofL N ,M

in (2.4) and formally represents the generator of (1.10). Once again, it can be written
as the sum of two operators, i.e.L N = Lθ +A N , whose action of cylinder functions
F(ω) = f (ω(ϕ1), . . . , ω(ϕn)) is given by

Lθ F(ω)
def= 1

2

n∑
i=1

ω(−(−�)θϕi )∂i f + 1

2

n∑
i, j=1

〈ϕi , ϕ j 〉Ḣ1+θ (R2) ∂2i, j f , (2.22)

A N F(ω)
def= −λN , θ

n∑
i

N N [ω](ϕi ) ∂i f . (2.23)

Note that, thanks to the regularisation of the non-linearity (see Assumption 1.1), both
L0F[ω] and A N F[ω] are well-defined for any cylinder function F .

In the following definition, we present the martingale problem associated toL N .

Definition 2.8 Let T > 0, � = C([0, T ],S ′(R2)) and G = B(C([0, T ],S ′(R2)))

the canonical Borel σ -algebra on it. Let θ ∈ (0, 1], N ∈ N and μ be a random field
on S ′(R2). We say that a probability measure PN on (�,G ) solves the cylinder
martingale problem forL N with initial distribution μ, if for all cylinder functions F
the canonical process ωN under PN is such that

Mt (F)
def= F(ωN

t ) − F(μ) −
∫ t

0
L N F(ωN

s ) ds (2.24)

is a continuous martingale.
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As a first result, we determine the connection between the martingale problem in
Definition 2.8 and weak solutions of (1.10).

Proposition 2.9 Let θ ∈ (0, 1], N ∈ N and μ be a random field onS ′(R2). Then, PN

is a solution to the cylinder martingale problem for L N with initial distribution μ if
and only if the canonical process ωN under PN is a weak solution of (1.10).

Proof Notice first that ifωN is a weak solution of (1.10), then for any cylinder function
F , the right hand side of (2.24) is a martingale by Itô’s formula. Hence, the law of ωN

solves the martingale problem of Definition 2.8. In order to show that the converse
also holds, we follow the strategy of Funaki and Quastel [11, Lemma 2.7]. Let PN be
a solution to the martingale problem and ωN the canonical process with respect to PN .
Let ϕ ∈ S (R2) and Fϕ be the linear cylinder function defined as Fϕ(ωN )

def= ωN (ϕ).
In view of (2.24), ωN satisfies

ωN
t (ϕ) − μ(ϕ) =

∫ t

0
L Nωs(ϕ) ds + Mt (Fϕ)

= 1

2

∫ t

0
ωN
s (−(−�)θϕ) ds + λN , θ

∫ t

0
N N [ωN

s ](ϕ) ds + Mt (Fϕ)

(2.25)

the second step being a consequence of the definition of L N in (2.22) and (2.23),
and where Mt (Fϕ) is a continuous martingale. We are left to show that for all ϕ,
Mt (Fϕ) is Gaussian and has covariance given as in (2.21). To do so, let ϕ, ψ ∈
S (R2), and consider the quadratic cylinder function Fϕ,ψ(ωN )

def= ωN (ϕ) ωN (ψ).
Exploiting (2.24) once more, we see that

Mt (Fϕ,ψ) = ωN
t (ϕ)ωN

t (ψ) − μ(ϕ)μ(ψ) −
∫ t

0
L N Fϕ,ψ(ωN

s ) ds (2.26)

is a martingale. Let bs(ϕ)
def= L NωN

s (ϕ) and notice that (2.22) and (2.23) give

L N Fϕ,ψ(ωN
s ) = ωN

s (ϕ)bs(ψ) + ωN
s (ψ)bs(ϕ) + 〈ϕ,ψ〉Ḣ1+θ (R2) ,

which, once plugged into (2.26), provides

Mt (Fϕ)Mt (Fψ) − t〈ϕ,ψ〉Ḣ1+θ (R2)

= Mt (Fϕ,ψ) −
∫ t

0

(
bs(ψ)δs,tω

N· (ϕ) + bs(ϕ)δs,tω
N· (ψ)

)
ds

−μ(ϕ)Mt (Fϕ) − μ(ψ)Mt (Fϕ) +
∫ t

0

∫ t

0
bs(ϕ)bs̄(ψ) ds ds̄

= Mt (Fϕ,ψ) −
∫ t

0

(
bs(ψ)

∫ t

s
dMs̄(ϕ) + bs(ϕ)

∫ t

s
dMs̄(ϕ)

)
ds

−μ(ϕ)Mt (Fϕ) − μ(ψ)Mt (Fϕ)
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= Mt (Fϕ,ψ) −
∫ t

0

( ∫ s̄

0
bs(ψ) ds

)
dMs̄(ϕ) +

∫ t

0

( ∫ s̄

0
bs(ϕ) ds

)
dMs̄(ψ)

−μ(ϕ)Mt (Fϕ) − μ(ψ)Mt (Fϕ) (2.27)

where we introduced the notation δs,t f·
def= f (t) − f (s) and exploited (2.25) in the

second equality. Now, all the terms at the right hand side are martingales so that, by
definition, t〈ϕ,ψ〉Ḣ1+θ (R2) is the quadratic covariation of Mt (Fϕ) and Mt (Fψ) and
clearly (2.21) holds. For Gaussianity, taking ψ = ϕ in (2.27), we deduce thatMt (Fϕ)

is a continuous martingale with deterministic quadratic variation which, in view of
Ethier and Kurtz [9, Theorem 7.1.1], implies that, for all ϕ,Mt (Fϕ) is Gaussian with
independent increments so that the proof is concluded. ��

We now show that the martingale problem of Definition 2.8 starting from μ as
in (1.20) admits a solution. Together with the previous result, this implies the existence
of a stationary weak solution to (1.10) whose invariant measure is μ thus completing
the proof of Theorem 1.3.

