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Abstract
We correct two errors in our paper [4]. First error concerns the definition of the SVI
solution, where a boundary term which arises due to the Dirichlet boundary condi-
tion, was not included. The second error concerns the discrete estimate [4, Lemma
4.4], which involves the discrete Laplace operator. We provide an alternative proof
of the estimate in spatial dimension d = 1 by using a mass lumped version of the
discrete Laplacian. Hence, after a minor modification of the fully discrete numerical
scheme the convergence in d = 1 follows along the lines of the original proof. The
convergence proof of the time semi-discrete scheme, which relies on the continuous
counterpart of the estimate [4, Lemma 4.4], remains valid in higher spatial dimension.
The convergence of the fully discrete finite element scheme from [4] in any spatial
dimension is shown in [3] by using a different approach.
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1 Introduction

LetO ⊂ R
d be an open convex domain with piecewise smooth boundary.We consider

numerical approximation of the stochastic total variation flow

dX = div

( ∇X

|∇X |
)

dt − λ(X − g) dt + X dW , in (0, T ) × O,

X = 0 on (0, T ) × ∂O,

X(0) = x0 in O, (1)

which is constructed via the discretization of the regularized problem

dXε = div

(
∇Xε√|∇Xε|2 + ε2

)
dt − λ(Xε − g) dt + Xε dW in (0, T ) × O,

Xε = 0 on (0, T ) × ∂O,

Xε(0) = x0 in O. (2)

Throughout the paper we employ the notation from [4]. The first error is corrected in
Sect. 2 and the correction of the second error is provided in Sect. 3.

2 Definition of the SVI solution and the uniqueness proof

In the proof of [4, Theorem 3.1] the term I V in (29) is wrongly rewritten as

I V = −
⎛
⎝Xε

1 − Xε,δ
2,n, div

∇Xε,δ
2,n√

|∇Xε,δ
2,n|2 + ε2

⎞
⎠ =

⎛
⎝∇Xε

1 − ∇Xε,δ
2,n,

∇Xε,δ
2,n√

|∇Xε,δ
2,n|2 + ε2

⎞
⎠

since Xε
1 is only in BV (O) and possibly non-zero at the boundary. Hence, to show

the uniqueness of the SVI solutions for ε > 0 requires a modification of the definition
which takes into account the value at the solution at the boundary. This definition is
consistent with the one from [2], which also shows uniqueness in case ε = 0.

We define the following functionals which include the corresponding boundary
terms

J̄ε,λ(u) =
{
Jε,λ(u) + ∫

∂O |γ0(u)| dHn−1 for u ∈ BV (O) ∩ L2(O),

+∞ for u ∈ BV (O)\L2(O),

and

J̄λ(u) =
{
Jλ(u) + ∫

∂O |γ0(u)| dHn−1 for u ∈ BV (O) ∩ L2(O),

+∞ for u ∈ BV (O)\L2(O),
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where γ0(u) is the trace of u ∈ BV (O) on the boundary and dHn−1 is the Hausdorff
measure on ∂O. J̄ε,λ and J̄λ are both convex and lower semicontinuous on L2(O) and
the lower semicontinuous hulls of J̄ε,λ|H1

0
or J̄λ|H1

0
respectively, cf. [1, Proposition

11.3.2]. We define the SVI solution as follows.

Definition 2.1 Let 0 < T < ∞, ε ∈ [0, 1] and x0 ∈ L2(�,F0;L2) and g ∈ L
2.

Then a (Ft )-adapted map Xε ∈ L2(�;C([0, T ];L2)) ∩ L1(�; L1((0, T ); BV (O)))

(denoted by X ∈ L2(�;C([0, T ];L2)) ∩ L1(�; L1((0, T ); BV (O))) for ε = 0)
is called an SVI solution of (2) (or (1) if ε = 0) if Xε(0) = x0 (X(0) = x0),
and for each (Ft )-progressively measurable process G ∈ L2(� × (0, T ),L2) and
for each (Ft )-adapted L

2-valued process Z with P-a.s. continuous sample paths, s.t.
Z ∈ L2(� × (0, T );H1

0), which together satisfy the equation

dZ(t) = −G(t) dt + Z(t) dW (t), t ∈ [0, T ],

it holds for ε ∈ (0, 1] that

1

2
E

[
‖Xε(t) − Z(t)‖2

]
+ E

[∫ t

0
J̄ε,λ(X

ε(s)) ds

]