Theorem 2.10 Let N ∈ N be fixed, θ ∈ (0, 1] and μ the Gaussian process with
covariance given by (1.20). The cylinder martingale problem of Definition 2.8 for
L N with initial distribution μ has a solution PN . Further, the canonical process ωN

under PN has invariant measure μ.

Remark 2.11 Even though we suspect that the martingale problem in Definition 2.8
has a unique solution, the previous statement does not ensure that this is the case. In
the present context, uniqueness of solutions is not essential. Indeed, we are anyway
interested in the limit as N → ∞ for which we expect a unique limit, irrespective of
the chosen sequence of solutions to (1.10) (see Remark 1.5).

The proof of the previous theorem exploits the Galerkin approximation ωN ,M

of (1.4) studied in the previous section. In the next lemma, we show that the sequence
is tight in M (for N fixed).

Lemma 2.12 Let N ∈ N be fixed, θ ∈ (0, 1] and T > 0.With a slight abuse of notation,
for all M ∈ N, let ωN ,M denote the periodically extended version of the stationary
solution to (2.1) onTM. Then, the sequence {ωN ,M }M∈N is tight in C([0, T ],S ′(R2)).

Proof Thanks toMitoma [26], it suffices to show that for all ϕ ∈ S (R2), the sequence
{t → ω

N ,M
t (ϕ)}M is tight. To do so, wewill exploit Kolmogorov’s criterion, for which

we need to prove that there exist α > 0 and p > 1 such that for all 0 ≤ s < t ≤ T we
have

E
[
|ωN ,M

t (ϕ) − ωN ,M
s (ϕ)|p

]1/p
�ϕ (t − s)α , (2.28)

where the constant hidden into “�” depends on ϕ. Since ωN ,M is Markov and station-
ary, it is enough to show (2.28) for s = 0. Notice first that, by construction, the time
increment of ωN ,M satisfies

ω
N ,M
t (ϕ) − μM (ϕ)

= 1

2

∫ t

0
ωN ,M
s (−(−�)θϕ) ds − λN , θ

∫ t

0
N N [ωN ,M

s ](ϕ) ds +
∫ t

0
ξM ( ds, cϕ)
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and we will separately focus on each of the terms at the right hand side. Gaussian
hypercontractivity [28, Theorem 1.4.1] and the definition of ξ imply that the last term
can be bounded as

E
[∣∣∣

∫ t

0
ξM (s, (−�)

1+θ
2 ϕ) ds

∣∣∣p
]1/p

� E
[∣∣∣

∫ t

0
ξM (s, (−�)

1+θ
2 ϕ) ds

∣∣∣2
] 1
2

=
( ∫ t

0
〈(−�)

1+θ
2 ϕ, (−�)

1+θ
2 ϕ〉L2(T2

M ) ds
) 1

2

= t
1
2 ‖ϕ‖Ḣ1+θ (T2

M ) � t
1
2 ‖ϕ‖Ḣ1+θ (R2) , (2.29)

where in the last step, we simply used the fact that the Ḣ1+θ (T2
M )-norm is simply a

Riemann-sum approximation of the Ḣ1+θ (R2) norm. For the remaining two terms,
we exploit Lemma 2.6 and the same argument as above. Collecting what deduced so
far, we see that (2.28) holds for all ϕ, any p ≥ 2 and α = 1/2, so that, tightness of the
sequence {ωN ,M }M follows at once by Kolmogorov’s criterion and Mitoma [26]. ��

We are now ready to complete the proof of Theorem 2.10.

Proof of Theorem 2.10 Let PN ,M denote the law of the periodically extended version
of the stationary solution ωN ,M of (2.1) on C([0, T ],S ′(R2)). By Lemma 2.12,
the sequence {PN ,M }M is tight in C([0, T ],S ′(R2)). Mitoma [26, Proposition 2.1]
implies that all the compact subsets of C([0, T ],S ′(R2)) are completely metrizable,
hence, by Smolyanov and Fomin [30, Theorem 2, Section 5], we can extract a weakly
converging subsequence that, slightly abusing the notation, we will still denote by
{PN ,M }M . Let PN be its limit. By the C([0, T ],S ′(R2))– version of Skorokhod’s
representation theorem in [23, Theorem 5, Corollary 3], we can realise (modulo sub-
sequences) {PN ,M }M andPN on a proper probability space in such away that {ωN ,M }M
converges to ωN , PN almost surely in C([0, T ],S ′(R2)) as M → ∞. We now want
to show that PN is a solution to the martingale problem for L N , which amounts to
verify that for any cylinder function F the right hand side of (2.24) is a continuous
martingale.

As a preliminary step, note that since ωN ,M → ωN almost surely in C([0, T ],S ′
(R2)), then, for all t , ωN ,M

t → ωN
t almost surely inS ′(R2). By assumption, ωN ,M

t is
distributed according toμM andμM converges toμ. HenceωN

t is distributed according
to μ. In other words, μ is an invariant measure for ωN and, as μ is Gaussian, for any
cylinder function G, G(ωN

t ) has finite moments of all orders.
Let ϕ1, . . . , ϕn ∈ S (R2) and F(ω) = f (ω(ϕ1), . . . , ω(ϕn)) be a cylinder function

onS ′(R2). By Itô’s formula, for all t ∈ [0, T ],

F(ω
N ,M
t ) − F(μM ) −

∫ t

0
L N ,MF(ωN ,M

s ) ds ,
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is a square-integrable continuous martingale. Therefore, by standard martingale con-
vergence arguments, the result follows once we show that

(
F(ω

N ,M
t ) − F(μM ) −

∫ t

0
L N ,M F(ωN ,M

s ) ds
)

−
(
F(ωN

t ) − F(μ) −
∫ t

0
L N F(ωN

s ) ds
)

(2.30)
goes to 0 in, say, mean square with respect to PN . We will first prove that (2.30)
converges to 0 almost surely. SinceωN ,M → ωN almost surely inC([0, T ],S ′(R2)),
then almost surely for all r ∈ [0, T ] and n ∈ N both

∂(n) f (ωN ,M (ϕ1), . . . , ω
N ,M (ϕn)) → ∂(n) f (ωN

r (ϕ1), . . . , ω
N
r (ϕn)) ,

ωN ,M
r (−(−�)θϕ) → ωN

r (−(−�)θϕ) (2.31)

hold. Further, for every i, j = 1, . . . n, 〈ϕi , ϕ j 〉Ḣ1+θ (T2
M ) → 〈ϕi , ϕ j 〉Ḣ1+θ (R2)

deterministically as the Ḣ1+θ (T2
M )-norm is a Riemann-sum approximation of the

Ḣ1(R2)-norm. Hence, by the definitions of L M
0 and L0 in (2.5) and (2.22) respec-

tively, it follows that almost surely

F(ωN ,M
r ) → F(ωN

r ), r ∈ {0, t} and
∫ t

0
L M

0 F(ωN ,M
s ) ds →

∫ t

0
L0F(ωN

s ) ds .

In light of (2.31), to show that the same convergence holds for the term containing
A N ,MF(ω

N ,M
r ) and A N F(ωN

r ), it suffices to argue that almost surely, for all i =
1, . . . , n and r ∈ [0, T ],N N ,M [ωN ,M

r ](ϕi ) → N N [ωN
r ](ϕi ). This in turn is a direct

consequence of the representation (2.14) and the fact that the almost sure convergence
ofωN ,M toωN inC([0, T ],S ′(R2)) ensures that bothωN ,M (K ∗�N· ) → ωN (K ∗�N· )

andωN ,M (�N· ) → ωN (�N· ). Indeed, our choice of themollifier guarantees that Fourier
transform of �N is supported away from the origin so that K ∗ �N· ∈ S (R2).

In conclusion, (2.30) converges to 0 almost surely. Moreover, each of its summands
has finite moments of all orders as for all r ∈ [0, T ] the distribution of ω

N ,M
r and ωN

r
is Gaussian. Therefore, by the dominated convergence theorem, (2.30) converges to 0
in mean square and the proof is concluded. ��

3 The vorticity equation on the real plane

Throughout this section, we will be working with a solution PN of the martingale
problem forL N with initial distributionμ, whose canonical processωN is, by Propo-
sition 2.9, a stationary weak solution of the fractional regularised vorticity Eq. (2.20)
on R2.

The goal is to control the behaviour of ωN in the limit N → ∞. To do so, we first
need to deepen our understanding of the generator L N and, in particular, determine
how it acts on random variables in L2(μ).
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3.1 The operatorL N

This section is devoted to the study of the properties of the operator L N on L2(μ),
(μ being the Gaussian process with covariance (1.20)) which is given by the sum of
L0 and A N defined in (2.22) and (2.23), respectively. Recall that, as remarked in
Sect. 1.1, there exists an isomorphism I between L2(μ) and the Fock space �L2.
With a slight abuse of notation, from here on we will denote with the same symbol any
operator O acting on L2(μ) and the corresponding operator acting instead on �L2,
where by “corresponding” we mean any operatorO such thatO I (ϕ) = I (Oϕ) for all
ϕ ∈ �L2.

Proposition 3.1 Let μ be the Gaussian process whose covariance function is given
by (1.20). Then, for any θ ∈ (0, 1], the operator Lθ is symmetric on L2(μ), and for
each n, it maps Hn to itself. Further, for any f ∈ �L2

n, Lθ f = − 1
2 (−�)θ f so that

the Fourier transform of the left hand side equals

F (Lθ f )(k1:n) = − 1
2 |k1:n|2θ f̂ (k1:n) , for all k1:n ∈ (R2)n, (3.1)

where |k1:n|2θ def= |k1|2θ + · · · + |kn|2θ . The operatorA N is anti-symmetric on L2(μ)

and it can be written as the sum of two operatorsA N+ andA N− , the first mappingHn

to Hn+1 while the second Hn to Hn−1. Moreover, the adjoint of A N+ is −A N− and
for any f ∈ �L2

n the Fourier transform of their action on f is given by

F (A N+ f )(k1:n+1) = λN , θnK
N
k1,k2 f̂ (k1 + k2, k3:n+1) (3.2)

F (A N− f )(k1:n−1)

= 2λN , θn(n − 1)
∫
R
2
�̂N
p,k1−p

(k⊥
1 · p)(k1 · (k1 − p))

|k1|2 f̂ (p, k1 − p, k2:n−1) dp

(3.3)

whereK N was defined in (2.3) and k1:n+1 ∈ (R2)n+1. Strictly speaking the functions
at the right hand side need to be symmetrised with respect to all permutations of their
arguments.