≤ 1

2
E

[
‖x0 − Z(0)‖2

]
+ E

[∫ t

0
J̄ε,λ(Z(s)) ds

]

+ 1

2
E

[∫ t

0
‖Xε(s) − Z(s)‖2 ds

]
+ E

[∫ t

0

(
Xε(s) − Z(s),G

)
ds

]
, (3)

and analogously for ε = 0 it holds that

1

2
E

[
‖X(t) − Z(t)‖2

]
+ E

[∫ t

0
J̄λ(X(s)) ds

]

≤ 1

2
E

[
‖x0 − Z(0)‖2

]
+ E

[∫ t

0
J̄λ(Z(s)) ds

]

+ 1

2
E

[∫ t

0
‖X(s) − Z(s)‖2 ds

]
+ E

[∫ t

0
(X(s) − Z(s),G) ds

]
. (4)

The existence of SVI solutions (3), (4) follows as in [4, Theorem 3.1] by the lower
semicontinuity of J̄ε,λ, J̄λ, respectively. The uniqueness of SVI solution (4) follows
from [2, Theorem 3.2].

To show uniqueness of the SVI solution (3) we proceed as in [4, Theorem 3.1]
with exception that the term I V in (29) takes a different form. In particular, to obtain
uniqueness we have to show the following estimate:

I V :=
⎛
⎝Xε

1 − Xε,δ
2,n,−div

∇Xε,δ
2,n√

|∇Xε,δ
2,n|2 + ε2

⎞
⎠ ≤ J̄ε,0(X

ε
1) − J̄ε,0(X

ε,δ
2,n). (5)
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We note that term I V is well defined since div
∇Xε,δ

2,n√
|∇Xε,δ

2,n |2+ε2
∈ L

2 for a.a. (ω, t) ∈
� × (0, T ). Indeed, from [4, Lemma 3.2] for δ > 0, n < ∞ we deduce by parabolic
regularity theory that Xε,δ

2,n(ω, t) ∈ H
2 for a.a. (ω, t) ∈ � × (0, T ) and a direct

calculation yields that

∣∣∣∣∣∣div
∇Xε,δ

2,n√
|∇Xε,δ

2,n|2 + ε2

∣∣∣∣∣∣ ≤ 2
|∇Xε,δ

2,n||∇2Xε,δ
2,n|(|∇Xε,δ

2,n|2 + ε2
) 3
2

+ |	Xε,δ
2,n|√

|∇Xε,δ
2,n|2 + ε2

.

We show the inequality in (5) by the integration by parts formula using a density
argument. We fix (ω, t) ∈ � × (0, T ) and proceed below with Xε

1 ≡ Xε
1(ω, t),

Xε,δ
2,n ≡ Xε,δ

2,n(ω, t). We consider an approximating sequence xk ∈ C∞(O) ∩ BV (O),
s.t. xk → Xε

1 strongly in L
1 and

Jε,0(xk) → Jε,0(X
ε
1) for k → ∞, (6)

cf., [1, Theorems 10.1.2, 13.4.1 and Remark 10.2.1] or [6, Theorem 5.2].
Note that, since Xε

1(ω, t) ∈ L
2 it is straightforward to modify the proof of [1,

Theorems 10.1.2] (see for instance [1, Proposition 2.2.4] for the Lp properties of the
mollifiers) such that the sequence xk converges strongly in L

2:

‖xk − Xε
1‖L2 → 0 for k → ∞. (7)

Using the integration by parts formula [1, Theorem 10.2.1] we obtain that

⎛
⎝xk − Xε,δ

2,n,−div
∇Xε,δ

2,n√
|∇Xε,δ

2,n|2 + ε2

⎞
⎠ =

⎛
⎝∇(xk − Xε,δ

2,n),
∇Xε,δ

2,n√
|∇Xε,δ

2,n|2 + ε2

⎞
⎠

+
∫

∂O
γ0(xk)

∇Xε,δ
2,n√

|∇Xε,δ
2,n|2 + ε2

· ν dHn−1 −
∫

∂O
γ0(X

ε,δ
2,n)

∇Xε,δ
2,n√

|∇Xε,δ
2,n|2 + ε2

· ν dHn−1,

(8)

where ν is the outer unit normal vector to ∂O andHn−1 is the Hausdorff measure on
∂O.
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Since Xε,δ
2,n ∈ H