Remark 3.2 The symmetrisation of the right hand-sides of the operatorsA N+ andA N−
will be performed in the proof of Lemma 3.7. It will not play a significant role in the
present paper as we will apply A N+ and A N− only to functions f ∈ �L2

2 so that in
the estimates, the symmetrisation will contribute by a finite multiplicative absolute
constant.

Proof The properties of Lθ , including (3.1), were shown in a number of references,
see e.g. [16, Ch. 2.4] or [19, Lemma 3], and therefore we omit their proof. Concerning
A N , let F(μ) = f (μ(ϕ1), . . . , μ(ϕn)) be a generic cylinder function. By (2.23), we
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have

A N F(μ) = −λN , θ

∑
i

N N [μ](ϕi )∂i f = −λN , θN
N [μ]

(∑
i

∂i f ϕi
)

= −λN , θN
N [μ](DF) = −λN , θ

∫
R
2
N N [μ](x)Dx F dx (3.4)

where we exploited the definition of the Malliavin derivative in (1.24).
Let us first show the decomposition inA N+ andA N− in (3.2) and (3.3), respectively.

By polarisation it suffices to take F(μ) = In( f ) for f of the form ⊗nϕ and ϕ ∈
Ḣ1(R2). Note that the Malliavin derivative of F satisfies

Dx F(μ) = nIn−1
( ⊗n−1 ϕ

)
ϕ(x)

(see e.g. [2, proof of Lemma 3.5]). Therefore, plugging the previous into (3.4), we get

A N F(μ) = −λN , θ

∫
R
2
N N [μ](x)Dx F dx = −nλN , θN

N [μ](ϕ)In−1
( ⊗n−1 ϕ

)
.

Arguing as in the proof of Lemma 2.7, it is not hard to see thatN N [μ](ϕ) ∈ H2 and
N N [μ](ϕ) = I2(nNϕ ), the Fourier transform of nNϕ being given by the right hand side

of (2.15) (though for �,m ∈ R
2). Therefore,

A N F(μ) = −nλN , θ I2(n
N
ϕ )In−1

( ⊗n−1 ϕ
) = −nλN , θ In+1(n

N
ϕ ⊗0 ⊗n−1ϕ)

− 2n(n − 1)λN , θ In−1(n
N
ϕ ⊗1 ⊗n−1ϕ)

− n(n − 1)(n − 2)λN , θ In−3(n
N
ϕ ⊗2 ⊗n−1ϕ) (3.5)

where the last equality is a consequence of (1.22). It is not hard to see, by taking
Fourier transforms and applying Plancherel’s identity, that the first term indeed equals
A N+ In( f ), while the second A N− In( f ), so that in particular A N+ and A N− map Hn

intoHn+1 andHn−1 respectively.We claim that instead the last term vanishes. Indeed
by (1.23), we have

nNϕ ⊗2 ⊗n−1ϕ(x1:n−3) =
n−3∏
i=1

ϕ(xi )
∫

(R2)2
〈∇nNϕ (x, y),∇ϕ(x)ϕ(y)〉 dx dy

Applying Plancherel’s identity and the definition of nNϕ (x, y), we see that the integral
above equals

∫
(R2)2

|k1|2|k2|2n̂Nϕ (k1, k2)ϕk1ϕk2 dk1 dk2

=
∫

(R2)2
|k1|2|k2|2K N

k1,k2ϕ−k1−k2ϕk1ϕk2 dk1 dk2 = 〈N N [(−�ϕ)], (−�)ϕ〉Ḣ−1(R2)
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and the right hand side is equal to 0 by Lemma 2.2.
We now show that A N+ is the adjoint of −A N− . For F = ∑

n In( fn) and G =∑
n In(gn) we have

E
[
A N+ FG

]
=

∑
n,m

E
[
In+1(A

N+ fn)Im(gm)
]

=
∑
n

(n + 1)!〈A N+ fn, gn+1〉�L2
n+1

E
[
FA N− G

]
=

∑
n,m

E
[
In( fn)Im−1(A

N− gm)
]

=
∑
n

n!〈 fn,A N− gn+1〉�L2
n+1

,

which is a consequence of orthogonality of different Wiener-chaoses. Therefore, to
prove that the two right hand sides above are indeed equal, it suffices to verify that

(n + 1)〈A N+ fn, gn+1〉�L2
n+1

= −〈 fn,A N− gn+1〉�L2
n
.

By (3.2) (modulo permutations), the left hand side is given by

4πλN , θn(n + 1)
∫ (

�n+1
i=1 |ki |2

)
K N

k1,k2 f̂ (k1 + k2, k3:n+1)ĝn+1(k1:n+1) dk1:n+1 .

(3.6)
Then, by a simple change of variables the previous integral is

∫ (
�n+1

i=1,i �=2|ki |2
)

|k′
2 − k1|2K N

k1,k′
2−k1

f̂ (k′
2, k3:n+1)ĝn+1(k1, k

′
2 − k1, k3:n+1) dk1 dk

′
2 dk3:n+1

=
∫ (

�n
i=1|ki |2

) |k1 − p|2|p|2
|k1|2 K N

p,k1−p f̂ (k1:n)ĝn+1(p, k1 − p, k2:n) dp dk1:n

= 1

2π

∫ (
�n

i=1|ki |2
)
f̂ (k1:n)

∫
�̂N
p,k1−p

(p⊥ · k1)(k1 · (k1 − p))

|k1|2 ĝn+1(p, k1 − p, k2:n) dp dk1:n

= − 1

2π

∫ (
�n

i=1|ki |2
)
f̂ (k1:n)

∫
�̂N
p,k1−p

(p · k⊥
1 )(k1 · (k1 − p))

|k1|2 ĝn+1(p, k1 − p, k2:n) dp dk1:n ,

from which the result follows. Further, as an immediate corollary of (A N+ )∗ = −A N− ,
we also deduce that A N is antisymmetric so that the proof of the statement is com-
pleted. ��

3.2 Tightness and upper bound

Following techniques similar to those exploited in Sect. 2.1, we establish tightness for
the sequence {ωN }N of solutions to the stationary regularised vorticity equation under
assumption (1.11). For θ = 1, we also derive an order one upper bound on the integral
in time of the non-linearity.
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Theorem 3.3 Let θ ∈ (0, 1]. For N ∈ N, let ωN be a stationary solution to (2.20) on
R
2 with coupling constant λN , θ chosen according to (1.11), started from the Gaussian

process μ with covariance given by (1.20). For ϕ ∈ S (R2) and t ≥ 0, set

BN
t (ϕ)

def= λN , θ

∫ t

0
N N

t [ωN
s ](ϕ) ds . (3.7)

Then, for any T > 0, the couple (ωN ,BN ) is tight in the space C([0, T ],S ′(R2)).
Moreover, for θ = 1, any limit point (ω,B) is such that for all p ≥ 2 there exists a
constant C = C(p) such that for all ϕ ∈ S (R2)

E
[∣∣∣Bt (ϕ)

∣∣∣p
] 1

p ≤ C(t ∨ t
1
2 )‖ϕ‖Ḣ2(R2) , (3.8)

while, for θ ∈ (0, 1), for all p ≥ 2 and ϕ ∈ S (R2)

lim
N→∞E

[
sup
s≤t

∣∣∣BN
s (ϕ)

∣∣∣p
] 1

p = 0 . (3.9)

Remark 3.4 For θ = 1, the previous theorem proves both the tightness of the sequence
{(ωN ,BN )}N stated in Theorem 1.4 and the upper bound in (1.15). The latter can be
directly verified by considering (3.8) with p = 2 and applying the Laplace transform
at both sides.

Proof The proof follows the same steps and computations performed in Section 2 for
Lemma 2.12. More precisely, the statements of Lemma 2.5 (the Itô trick), Proposi-
tion 2.6 and Lemma 2.7 holdmutatis mutandis in the non-periodic case—it suffices to
remove the superscripts M , replace every instance of T2

M with R
2 and substitute the

weighted Riemann-sums with integrals. Hence, we deduce that for any ϕ ∈ S (R2)

and any p ≥ 2

E
[
sup
s≤t

∣∣∣BN
s (ϕ)

∣∣∣p
] 1

p � N 2θ−2(t ∨ t
1
2 )‖ϕ‖Ḣ2(R2) . (3.10)

which implies tightness forBN for θ ∈ (0, 1] byMitoma’s andKolmogorov’s criteria,
and (3.9) for θ ∈ (0, 1) and (3.8) for θ = 1. Moreover, arguing as in the proof of
Lemma 2.12, one sees that (2.28) holds for ωN . By invoking once more Mitoma’s and
Kolmogorov’s criteria we conclude that tightness holds also for ωN . ��

Remark 3.5 The reason why in the previous proof we did not use the approximating
sequence {ωN ,M }M and Proposition 2.6 directly is that the solution to (1.10) is not
necessarily unique as underlined in Remark 2.11. This means that a generic solution
of the martingale problem in Definition 2.8 cannot necessarily be expressed as the
limit of a sequence of periodic Galerkin approximations {ωN ,M }M .
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3.3 Triviality of the fractional vorticity equation for � < 1

In this section, we complete the proof of Theorem 1.6 and show that the rescaled
solution of the regularised fractional vorticity equation for θ ∈ (0, 1) converges to the
fractional stochastic heat equation obtained by simply setting the coupling constant λ
in (1.10) to 0.

For the proof, recall that ω is a stationary (analytically) weak solution of (1.16) if
for all ϕ ∈ S (R2), ω satisfies

ωt (ϕ) = μ(ϕ) +
∫ t

0
ωs(−(−�)θϕ) ds +

∫ t

0
ξ( ds, (−�)

1+θ
2 ϕ)

where μ is the Gaussian process whose covariance is given by (1.20). It is not hard to
see that ω admits a unique stationary weak solution. This is the only tool we need for
the proof, which is then a simple corollary of Theorem 3.3.