1
0 it holds that γ0(X

ε,δ
2,n) = 0 and the second boundary integral

vanishes. The first boundary integral can be estimated as

∫
∂O

γ0(xk)
∇Xε,δ

2,n√
|∇Xε,δ

2,n|2 + ε2
· ν dHn−1 ≤

∫
∂O

|γ0(xk)|
∣∣∣∣∣∣

∇Xε,δ
2,n√

|∇Xε,δ
2,n|2 + ε2

· ν

∣∣∣∣∣∣ dHn−1

≤
∫

∂O
|γ0(xk)| dHn−1 =

∫
∂O

∣∣γ0(Xε
1)

∣∣ dHn−1, (9)

where the last equality follows from the fact that the trace of xk ∈ C∞(O) ∩ BV (O)

coincides with the trace of Xε
1, cf. [1, Remark 10.2.1].

By the convexity of Jε,0 we deduce that

⎛
⎝∇(xk − Xε,δ

2,n),
∇Xε,δ

2,n√
|∇Xε,δ

2,n|2 + ε2

⎞
⎠ ≤ Jε,0(xk) − Jε,0(X

ε,δ
2,n). (10)

Hence, (5) follows after substituting (10), (9) into (8) and taking the limit for k → ∞
and noting (6), (7).

The rest of the proof follows analogously to the original proof of [4, Theorem 3.1].

3 Convergence of the full discretization

In the proof of [4, Lemma 4.4] it is concluded that

1

2

∑
K ,K ′∈Th

v̄Th AT
K M−1AK ′ v̄h

(
(|∇vh |2 + ε2)

− 1
2

K + (|∇vh |2 + ε2)
− 1

2
K ′

)

≥ 1

2

∑
K ,K ′∈Th

√
(|∇vh |2 + ε2)

− 1
2

K ′ v̄Th AT
K M−1AK ′ v̄h

√
(|∇vh |2 + ε2)

− 1
2

K ≥ 0,

which is not justified. Lemma 4.4 is required to obtain the estimate (48) in [4, Lemma
4.5] (note that the continuos counterpart of the estimate in Lemma 3.2 is obtained
using Proposition 2.1), which is in turn required to show [4, Theorem 4.1].

In this section we show an analogue of the estimate in [4, Lemma 4.4] for a slightly
modified numerical scheme in dimension d = 1. Given J ∈ N and a mesh size h =
1/J weconsider a uniformpartitonTh = ∪J

j=1Tj of the spatial domainO = (0, 1) into
subintervals Tj = (xi−1, xi )with nodes x j = jh, j = 0, . . . , J . As in [4] we consider
a finite element space Vh ⊂ H

1
0 of piecewise linear globally continuous functions on

subordinated to Th . The standard nodal interpolation operator Ih : C(Ō) → Vh is
defined as

Ih�(x j ) = �(x j ) ∀ j = 0, . . . , L.
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We define the discrete (mass-lumped) L2-inner product (·, ·)h on Vh as

(ϕ, ψ)h =
∫
O

Ih(〈ϕ,ψ〉)(x) dx = h
J−1∑
j=1

ϕ(x j ), ψ(x j ) for ϕ,ψ ∈ Vh, (11)

with the corresponding discrete norm ‖ψ‖2h = (ψ,ψ)h .
It is well known that the above discrete inner product and the norm satisfy (cf. [5]):

‖vh‖L2 ≤ ‖vh‖h ≤ C‖vh‖L2 ∀ vh ∈ Vh, (12)∣∣(vh, wh)h − (vh, wh)
∣∣ ≤ Ch‖vh‖L2‖wh‖H1 ∀ vh, wh ∈ Vh . (13)

We define the mass-lumped Discrete Laplace operator 	h : Vh → Vh through the
identity

(	hvh, wh)h = − (∇vh,∇wh) . (14)

The next lemma is the counterpart of [4, Lemma 4.4] for the 1d discrete Laplace
operator (14). Numerical experiments (not stated in this paper) indicate that the result
also holds for d > 1 (possibly under some additional assumptions on the shape of the
mesh). Nevertheless, the proof of the result for d > 1 remains open, so far.

Lemma 3.1 Let 	h be the discrete Laplacian defined by (14). Then for any vh ∈ Vh,
ε, h > 0 the following inequality holds:

(
∇vh√|∇vh |2 + ε2

,∇(−	hvh)

)
≥ 0.