Proof of Theorem 1.6 For N ∈ N, let ωN be a stationary weak solution to (1.10), i.e.
for all ϕ ∈ S (R2) ωN satisfies

ωN
t (ϕ) − μ(ϕ) = 1

2

∫ t

0
ωN
s (−(−�)θϕ) ds + BN

t (ϕ) −
∫ t

0
ξ( ds, (−�)

1+θ
2 ϕ) ,

where BN is defined according to (3.7). By Theorem 3.3, the sequence (ωN ,BN )

is tight in the space C([0, T ],S ′(R2)) and, thanks to (3.9), BN → 0 as N → ∞.
Hence, it is immediate to verify that every limit point of ωN is a weak stationary
solution of (1.16). Since the latter is unique, the result follows at once. ��

3.4 Lower bound on the nonlinearity for� = 1

As shown in Theorem 3.3, the choice of the coupling constant λN , θ in (1.11) ensures
tightness of the sequence {ωN }N of stationary solutions to (2.20) onR2 and, for θ = 1,
provides an upper bound on the integral in time of the non-linearity. In the proposition
below,we determine amatching (up to constants) lower bound on its Laplace transform
thanks to which the proof of Theorem 1.4 is complete.

Proposition 3.6 In the same setting as Theorem 3.3, let θ = 1 and B be any limit
point of the sequence BN in (3.7). Then, there exists a constant C > 0 such that for
all κ > 0 and ϕ ∈ S (R2) the lower bound in (1.15) holds.

Proof For N ∈ N, let BN be defined according to (3.7), By Cannizzaro et al. [2,
Lemma 5.1], for N ∈ N we have

∫ ∞

0
e−κtE

[∣∣∣BN
t (ϕ)

∣∣∣2
]
dt = 2

κ2E

[
N N [μ](ϕ)(κ − L N )−1N N [μ](ϕ)

]
. (3.11)
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Thanks to Cannizzaro et al. [2, Lemma 5.2] and the isometry I introduced in Sect. 1.1,
the right hand side above equals

2

κ2 sup
G∈L2(μ)

{
2E[λN ,1N

N [μ](ϕ)G] − E[G(κ − L0)G] − E[A NG(κ − L0)
−1A NG]

}

= 2

κ2 sup
g∈�L2

{
2〈λN ,1n

N
ϕ , g〉�L2 − 〈g, (κ − L0)g〉�L2 − 〈A N g, (κ − L0)

−1A N g〉�L2

}

(3.12)

where nNϕ is such that N N [μ](ϕ) = I2(nNϕ ) and its Fourier transform is given by

the right hand side of (2.15) (for �,m ∈ R
2). We can further lower bound (3.12)

by restricting to g to �L2
2 for which, by orthogonality of different chaoses and the

properties of A N+ and A N− determined in Proposition 3.1, we have

〈A N g, (κ − L0)
−1A N g〉�L2

2
= 〈A N+ g, (κ − L0)

−1A N+ g〉�L2
3

+〈A N− g, (κ − L0)
−1A N− g〉�L2

1
.

Summarising, the left hand side of (3.11) is lower bounded by

2

κ2 sup
g∈�L2

2

{
2〈λN ,1n

N
ϕ , g〉�L2

2
− 〈g, (κ − L0)g〉�L2

2

−〈g,−A N− (κ − L0)
−1A N+ g〉�L2

2
− 〈g,−A N+ (κ − L0)

−1A N− g〉�L2
2

}

(3.13)

where we further exploited that the adjoint of A N+ is −A N− and vice versa.
The operators −A N− (κ − L0)

−1A N+ and −A N+ (κ − L0)
−1A N− , even though

explicit, are difficult to handle since they are not diagonal in Fourier space, meaning
that their Fourier transform cannot be expressed in terms of an explicit multiplier.
Nevertheless, the following lemma, whose proof we postpone to the end of the section,
ensures that they can be bounded by one. ��
Lemma 3.7 There exists a constant C > 0 independent of N such that for any g ∈
�L2

2, the following bound hold

〈g,−A N− (κ − L0)
−1A N+ g〉�L2

2
∨ 〈g,−A N+ (κ − L0)

−1A N− g〉�L2
2

≤ C〈(−L0)g, g〉�L2
2
.

(3.14)

Assuming the previous lemma holds, there exists a constant c > 1 independent of
n such that (3.13) is bounded below by

2

κ2 sup
g∈�L2

2

{
2〈λN ,1n

N
ϕ , g〉�L2

2
− 〈g, (κ − cL0)g〉�L2

2

}

= 2

κ2 sup
g∈�L2

2

{
〈λN ,1n

N
ϕ , g〉�L2

2
+ 〈λN ,1n

N
ϕ − (κ − cL0)g, g〉�L2

2

}
. (3.15)
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Now, in order to prove (1.15), it suffices to exhibit one g for which the lower bound
holds, and we choose it in such a way that the second scalar product in the supremum
is 0, i.e. we pick g = g, the latter being the unique solution to

λN ,1n
N
ϕ − (κ − cL0)g = 0 . (3.16)

Notice that, by (3.1), g has an explicit Fourier transform which is given by

ĝ(k1:2) = λN ,1
n̂Nϕ (k1:2)

κ + c
2 |k1:2|2

.

Plugging g into (3.13) we obtain a lower bound of the type

2

κ2 〈λN , θn
N
ϕ , g〉�L2

2
= 2λ2N ,1

κ2

∫
R
4
|k1|2|k2|2

|n̂Nϕ (k1:2)|2
κ + c

2 |k1:2|2 dk1:2

= 2

κ2

∫
R
2
dk|ϕk |2

(
λ2N ,1

∫
R
2
dk2|k − k2|2|k2|2

|K N
k−k2,k2

|2
κ + c

2 (|k − k2|2 + |k2|2)
)

(3.17)

which is fully explicit and we are left to consider the inner integral. To do so, recall
the definition of K N in (2.3). We restrict the integral over k2 to the sector

C N
k

def= {k2 : θk2 ∈ θk + (π/6, π/3) & N/3 ≥ |k2| ≥ (2|k|)∨2/N & |k| ≤ √
N }

where, for j ∈ R
2, θ j is the angle between the vectors j and (1, 0). It is not hard to

see that, on Ck , we have

|K N
k−k2,k2 |2 = 1

2π
(�̂N

k−k2,k2 )
2 |(k − k2)⊥ · k|2|k2 · k|2

|k2|4|k − k2|4 = 1

2π
(�̂N

k−k2,k2 )
2 |k2 · k⊥|2|k2 · k|2

|k2|4|k − k2|4

= 1

2π
(�̂N

k−k2,k2 )
2 |k|4
|k − k2|4 | cos(θ − θk)|2| cos(θ − θk⊥)|2 ≥ c�

|k|4
|k2|2|k − k2|2

for a constant c� depending only on � but neither on k nor N . In the last step, we used

that by assumption (1.12) on �, | ˆ�N | is bounded below on [2/N , N/2] by a constant
independent of N and that on C N

k we have

2
N ≤ |k|, |k2|, |k − k2| ≤ N

2 , and 3
2 |k2| ≥ |k − k2| ≥ 1

2 |k2| .

Hence, the right hand side of (3.17) is lower bounded,modulo amultiplicative constant
only depending on �, by

2

κ2

∫
2/N≤|k|≤√

N
dk|k|4|ϕk |2

(
λ2N ,1

∫
C N
k

dk2
κ + |k2|2

)
. (3.18)
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It remains to treat the quantity in parenthesis, for which we pass to polar coordinates
and obtain

λ2N ,1

∫
C N
k

dk2
κ + |k2|2 ≥ λ2N ,1

∫ N/3

2
√
N

� d�

κ + �2 = λ

2 log N
log

(κ + N 2/9

κ + 4N

)
� 1 .

In conclusion, we have shown that for N large enough

∫ ∞

0
e−κtE

[∣∣∣BN
t (ϕ)

∣∣∣2
]
dt � 1

κ2

∫
2/N≤|k|≤√

N
dk|k|4|ϕk |2 , (3.19)

and it remains to pass to the limit as N → ∞. Now, thanks to (3.8) and tightness of
BN , we can apply dominated convergence to the left hand side, while the integral at
right hand side clearly converges to ‖ϕ‖2

Ḣ2(R2)
, so that the proof is completed. ��

Proof of Lemma 3.7 We will exploit the Fourier representation of the operators A N+
and A N− in Proposition 3.1, which though still need to be symmetrised. Let aN+ be
the operator defined by the right hand side of (3.2) and S3 the set of permutations of
{1, 2, 3}. Then,

〈g,A N− (κ − L0)
−1A N+ g〉�L2

2

= 〈A N+ g, (κ − L0)
−1A N+ g〉�L2

3

=
∑
s,s̄∈S3

∫ |k1|2|k2|2|k3|2
κ + 1

2 |k1:3|2
F (aN+g)(ks(1):s(3))F (aN+g)(ks̄(1):s̄(3)) dk1:3

�
∫ |k1|2|k2|2|k3|2

κ + 1
2 |k1:3|2

F (aN+g)(k1:3)2 dk1:3 (3.20)

where in the last step we simply applied Cauchy–Schwarz inequality. Now, we bound
|K N

k1,k2
| ≤ �̂N

k2
|k1 + k2|2/(|k1||k2|) so that the right hand side above can be controlled

via

λ2N ,1

∫
R
6
ĝ(k1 + k2, k3)

2�̂k2
|k3|2|k1 + k2|4
κ + 1

2 |k1:3|2
dk1:3

�
∫
R
4
dk1:2

( 2∏
i=1

|ki |2
)
|k1|2|ĝ(k1, k2)|2

(
λ2N ,1

∫
R
2

�̂ j d j

κ + | j |2
)

�
∫
R
4
dk1:2

( 2∏
i=1

|ki |2
)
|k1|2|ĝ(k1, k2)|2

= 1

2

∫
R
4
dk1:2

( 2∏
i=1

|ki |2
)
(|k1|2 + |k2|2)|ĝ(k1, k2)|2 = 〈(−L0)g, g〉�L2

2

(3.21)
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where the second step follows by the fact that ˆ� j ≤1| j |≤N and the definition of λN ,1
in (1.11), while the last by the symmetrisation of the integral.

We now turn to the other term, which is

〈g,A N+ (κ − L00)
−1A N− g〉�L2

2

= 〈A N− g, (κ − L0)
−1A N− g〉�L2

1
� λ2N ,1

∫ |k|2
κ + 1

2 |k|2
F (A N− g)(k)2 dk

= λ2N ,1

∫
R
2
dk

|k|2
κ + 1

2 |k|2
( ∫

R
2
�̂N
p,k−p

(k⊥ · p)(k · (k − p))

|k|2 ĝ(p, k − p) dp
)2

� λ2N ,1

∫
R
2
dk

( ∫
R
2
�̂N
p |p||k − p|ĝ(p, k − p) dp

)2
.