Proof SinceVh is the space of piecewise linear functions over Th , it holds for vh ∈ Vh

that

δxv
j
h := ∂xvh(x)

∣∣
Tj

= vh(x j ) − vh(x j )

h
.

By definition (11) and (14) we deduce that

	hv
j
h := 	hvh(x j ) = vh(x j+1) − 2vh(x j ) + vh(x j−1)

h2
= δxv

j+1
h − δxv

j
h

h
,

and 	hv
0
h = 	hv

J
h = 0.
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By the above properties we deduce that

(
∇vh√|∇vh |2 + ε2

,∇(−	hvh)

)
= −

(
∂xvh√|∂xvh |2 + ε2

, ∂x	hvh

)

= −
J∑

j=1

∫
Tj

∂xvh√|∂xvh |2 + ε2
∂x	hvh dx

= −h
J∑

j=1

δxv
j
h√

|δxv j
h |2 + ε2

δx	hv
j
h = −

J∑
j=1

δxv
j
h√

|δxv j
h |2 + ε2

(
	hv

j
h − 	hv

j−1
h

)

= −
J∑

j=1

δxv
j
h√

|δxv j
h |2 + ε2

	hv
j
h +

J∑
j=1

δxv
j
h√

|δxv j
h |2 + ε2

	hv
j−1
h

= −
J−1∑
j=1

δxv
j
h√

|δxv j
h |2 + ε2

	hv
j
h +

J−1∑
j=1

δxv
j+1
h√

|δxv j+1
h |2 + ε2

	hv
j
h

=
J−1∑
j=1

⎛
⎝ δxv

j+1
h√

|δxv j+1
h |2 + ε2

− δxv
j
h√

|δxv j
h |2 + ε2

⎞
⎠ 	hv

j
h

= 1

h

J−1∑
j=1

⎛
⎝ δxv

j+1
h√

|δxv j+1
h |2 + ε2

− δxv
j
h√

|δxv j
h |2 + ε2

⎞
⎠ (δxv

j+1
h − δxv

j
h )

≥ 0

where we used the convexity of
√| · |2 + ε2 to deduce the last inequality. ��

Using the above lemma one can show the convergence for a slight modification
of the fully discrete numerical scheme of [4] where the standard L

2-inner product
is replaced by the discrete inner product (11) as follows: given x0, g ∈ L

2 we set
X0

ε,h = Phx0, gh := Phg and obtain Xi
ε,h for i = 1, . . . , N as the solution of the

following system:

(
Xi

ε,h, vh

)
h

=
(
Xi−1

ε,h , v
)
h

− τ

⎛
⎝ ∇Xi

ε,h√
|∇Xi

ε,h |2 + ε2
,∇vh

⎞
⎠

− τλ
(
Xi

ε,h − gh, vh
)
h

+
(
Xi−1

ε,h , vh

)
h
	iW ∀ vh ∈ Vh . (15)

By the equivalence of the norms ‖ · ‖ and ‖ · ‖h (cf. (12)) the convergence of the above
numerical approximation for d = 1 follows as in [4] with [4, Lemma 4.4] replaced
by Lemma 3.1.
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We note that the convergence proof remains valid for d ≥ 1 in the case of the
time-semi discrete variant of the original numerical scheme from [4]:

(
Xi

ε, ϕ
)

=
(
Xi−1

ε , ϕ
)

− τ

(
∇Xi

ε√|∇Xi
ε|2 + ε2

,∇ϕ

)

− τλ
(
Xi

ε − g, ϕ
)

+
(
Xi−1

ε , ϕ
)

	iW ∀ ϕ ∈ H
1
0.

In the semi-discrete setting one employs the continuous counterpart of Lemma 3.1
and proceeds as in the proof of [4, Lemma 3.2] to obtain the space-continuous version
of the stronger estimate (48) in Lemma 4.5 from [4]. Then the convergence proof of
the above semi-discrete numerical scheme follows analogically as in the case of the
fully discrete numerical approximation; we skip the detailed exposition for brevity
and instead refer to [3, Section 4], from where the necessary components of the proof
can be deduced.

Finally, we conclude that a convergence proof of the fully discrete numerical
approximation for d ≥ 1, which avoids the use of [4, Lemma 4.4], is provided in
the upcoming paper [3].
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