We now multiply and divide the integrand by |p| and apply Cauchy–Schwarz, so that
we obtain an upper bound of the form

( ∫
R
4
dk1:2

( 2∏
i=1

|ki |2
)
|k1|2 ĝ(k1, k2)|2

)(
λ2N ,1

∫
R
2
(�̂N

p )2
dp

|p|2
)

from which (3.14) follows arguing as in (3.21). ��
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Appendix A Derivation of (2.3)

In this appendix, we show the derivation of (2.3). Notice that according to (1.9), the
k-th Fourier coefficient of the non-linearity reads

N N ,M
k [v] = 1

M2

∑
�+m=k
�,m∈Z2

M

1

2π
�̂N

�,m
�⊥ · m
|�|2 v�vm

Since the mollifier is radially symmetric, we omit it in what follows in order to lighten
the exposition. To justify (2.3), it suffices to show that for every k ∈ Z

2
M and v ∈ L2,
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we have

∑
�+m=k
�,m∈Z2

M

�̂N
�,m

�⊥ · m
|�|2 v�vm =

∑
�+m=k
�,m∈Z2

M

�̂N
�,m

(�⊥ · (� + m))(m · (� + m))

|�|2|m|2 v�vm .

Let us first split the left-hand side into two terms and exchangem with � in the second
term, so that we get

∑
�+m=k

�⊥ · m
|�|2 v�vm = 1

2

∑
�+m=k

�⊥ · m
|�|2 v�vm + 1

2

∑
�+m=k

m⊥ · �

|m|2 v�vm

=
∑

�+m=k

1

2

(
(�⊥ · m)(m · m) + (m⊥ + �)(� · �)

|�|2|m|2
)

v�vm .

Focusing on numerator part of the fraction and using m⊥ · � = −�⊥ · m we have

(�⊥ · m)(m · m) + (m⊥ + �)(� · �) = (�⊥ · m)(m · m − � · �)

= (�⊥ · m)(m · (� + m)) − (�⊥ · m)(� · (� + m))

= (�⊥ · m)(m · (� + m)) + (m⊥ · �)(� · (� + m)) .

Hence,

∑
�+m=k

1

2

(
(�⊥ · m)(m · (� + m)) + (m⊥ · �)(� · (� + m))

|�|2|m|2
)

v�vm

= 1

2

∑
�+m=k

(�⊥ · m)(m · (� + m))

|�|2|m|2 v�vm + 1

2

∑
�+m=k

(m⊥ · �)(� · (� + m))

|�|2|m|2 v�vm

=
∑

�+m=k

(�⊥ · m)(m · (� + m))

|�|2|m|2 v�vm =
∑

�+m=k

(�⊥ · (� + m))(m · (� + m))

|�|2|m|2 v�vm ,

where the last equality holds as �⊥ · � = 0.

Appendix B A proof of Itô trick

The proof of the Itô trick (Lemma 2.5) can be found in several works, e.g. [15, 17],
but for the sake of completeness we detail it below.

Proof of Lemma 2.5 Let F be a real-valued cylinder function. Thanks to Itô’s formula,
we can write

F(ω
N ,M
t ) − F(μM ) =

∫ t

0

(
L M

θ + A N ,M
)
F (ωN ,M

s ) ds + Mt (F), (B.1)

123



278 Stoch PDE: Anal Comp (2024) 12:247–280

where M·(F) is the martingale whose quadratic variation is

d〈M(F)〉t = E (F)(ω
N ,M
t ) dt (B.2)

and E (F) is the energy of F defined in (2.9). For fixed T > 0, the backward process
ω̄
N ,M
t

def= ω̄
N ,M
T−t is itself a Markov process whose generator is given by the adjoint of

(L N ,M )∗, (L N ,M )∗ = L M
θ − A N ,M . In particular, applying again Itô’s formula,

but this time to F(ω̄
N ,M
t ), we get

F(ω̄
N ,M
T )−F(ω̄

N ,M
T−t ) =

∫ T

T−t

(
L M

θ − A N ,M
)
F (ω̄N ,M

s ) ds+M̄T (F)−M̄T−t (F) ,

(B.3)
where M̄(F) is a martingale with respect to the backward filtration, generated by the
process ω̄N ,M , and its quadratic variation is that in (B.2) but with ω̄N ,M replacing
ωN ,M . Notice that, by a simple change of variables, and using the fact that ω̄N ,M is
the time-reversed ωN ,M , we see that (B.3) becomes

F(μM ) − F(ω
N ,M
t ) =

∫ t

0

(
L M

θ − A N ,M
)
F (ωN ,M

s ) ds + M̄T (F) − M̄T−t (F) .

(B.4)
Hence, adding up (B.1) and (B.4), we obtain

2
∫ t

0
L M

θ F (ωN ,M
s ) ds = −Mt (F) − M̄T (F) + M̄T−t (F) .

Therefore, applying Burkholder–Davis–Gundy inequality to the right hand side of the
previous, we immediately obtain that there exists an absolute constant C > 0 (which
might change from line to line) such that

E

[
sup
t≤T

∣∣∣
∫ t

0
L M

θ F(ωN ,M
s ) ds

∣∣∣p
]

≤ CE
[
〈M(F)〉p/2T

]

≤ Ct p/2E
[
E (F)(μM )p/2

]
≤ Ct p/2E

[
E (F)(μM )

]p/2

where in the last step we exploited Gaussian hypercontractivity [28, Theorem 1.4.1]
to replace the p/2 moment at the right hand side of (2.8) with the square-root of the
expectation of the energy. ��
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